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Abstract

In this paper, the multiobjective H o, control problem of model matching

and disturbance rejection by dynamic state feedback and disturbance measurement
feedforward is studied via Linear Matrix Inequality (LMI) approach. To solve the
problem, first, the multiobjective Ho, control problem is defined and shown that this
problem can be reduced in two independent Ho, Model Matching Problems (MMP)
and then the LMI-based solution of the H., MMP is derived by using the solution of
the Hoo Optimal Control Problem (OCP) in the formulation of the LMI. The LMI-
based solvability conditions for the multiobjective H, control problem and a design

procedure for the controller are given.
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Control.

1. INTRODUCTION

The MMP is a fundamental problem of linear con-
trol theory. It resembles the problem of dynamics
assignment, but the emphasis here is on achieving
a desired input-output behaviour, rather than a
desired natural free behaviour.

The Hoo norm of a transfer matrix is the maximum
value over all frequencies of its largest singular
value. The H ., MMP is to find a controller transfer
matrix R(s) as a precompensator, with property of
stable and causal rational matrix, that is R(s) €
RHoo, that minimizes the Ho, norm of T, (s) —
T'(s)R(s) such that the stable and proper rational
matrices T, (s) and T'(s) are given as the model
and the system transfer matrices, respectively. This
means that the closed-loop performance of the
controlled system approximates the desired per-
formance as given in T,,(s) in the sense of the
following criterion,

inf [T (s) —T(s)R(s)| (1)

R(s)ERMH oo loo

Yopt =

In the literature, there are some results on the H
MMP. Two of them are based on Nevanlinna-Pick
Problem (NPP) (Doyle et al., 1992) and Nehari
Problem (NP) (Francis, 1987; Francis and Doyle,
19R7). A state-space solution of the "o, MMP that
is based on canonical spectral factorizations and
solutions of the algebraic RiccatiBaquations (AR

is givenlimg ( 199 ).

In all these studies, the H,, MMP has been solved
for the systems that have only references inputs.
However, the systems to be controlled are also
faced to external disturbances, in many situations.
In our formulation, the reference inputs and the
disturbance to be attenuated are assumed as ac-
cessible or measurable. This type assumption was
used for a 2DOF control structure in an Hy context
(Mosca, et al., 199 ) and for the optimal regu-
lation with disturbance measurement feedforward
(Sternard Sierstrom, 199 ) foiS O case and
for MIMO ondiunt a8k, 199 ).
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In Figure 1, T,(s) and T;,(s) are the closed-loop
system and the model system transfer matrices,
respectively, and y;(¢) and y2(t) are the output
components of related references, namely r(t), and
disturbance, namely d(t), respectively. The mul-
tiobjective problem of H,, MMP and DRP can
be defined as to find a control law for the system
to be controlled that minimizes the following cost
functions simultaneously,

Ji=sup |lym(t) —y2(®)ll; (2)
Ir@)l,<1

Jo=sup |lya(t)ll, 3)
la®)ll <1

In this study, the multiobjective Ho, control prob-
lem as defined above is considered and in the case
measurable disturbances an LMI-based solution of
the problem is given by dynamic state feedback.

2. PROBLEM STATEMENT

Consider a causal continuous Linear Time Invari-
ant (LTI) system to be controlled described by
the transfer matrix T'(s) = [ T1(s) T2(s) ] and the
controller in the form of precompensator transfer
matrix [Ri(s) Rz(s)] , that can easily be im-
plemented by dynamic state feedback. Figure 2
illustrates these considerations:
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The outputs of the systems to be controlled and
the controller can be written as follows,

Yy(s) =Ti(s)U(s) + To(s) D(s) (4)
U(s) = R1(s)R(s) + Ra(s)D(s) (5)

In addition, the output of the closed-loop system
is obtained as,

Y;(s) = Tu(s) R (s)R(s) + (T1(s) Ra(s)
+T>(s))D(s) =Yi(s) + Ya(s) (6)

