
1. INTRODUCTION

The analysis of stability and performance robustness
to variations in uncertain aircraft parameters repre-
sents a major issue in the flight control law analysis/
certification process. The complexity of current air-
craft simulation models and control laws, together
with the large number of different combinations of
flight parameters (e.g. variations in mass, centre of
gravity positions, inertia, non-linear aerodynamics,
aerodynamic tolerances, air data system tolerances,
structural modes and failure cases) which must be ex-
amined throughout the entire flight envelope, makes
this analysis a costly and labour intensive task. As well
as identifying the regions of the flight envelope where
the aircraft is “safe to fly”, a key issue in the control
law analysis is to identify worst-case (in terms of the
resulting closed loop stability or performance) combi-
nations of the uncertain parameters. Current approach-
es which check stability and performance at each point
in a gridding of the space of all possible uncertain pa-

rameter variations quickly become computationally
inefficient as the number of uncertain parameters in-
creases. Moreover, gridding approaches provide no
guarantee that the true worst-case has in fact been
found – in particular, situations where the worst case
parameter combination occurs in the interior of the pa-
rameter space could easily be missed.

The technique of -analysis (Doyle, 1982) has been
proposed as a tool which may be used to improve both
the efficiency and accuracy of the flight control law
analysis task (Ferreres, 1999; Döll et al., 1999). Unlike
with the gridding approach,  provides guarantees
that a particular stability or performance property is
satisfied over a continuous range of values for each
uncertain parameter. Moreover, worst-case values of
these parameters may be computed on a frequency by
frequency basis.

In order to apply -analysis techniques to the flight
control law certification problem, a so-called linear
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fractional transformation (LFT)-based model of the
uncertain closed loop system must first be generated,
see Fig. 1.  represents the known part of the system
(plant and controller) and  represents the uncertainty
present in the system. In effect, extra inputs and out-
puts are introduced so that the system uncertainty can
be considered as part of an “external” feedback loop.

 defines a stability-test for a closed loop system sub-
ject to structured uncertainty  in terms of the maxi-
mum structured singular value (Doyle, 1982). The
problem of calculating the exact value of  has been
shown to be NP-hard (Braatz et al., 1994), and so in
practice upper and lower bounds are generally com-
puted using various approaches (Ferreres, 1999).

In recent years much attention has been paid to the is-
sue of how to efficiently generate accurate (and ideally
minimal) LFT-based uncertainty models for complex
uncertain systems – see Ferreres (1999) for an over-
view. A common assumption among almost all of the
approaches suggested is that closed form analytical
expressions relating the aircraft dynamics to the uncer-
tain parameters of interest are available, from which
LFT-based uncertainty models may be derived. The
main drawbacks of this approach can be identified as
the substantial modelling effort required to accurately
relate all the uncertain parameters to the non-linear air-
craft dynamics, and the fact that the symbolically lin-
earized state-space models are generally valid only at
and around the relevant operating point in the flight
envelope.

In this paper, an alternative approach for generating
LFT-based uncertainty models is presented, which
does not require the availability of analytical expres-
sions relating the aircraft dynamics to the uncertain pa-
rameters – only a non-linear software model of the
closed loop aircraft, which can be efficiently trimmed
and linearized numerically for different values of the
uncertain parameters, is required.

2. LFT-BASED UNCERTAINTY MODELLING 
USING TRENDS & BANDS

As shown by Morton and McAfoos (1985), LFT-
based parametric uncertainty models may be conven-
iently derived from a linear state space representation
of the uncertain system of the form

(1)

The matrices  describe the nominal sys-
tem, while , , describe de-
viations from the nominal system depending on the
normalized physical uncertain parameter  with

. 