The cost functions defined in (2) and (3), that must
simultaneously be minimized to solve the multiob-
jective H, control problem, can be described as,

Ji= sup |lym(t) —y1(®)ll,
()l <1
= |ITm(s) — Ti(s)Ri(5) |l (7)
Jo=sup |lya(t)ll, = [|T2(s) + T1(s)Ra(s) |l o
lld(t)ll,<1 @

Thus, it has been shown that the problem of
simultaneous H. MMP and DRP can be regarded
as two numbers of the H,, MMP’s. Namely, to
solve the multiobjective Hoo control problem, T} (s)
must be matched to T,,(s) and —T5(s) separately
in the sense of Ho optimality criterion through
the controller Ry (s) and Ra(s), respectively. As a
result of above analysis, the following Remark can
be given:

Remark 2.1 To solve the multiobjective Ho, con-
trol problem of MMP and DRP for the model
and the system given as T,(s) and T(s) =
[Ti(s) Ta(s) ] , respectively, is equivalent to solve
two different Hoo MMP’s, separately. They can be
described the pairs of (T1(s), Tm(s)) and (T1(s), —
T5(s)). This idea is explained in Figure 3:
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It should be noted that the controller , that solves
the multiobjective H o, control problem, is com-
posed by Ri(s) and Rx(s). In order to avoid of
the trivial case, we assume that T} *(s)T},(s) and
T, (5)T2(s) are not stable or causal transfer ma-
trices.

3. PRELIMINARIES AND LMI-BASED
SOLUTION OF THE H,, MMP

In order to solve the multiobjective Ho, control
problem of model matching and disturbance rejec-
tion via LMI approach, first the H,, MMP should
be solved using the solution of the standard H
OCP via LMI approach by Gahinet and Apkarian
(1994). For this aim, we shall consider a minimal
realizations (A, B, C, D) of T'(s), namely controlled



system, and (F,G, H,J) of T,,(s), namely model
system, so the state-space equations of these sys-
tems can be given as follows:

T(s):  &(t) = Az(t) + Bu(t) (9)

Tm(s):  4(t) = Fq(t) + Guw(t) (10)
ym(t) = Hq(t) + Jw(t)
and the control input wu(t) is generated by the
reference input w(t) via the precompensator R(s)
such that,

U(s) = R(s)W(s) (11)
where z(t) € R", q(t) € R™, u(t) € R™, r(t) €
R™, yc(t) € RP and yy,(t) € RP™.

Moreover, if one can consider a plant P(s) de-
scribed by,

2(t) = ym(t) —yc(t) = [-C H] [28]
+Juw(t) - Du(t)  (13)

y(t) = w(t) (14)
and from Figure 4, the closed-loop transfer matrix
T..(s) is obtained as,

Tzw(s) = Tm(s) - T(S)R(S) (15)
by using the following relation,
_ Tm (5) —T(S)
,« / PG)
— g U [(s) ‘
/ ' | V(v !
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Figure 4

Since the Ho, OCP is to find all admissible con-
trollers R(s) such that [|T%,/(s)||,, is minimized,
the synthesis theorem for the H,, OCP in formu-
lation of LMIs (Gahinet and Apkarian, 1994) can
be arranged for the Ho, MMP as the following
Lemma

Lemma 3.1 A controller R(s) with order ng>
(dim(A) + dim(F)) which holds ||T..(s)||,, < v
exists for the plant described by (12), (13), (14),

and closed-loop system is internally stable for Ho
Optimal Control Problem if and only if there exist
matrices X >0 and Y > 0 such that,

oy (ar) x+x(3r)x(e)

(0G*) X I
(—C H) J
(_HC N, 0
J*I [0 I] <0 @17
-
ey |G 8 G
o) 7
(%) []X?]«) (18)
1
[)1(1{]20 (19)

where N, and N. are full rank matrices whose
images satisfy

ImN,=Ker [0 I] (20)

ImN,=Ker [B* 0 —D"] (21)
in which (A,B,C,D) and (F,G,H,J) are the
state-space description of T(s)ERHo and Ty (s)€
RH, respectiveley.