In this paper, the problem of generating state space
representations of the type given in (1) from the origi-
nal non-linear simulation model of the aircraft is con-
sidered. One possible approach is the so-called “min-
max” technique (Varga et al., 1997). Here, the values
of the system-matrix elements are evaluated so that the
minimum and the maximum value within the given pa-
rameter range are identified element wise. Note that
for each varying element of the state space matrices

 an individual  is needed. Note further
that these ’s are “fictitious” and have no physical
meaning. The method is straightforward to implement,
but it can lead to conservatism since possible joint par-
ametric dependencies in the state space model are ig-
nored. Furthermore, since the “fictitious” ’s do not
directly represent the physical uncertain parameters, it
is not possible to identify the worst-case combination
of these parameters in the resulting -analysis.

In this paper, a new method for generating LFT-based
uncertainty models is proposed, which is less conserv-
ative than the “min-max” approach and moreover al-
lows the computation of worst-case uncertainty
combinations in terms of physical uncertain parame-
ters. As with the “min-max” approach, however, no
closed form expressions (typically linearized equa-
tions of motion) involving the physical parameters are
required. The key idea of the proposed method is to
model the uncertainties using a curve fitting technique
in a least squares sense. Consider as an example the el-
ement  of the matrix  depending on one
parameter . The formulation

(2)

then represents a linear approximation of the depend-
ency of this element on the uncertain parameter , as-
suming the coefficients  and  are derived using
a least squares fit based on  data-pairs , ...,

. Fig. 2 illustrates both the actual dependency
 and the approximation 

and shows the  data-pair , .

In the case of two uncertain parameters, the curve
which was approximated by a line, as in Fig. 2, can
then be interpreted as a surface which is approximated
by a plane. In the case of  uncertain parameters, the
approximation can be interpreted as a multi-dimen-
sional regression plane. Note that the ’s are now all
related to the physical uncertain parameters. The im-
plementation of higher order polynomial fits under
this approach is also straightforward. For the work
presented in this paper, however, a linear fit was found

M
∆

µ
∆

µ

M

∆

w z

r y

Fig. 1 Upper LFT uncertainty description
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to be adequate. For use in a -analysis, these fits are
transformed into an LFT-based uncertainty model as
proposed by Morton and McAfoos (1985).

The method described above is a linear approximation
of the uncertain system. Therefore, it does not cover
nonlinearities in the dependence of state-space matri-
ces on the uncertain parameters. Hence, some unstable
combinations could be left out during the -analysis,
which would make the whole analysis invalid. For in-
stance, assume that a matrix has a varying element .
As shown in Fig. 2, the unstable region could be left
out by the test, if only a linear approximation is used.
To include deviations from the linear approximations,
additional real nonlinearity compensation parameters
(CP’s) are added to the existing -set (Varga et al.,
1997). These take the form of  where 
represents the maximum deviation from the linear rep-
resentation and  is an additional normalized .
The compensation parameters add an uncertainty
“band”-structure to the “trend” established by the de-
pendence of the state-space elements on the physical
uncertain parameter. Each compensation parameter
independently acts on one state-space matrix element. 

The proposed technique therefore tries to find trends,
which represents the parameter variations, but allows
for nonlinear variations by introducing compensation
parameters. In the general case these trends are mod-
elled by a multi-dimensional regression plane, which
describes the linear variation, and a band-structure
(compensation parameters), that is limited by planes
parallel to the regression plane, above and below, to
include nonlinear deviations. The actual value of the
uncertain state-space element is then assumed to lie
somewhere within this band-structure.

Compared with the element-wise “min-max” ap-
proach, which also works with bands, the size of the
bands is now reduced, thus decreasing the conserva-
tism of the analysis results. Furthermore, the trends in-
troduce ’s with a physical interpretation, which can
be used to identify the actual worst case combination
of the physical uncertain parameters.

3. COMPUTATION OF WORST-CASE 
PARAMETER COMBINATIONS

To demonstrate the capability of the proposed method
to find worst-case parameter combinations, a control
system for the lateral axis of a civil transport aircraft
(Ferreres, 1999) is considered. The model was chosen
since an exact LFT representation (Kureemun et al.,
2001), based on a physical model derived from sym-
bolic equations, is available for comparison of worst-
case parameter results. The nominal model is charac-
terized by 4 states , 4 outputs

 and 2 control inputs .
As suggested by Kureemun et al. (2001), uncertainties
are introduced in the mass and in the 14 stability deriv-
atives, see Table 1. Each uncertain parameter is al-
lowed to vary within  of its nominal value. A
constrained static output feedback law was synthe-
sized using  loop shaping techniques (Bates and
Kureemun, 2001).

LFT representations derived using three different
methods are compared. The first LFT is referred to as
the exact LFT since it is based on a representation of
the symbolic equations and the uncertain parameters
in SIMULINK block diagram form. The method is de-
scribed in detail by Kureemun et al. (2001). Note that
the process of generating an LFT-based uncertainty
model using this method is quite tedious and time con-
suming, even for this simple academic aircraft model.
The  associated with the resulting LFT consists of 18
real ’s, of which 4, corresponding to the mass, are re-
peated. The second LFT is obtained using the “min-
max” approach described in the previous section. The
resulting  consists of 19 real ’s without physical
meaning. Finally, the proposed trends & bands (T&B)
method yields an LFT with a  matrix consisting of
38 real ’s. 19 ’s correspond to the physical param-
eters, of which the mass is repeated 5 times. The re-
maining 19 ’s are compensation parameters without
physical interpretation.

In the following  calculations the MATLAB -tool-
box (Balas et al., 1995) has been used to calculate the
upper bound on . Since the mixed-  lower bound
algorithms contained in the toolbox often yield poor
results and can even fail to converge when applied to
problems containing only real uncertainties, a method
for computing lower bounds on real  proposed by
Hayes et al. (2001) was used.

The resulting bounds on  for the three LFTs are
shown in Fig. 3. As expected, the peak value of the 
upper bound for the exact LFT is the smallest. The
“min-max” based LFT -peak value is approximately
double the size of the exact value while the proposed
T&B approach yields a value approximately 50%
higher than the exact result. 

Fig. 2 Dependence of a matrix element on a parameter

δk

aij

aij f δk( )=

aij0
aijk

δk+

δk
r

aij
r

aij δk
r( ) aij

r–

unstable
region

µ

µ

aij

δ
aijCPδaijCP

aijCP

δaijCP
δ

δ

x β p r φ T=
y ny p r φ T= u δp δr

T=

10%±

H∞

∆
δ

∆ δ

∆
δ δ

δ

µ µ

µ µ

µ

µ
µ

µ



In column 1 and 2 of Table 1 the worst-case parameter
combinations corresponding to the peak value of the

 lower bound for the T&B and the exact LFT are giv-
en, both normalized to lie between  and 1. Compar-
ing the worst-case parameter combination predicted
by the T&B approach with the actual worst case pa-
rameter combination it can be noted that the values
agree in most cases. To analyze the cases of disagree-
ment, the -sensitivities (Braatz and Morari, 1991)
for both the T&B and the exact LFT are calculated. 

Based on the -sensitivities given in column 5 and 6
of Table 1 both the T&B and the exact LFTs are re-
duced in order to contain only “significant” ’s. The

 calculation is then repeated for the reduced LFTs.
The  bounds for the LFTs with all ’s and with “sig-
nificant” ’s only are nearly identical, confirming the
result obtained by the -sensitivities analysis. The se-
lection of significant ’s and the resulting worst-case
parameter combinations are given in column 3 and 4
of Table 1. Now all worst-case parameters suggested
by the T&B LFT agree with the exact worst case pa-
rameters except for the value of . A manual varia-
tion of this parameter, however, showed that the
dependence of the closed loop system’s eigenvalues’
on  is negligible. This leads to the conclusion that
the “worst-case” value of  is mainly influenced by
the initial guess in the calculations and is not really a
function of the systems properties, as was already in-
dicated by the very small value of the -sensitivity for

. As a consequence, it can be concluded that the
proposed T&B approach allows the correct identifica-
tion of all relevant worst case parameters for this ex-
ample, without the need for the difficult and time-
consuming task of generating an exact LFT-based un-
certainty model.