Proof: The claims of the Lemma are same as
those of the synthesis theorem for the ., OCP in
formulation of LMIs given in Gahinet and Apkarian
(1994). O

However, it may be seen that the above Lemma can
be simplified. For this aim, the following Lemmas
are given:

Lemma 3.2 Suppose A and @) are square matrices
and Q > 0. Then A is Hurwitz if and only if there
ezists the unique solution

X = / et Qedt > 0 (22)
0

to the Lyapunov equation A*X + XA+ @ = 0.
Proof: See Dullerud and Paganini (2000). O
Lemma 3.3 The block matriz
[ P M
M* N
if and only if N < 0 and P — MN—'M* < 0. In

the sequel, P— M N1 M* will be referred to as the
Schur Complement of N.

Proof: See Boyd et al. (1994). O

] <0 (23)



Lemma 3.4 Suppose A, C, X and Y are square
matrices and y€R. If the matrixz A is Hurwitz, then
for every pair of v > 0 and Y > 0, there always
ezists a matrix X > 0 such that holds the following
inequalities,

1
AX +XA+20°C <0 (24)

X -v~l>0. (25)
Proof: It is easy to see that there always exists
a matrix X > 0 satisfying (24) for every v > 0
since A is Hurwitz. First, consider the Lyapunov
equation with the matrix @ > 0 and € € Rt as,
1
A X+ XA+ -C"'C+eQ =0 (26)
Y
Since (%C*C’ +€Q) > 0, the unique solution of the

equation (26) can be found from Lemma 3.2 as in
the following form,

X = / eA*t(%C*C+eQ)eAtdt
0

1 o,
= ;Lo + / e teQeMdt >0 (27)
0

where the matrix L, is Observability Gramian
of (A, C) defined as follows,

oo
L, = / eAtC*Cettdt>0 (28)
0
To complete the proof, it will be sufficient to show
that there exists a matrix X > 0 satisfying the
condition X >Y 1 i.e., (25) and also a solution the
Lyapunov equation (26), since the every matrix
X derived by (27) also satisfies the Lyapunov
inequality of (24) as long as the matrix @ > 0.
In that respect, consider the matrix Py be defined
by,

o
Py = / e tQedt (29)
0
then we can say from Lemma 3.2 that Py is a
solution of the equation A*Py + PpA + Q = 0
and Py > 0 since A is Hurwitz. The matrix Py
is positive definite if and only if Py = P*P and P
is nonsingular. So

1
X= :YLO +eP>Y ! =

€3 Amaal (P71 (V1 — %LO)P*]

(30)
Therefore, the proof is completed, since there also
exist some e€R T satisfying (30). O

As consequence of the previous results, the follow-
ing theorem can be given on LMI-based solution
of the Ho MMP as a simplified version of Lemma
3.1:

Theorem 3.5 A controller R(s) with order ng>
(dim(A)+dim(F)) which holds || T, (s)—T (s)R(s)||
< v, exists for the plant described by (12), (13),

(14) and the closed-loop system is internally stable,
i.e., there exists a solution the Ho, MMP if and
only if there exists a matriz Y > 0 such that,

o[£ (125 ()

(-CH)Y —I
(0G*) J*
()] oo
I

where N, is o full rank matriz with
ImN, = Ker [B* 0 —D* | (32)

in which (A,B,C,D) and (F,G,H,J) are the
state-space description of T(s)eERHo and Ty (s)€
RHoo, respectively.