4. COMPARISON WITH THE CLASSICAL 
APPROACH

In order to compare the results based on the proposed
method for generating parametric LFT-based uncer-
tainty models with the classical analysis approach, a
more realistic model of a large transport aircraft is

considered. This model was used to investigate the
1992 Amsterdam aircraft accident (Smaili, 2000) and
provides an accurate simulation of all flying qualities,
engine dynamics, characteristics and hydraulic system
operations of a Boeing 747-100/200 aircraft through-
out its flight envelope. Due to the complexity of the
model, and the fact that lookup-tables are used to eval-
uate the aerodynamic parameters over the flight enve-
lope, accurate closed form expressions relating the
aircraft dynamics to the uncertain parameters of inter-
est cannot easily be derived. As a consequence, meth-
ods to generate LFT-based uncertainty models based
on symbolic equations were not considered. Instead,
two alternative options are compared: a classical anal-
ysis based on a gridding of the uncertain parameter
space, and the proposed T&B approach to LFT-based
uncertainty modelling.

In the following analysis only the longitudinal axis is
considered. The control law used for the analysis is a
multivariable glide-slope coupler (Härefors, 2001),
designed for the model with all uncertain parameters at
their nominal values. The equations of motion are
characterized by 6 states . The
inputs are the control column for the elevator and the
thrust setting for the 4 engines. The outputs air speed

 and flight path angle  are fed back to the control-
ler. Variations in the aircraft mass, as well as centre of
gravity position in - and -directions are considered
as uncertain parameters. The mass is allowed to vary
between 300.000 kg and 350.000 kg, the range for the

-position of the centre of gravity is 11% to 31% of
the mean aerodynamic chord and the -position of the
centre of gravity is allowed to vary within  meter of
its nominal value. These uncertain parameters are rep-
resented by the normalized variables

, where  corresponds to the
maximum physical value.
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To quantify the “level of robustness” of the considered
closed loop system in the analysis, a measure of ro-
bustness has to be defined. In order to meaningfully
compare both analysis approaches, a classical stability
margin is adopted, based on a Nichols exclusion re-
gion, commonly used in the aerospace industry to
evaluate robustness of flight control systems. The
closed loop is cut at the sensors. To avoid the short-
comings of measuring gain and phase margins sepa-
rately, a criterion of simultaneous gain and phase
margins is used (Muir, 1997). As shown in Fig. 4, the
stability margin  is characterized by an exclusion
zone in the Nichols plane for the open loop frequency
response of each loop of the system. An allowable
gain-offset of  and an allowable phase-offset of

 is defined to correspond to a stability margin of
. The exclusion zone can be scaled until it

touches the Nichols curve resulting in a stability mar-
gin of  satisfying or  violating the criterion
for each loop of the system. Since all uncertainty pa-
rameters are allowed to vary (and affect each loop) si-
multaneously, the above stability margin results in a
true multi-variable robustness test. Note that the loops
can be cut one at a time or simultaneously, and the
loop can be broken on the actuator side as well as on
the sensor side. Due to space restrictions in this paper
only the results for the -feedback loop cut at the
sensor output are given.

Using the classical approach to study the influence of
the uncertain parameters, a grid of 5 points was ap-
plied to each parameter, resulting in  uncer-
tain parameter combinations, at which the stability
margin  has been calculated. With this approach, the
“worst-case” uncertainty parameter combination was
identified to be the maximum possible mass and the
centre of gravity at it’s highest and aft limit position.
For this particular choice of uncertain parameters this
of course agrees with our expectations from flight dy-
namics. The corresponding Nichols curves are given
in Fig. 5. In the nominal case the Nichols Exclusion
criterion is fulfilled, , while the worst case
uncertain parameter combination leads to a violation
of the criterion with a stability margin of .
Due to the gridding of the uncertain parameter space,
however, no guarantee can be given that the actual
worst case uncertain parameter combination has been

found. This becomes particularly important in situa-
tions where the worst case is not produced by a com-
bination of the parameters at their vertices.