Proof: It is easily seen that the claim of the
Theorem is the same as the condition (18) of
Lemma 3.1. In addition, the condition (17) in
Lemma 3.1 can be rewritten as follows:

I (CHRCORE

01 (0G*)X —~I
(-C H) J
)| 1o
* 00| <0 (33
7 01r
since ImN, = Ker[0I] so N, = [é] The

reduced form of above inequality is a Lyapunov

inequality as follows:

Ao]” Ao] 1[-cC*

[0 P xex [0 p] o3 [F e m <o
(34)

Also, the condition (19) in Lemma 3.1 is equivalent

to X — Y 1>0 due to Schur Complement of the

matrix appeared in (19) as given in Lemma 3.3.

Therefore, Lemma 3.4 proves both necessity and

sufficiency. O

In order to determine the iteration starting point
of 7 in using The LMI Control Toolbox (Gahinet et
al., (1995)) for solving (31), the following Lemma
and Remark can be given:

Lemma 3.6 Consider a continuous-time transfer
function T(s) of (not necessarily minimal) realiza-
tion T(s) = D + C(sI — A)"'B. The following
statements are equivalent:
i) ||D+ C(sI — A)7'B||, <~ and A is Hurwitz;
ii) there exists a solution Y > 0 to the LMI:
AY +YA*YC* B
cY —~I D
B* D* —4I

<0. (35)



Proof: This theorem is dual form of The Bounded
Real Lemma whose proof is in Dullerud and
Paganini, (2000). O

Remark 3.7 The following in equality always
holds

1Tom () =T (8) B(8) | <I1Tom (8)ll o

(36)
Proof: It is obvious that if there exists a solution
Y > 0 to the following LMI,

opt = inf
Tort R(s)ERHoo

(G2 (100 (65) ()]

—-CH)Y —~I
(0G*) J* —~I
37)
for some value of 7y, then there exists a solution

of the LMI (31) given in Theorem 3.5 and so we
can say Yopt<7y. Moreover, from Lemma 3.6, the
inequality (37) is equivalent to

(sT — A)~! 0 0
O S [8]e
=[Tm(s)lloe <7 (38)

Therefore, the inequality Yopt<||Tm (5)||o
holds. O

We can say that the iteration in solving LMI (31)
should be started at ||Tpn(s)|l., = 7m, because
of Remark 3.7. Suppose the matrix ¥ > 0 and
Yopt ERT are found as a solution of (31) by using
The LMI Control Toolbox, then there always exists
a matrix X > 0 such that X — Y 1>0 and the
inequality (34) holds. Therefore, a matrix X > 0
is easily taken through the solution of inequality
(34) by using the results of Lemma 3.4. Finally, the
controller transfer matrix, which achieves model
matching in the sense of H, for the system and
the model described in (9) and (10), respectively,
is obtained as,

R(s) = D + Ck(sI — Ax) 'Brx  (39)

through the controller reconstruction procedure
given in Gahinet and Apkarian (1994) by using the
matrices X and Y.

|J+[-C H]

always

4. MAIN RESULT

In this chapter, an LMI-based solution of the mul-
tiobjective H, control problem will be presented
by using the results presented in previous chapters.
For this aim, we shall consider a minimal realiza-
tion (A,B,C,D, E,Es) of T(s), i.e., the system
to be controlled, and (F,G, H, J) of Ty, (s), i-e., the
model system, so the state-space equations of these
systems can be written as follows,

T(s) %(t) = Az(t) + Bu(t) + E1d(t) (40)
y(t) = Cz(t) + Du(t) + E2d(t)
Tm(s):  4(t) =Fq(t) + Gr(t) (41)
ym(t) = Hq(t) + Jr(t)

Since Ti(s) and T»(s) are defined as the transfer
matrices input/output and disturbance/output, re-
spectively, the state equations of these systems are
obtained as,

Ti(s): @(t)=Az(t) + Bu(t)  (42)

y1(t) = Cx1(t) + Du(t)

To(s):  Za(t) = Aza(t)
Yy2(t) = Cz2(2)
q(

»(t) € R™, q(t) € R™, u(t) €
y(t),y1(t),y2(t) € RP and

+ Eid(t)  (43)
+ Eod(t)

where z(t),z1(t),
R™, r(t) € R™,
Ym(t) € RPm™.