For the purposes of comparison, both the “min-max”
approach and the T&B technique are used to generate
uncertainty models. The  associated with the “min-
max” based LFT uncertainty model consists of 27 fic-
titious “min-max” ’s. The T&B uncertainty model
has an associated  composed of 9 repeated ’s for
the mass, 9 repeated ’s for  , 3 repeated ’s for

 and an additional 27 fictitious ’s associated with
the compensation parameters.

The results of a  stability test using both LFT based
uncertainty models yield the following results: Both 
upper bound peak values, 0.81 for the “min-max” and
0.78 for the T&B approach, guarantee robust stability
of the closed loop system for the considered uncertain-
ty parameter range, as was expected from the analysis
using a gridding approach. The “phugoid peak” in the

 curves is reduced by 30% with the T&B approach
in comparison with the “min-max” technique.

To calculate the worst case uncertainty parameter
combination with respect to the Nichols criterion, the
exclusion zone is included in the -analysis
(Mannchen et al., 2001) for the T&B based LFT un-
certainty model. The size of the exclusion zone is then
iteratively scaled until a -peak value of unity is ob-
tained. The final scaling factor for the Nichols exclu-
sion zone corresponding to a -peak value of unity is
then equivalent to the minimum (worst-case) stability
margin  which can be guaranteed for the considered
uncertain parameter range. Using this approach the
value of the stability margin calculated using the T&B
based LFT uncertainty model was . Compared to
the stability margin of , calculated with the pa-
rameter grid, this result is conservative. However, the
associated worst case uncertainty parameter combina-
tion calculated from the  lower bound is ,

 and , which is exactly the same as
the worst case uncertainty parameter combination
identified with the parameter gridding approach. Thus,
although the guaranteed stability margin is conserva-
tive, the worst case uncertainty parameter combination
was again found exactly in this example. Furthermore,
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the LFT-based uncertainty model covers all possible
uncertainty parameter combinations, in contrast to the
classical approach, which merely evaluates the criteri-
on on a finite number of data points. Thus, situations
where the worst case parameter combination occurred
in the interior of the parameter space, which could eas-
ily be missed by the classical approach, would be
found by the LFT-based uncertainty model.

5. CONCLUSIONS

This paper has introduced a new technique for the gen-
eration of linear fractional transformation based un-
certainty models which are required as inputs for the
analysis of flight control systems using the structured
singular value . In contrast to standard approaches
which use symbolic linearized equations of motion,
the proposed approach requires only a non-linear soft-
ware model of the aircraft which can be efficiently
trimmed and linearized numerically. In the proposed
technique, linear dependencies (“trends”) of the air-
craft dynamics on the uncertain parameters are mod-
elled by a multi-dimensional regression plane.
Additional non-linear dependencies are modelled us-
ing a “band”-structure defined by nonlinearity com-
pensation parameters.  The capability of the proposed
approach to identify the true worst-case combination
of uncertain parameters, with significantly reduced
modelling effort, was demonstrated via the analysis of
a lateral axis controller for a simple civil transport air-
craft model. The approach was also compared with
classical gridding-based analysis methods via the ro-
bustness analysis of a multivariable glide-slope cou-
pler control law for a detailed model of a Boeing 747
transport aircraft. For this example, consistent results
were obtained in terms of identification of the worst-
case parameter combination, although in general only
the trends & bands method guarantees robustness for
all possible combinations of the uncertain parameters.
The major limitation of the proposed approach is that
it is prone to be at least somewhat conservative, espe-
cially for systems with a strong non-linear dependence
of the state-space representation on the uncertain pa-
rameters. The technique allows the process of generat-
ing LFT-based uncertainty models to be almost fully
automated. More generally, the proposed approach
opens up the possibility of applying the powerful -
analysis theory to large-scale complex systems which
cannot be satisfactorily described using simple differ-
ential equation based symbolic models.
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