As a result of Theorem 3.5 and Remark 2.1, the
following Theorem can be presented on the solution
of the simultaneous Ho,, MMP and H,, DRP
with disturbance measurement and dynamic state
feedback:

Theorem 4.1 There exists a solution of the mul-
tiobjective Hoo control problem of MMP and DRP
for the system and the model given as T(s) and
T (s), respectively, if and only if there exist ma-
trices Y1 > 0 and Yo > 0 such that,

A0 A0\
N, 07" 0F>Y1+Y1<0F)
I, (-C H)V;
(067)
-Cc*\ (0
n (o) (6)
H G N. 0
ST J [0 mr]<0 (44)
J* —’le
A0 A0Y
N, 07" 0A>Y2+Y2 04
0 I, —C(II)Ys
(0 E7)
IN o (O
_Y2<I>C (E1> Ne 01 <0 (a5)
—’)’2[ —Ez 0 Imd
—E3 —Y2!

where N, is o full rank matriz with
ImN, = Ker [B* 0 —D* | (46)
in which (A,B,C,D,Ey, Es) and (F,G,H,J) are

the state-space description of T(s)ERH and
T (8)ERH o, Tespectively.



Proof: Remark 2.1 and Theorem 3.5 prove both
necessity and sufficiency. O

5. CONTROLLER CONSTRUCTION AND
IMPLEMENTATION

Although the Theorem 4.1 given in previous chap-
ter is about the solvability conditions of the multi-
objective H, control problem of MMP and DRP
with dynamic state feedback and disturbance mea-
surements, it also provides a procedure for the
construction and implementation of the controller
in feedback configuration:

Step 1: Find the matrix Y¥; and Y> for the optimal
value of v; and o with satisfying the LMI given
in (44) and (45) respectively by using The LMI
Control Toolbox.

Step 2: For the values Y7, Y3 and 71, v found in
Step 1, find the matrix X; and X respectively via
the way explained in Chapter 3.

Step 3: Construct by using controller recon-
struction procedure given in Gahinet and Ap-
karian, (1994) and then find R;(s) = Dk, +
CK1 (SI—AKl)_lBKl and R2(s) = DK2 +CK2 (SI—
AK2 ) _l.BK2 .

Step 4: Construct the controller transfer matrix
and then find its realization R(s) = [ R1(s) Ra(s) |
as (A, Bk, Ck, Dk) which achieves the optimal
model matching and disturbance rejection in the
sense of Hoo.

Step 5: Implement the controller in feedback con-
figuration by using The Theorem 6.1 and Figure
6.2 in Kucera (1991).

It is easily seen that the optimal values of +; and
v2 are equal to J; and J given in (7) and (8),
respectively. Moreover, because of Remark 3.7 the
iterations should be started from ||T,(s)||,, and
| T (s)|| o, respectively for solving (44) and (45).

6. CONCLUSIONS

In this study, a multiobjective Ho, control prob-
lem has been formulated and solved by LMI ap-
proach. The problem has been defined as simulta-
neous H, model matching and H., disturbance
rejection by dynamic state feedback and distur-
bance measurements. The existence conditions of
the multiobjective H, control problem have been
presented and a construction procedure and imple-
mentation scheme has been provided. Therefore, a
well-known combined problem called simultaneous
model matching and disturbance rejection (Goren
and Gamlibel, 1997), in linear control theory, has

been carried in Ho control theory. Finally, we
note that the multiobjective Ho, control problem
of MMP and DRP studied in this paper is not
completely general, in that the feedback and the
disturbances are restricted to be dynamic state
feedback and to be measurable or accessible, re-
spectively. This subject is a current topic of our
research activities.
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