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Abstract: This paper is concerned with the design of Multi-Inputs and Multi-Outputs 
(MIMO) predictive PID controllers, which have similar features to the model-based 
predictive controller. A PID type control structure is defined which includes prediction of 
the outputs and the recalculation of new set points using the future set point data. The 
optimal values of the MIMO PID gains are calculated using the values of gains calculated 
from an unconstrained generalised predictive control algorithm. Simulation studies 
demonstrate the performance of the proposed controller and the results are compared with 
generalised predictive control solutions. 
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1. INTRODUCTION 

 
PID controllers are used in large numbers in all 
industries. The controllers come in many different 
forms, are packaged as standard products, and are 
massed produced. The popularity of PID controllers 
is due to their functional simplicity and reliability. 
They provide robust and reliable performance for 
most systems if the PID parameters are determined 
or tuned to ensure a satisfactory closed-loop 
performance. There is a wealth of literature on PID 
tuning for scalar systems. Good reviews of tuning 
PID methods are given in Astrom et al (1993), Gorez 
and Calcev (1997) and Tan et al. (1999). Among 
these are the well known Ziegler and Nichols, 
(1942), Cohen and Coon (1952) and the feedback 
relay method (Astrom and Hagglund 1995). These 
algorithms are based either on time domain 
responses or the frequency response characteristics 
of the process.  
 
Because of the wide application of the PID 
controllers and the problem of calculating 
appropriate three term gains, many researchers have 
attempted to use advanced control techniques such as 
optimal control,   and MPC to restrict the structure of 
these controllers to PID type. Morari and Zafiriou, 

(1989) have shown that Internal Model Control 
(IMC) leads to PID controllers for virtually all 
models common in industrial practice. Using a first 
order process model, Rivera et al. (1986) introduced 
an IMC based PID controller design, and this was 
later extended to cover the second order process 
model (Chien 1988). In Wang et al. (2000) a 
frequency response approach is adopted, where a 
least square algorithm is used to compute the closest 
equivalent PID controller to an IMC design. Marques 
and Fliess (2000) have illustrated a simple approach 
for PID control of linear continuous systems based 
on flat output trajectory generation. Their solution is 
calculated off-line. In Rusnak (2000), linear 
quadratic regulator theory has been used to design 
PID controllers. A generalised PID structure was 
introduced and applied up to a fifth order system. In 
Grimble (1991), H∞  control technique is employed 
to derive controllers with similar PID structure. Tan 
et al. (2000) have presented a PID control design 
based on the GPC approach for a second order 
system with time delay where the PID parameters are 
time-varying inside the dead time. Moradi et al 
(2001a, 2001b) have introduced the predictive PID 
controller based on GPC method for SISO systems. 
Most of these literature deal with SISO systems. 
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Many industrial processes are inherently 
multivariable and need multivariable control to 
provide enhanced performance. This is a strong 
motivation to derive a simple and effective method 
for developing multivariable controller design 
methods (Maciejowski 2001). PID control is one of 
most common control schemes for MIMO plants. 
These controllers are usually tuned using the prior 
knowledge of the dynamics of the system. But as 
MIMO processes are often also non-linear, with 
changing the set point the dynamics of the system are 
changing and the controller needs to be retuned. 
Therefore, to accommodate model uncertainties the 
robustness of MIMO controller is a very important 
property. Depending on the application and 
requirement, either a fully cross-coupled or a multi-
loop controller can be adopted for MIMO processes. 
Multi-loop controllers (decentralised controllers) 
have a simpler structure and, accordingly, less tuning 
parameters than the fully cross-coupled controller. 
This paper is an extension of the previously 
published method predictive PID controller (Moradi 
et al., 2001a; 2001b) (Katebi and Moradi, 2001) to 
MIMO systems. The PID controller is defined by 
using a bank of M parallel conventional PID 
controllers where M is also the prediction horizon. 
 
The paper has been organised as follows: Section 2 
describes the structure of MIMO PID type predictive 
controller. Section 3 calculates the optimal values of 
the controller gain. A comparison between the 
proposed method and GPC technique is presented in 
Section 4. Finally, conclusions close the paper. 
 

2. MIMO SYSTEM DESCRIBTION 
 
The block diagram of digital controller for a MIMO 
process under unity feedback was shown in Fig.1. 
The system is assumed to be square of dimension 
(L). The MIMO PID controller in discrete form can 
be represented by: 
 

U k K e k K e j K e k e kP I
j
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1      (1) 

where: 
K KP I,  and KD

 are the proportional, integral and 

derivates gains, respectively. 
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And the incremental representation of the controller 
is: 
 
∆U k U k U k K K K e k
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( ) ( ) ( )

= − − = + +
+ − − − + −

1

2 1 2
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Fig.1: The closed loop block diagram of digital 
control of the process. 
 
In compact matrix form, equation (2) can be written 
as:  
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2.1 Predictive form of MIMO PID Controllers 
 
The predictive PID controller is defined as follows:  

∆u k K E k i K R k i K Y k i
i

M

i

M

i

M

( ) ( ) ( ) ( )= + = + − +
= = =
∑ ∑ ∑

0 0 0

 (4) 

The controller consists of M parallel PID controllers. 
For M=0, the controller is identical to the 
conventional PID in equation (2). For M>0 the 
proposed controller has predictive capability similar 
to MBPC where M is prediction horizon of PID 
controller. The horizon, M will be selected to find the 
best approximation to GPC solution. The controller 
signal in equation (4) can be decomposed as: 
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It is clear from (3) and (4) that the controller consists 
of M PID controllers where the input of i th PID at 
time k depends on the error signal at time (k+i). This 
implies that the current control signal value is a 
linear combination of the future predicted outputs. 
Then, the control signal can be written as: 
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To calculate the control increment at time k, ∆u k( ) , 

the output for M step ahead needs to be predicted. 
Using a model of the system, the definition of the 
predictor is given in the next section.  
 
2.2 Future Output Predictor for Predictive PID 
 
A CARIMA model for L-inputs, L-outputs process 
can be expressed as:  
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A z y k B z u k( ) ( ) ( ) ( )− −= −1 1 1    (7) 

 
where: 
 
A z( )−1  and B z( )−1  are L L×  polynomial matrices.  
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The M step ahead prediction of output can be 
obtained from the following equation (Camacho and 
Bordons 1999): 
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nbij
: The order of ij th element in matrix B z( )−1  

naj
: The order of jj th element in matrix A z( )−1  

 
E zm( )−1  and F zm( )−1  are a solution of the above 

Diophantine equation. In equation (10), it was 
assumed that the matrix A z( )−1  is diagonal, hence, 

matrices E zm( )−1  and F zm( )−1  are also diagonal 

matrices and the problem was reduced to the 
recursion of L scalar Diophantine equations, which 
are much simpler to program and require less 
computation. 
The output prediction for the i th PID in each loop 
can be written as: 
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Equation (11) can be simpli fied to: 
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where: 
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In equation (12), future control inputs 
∆u k i i Nu( ) :( )+ = −1 1; @ are needed to calculate the 

current control signal. Rewriting the output 
prediction gives straightforwardly:  
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Put equation (13) in the (6): 
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Equation (14) can be simplified to: 
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3.  OPTIMAL VALUES of PID-TYPE 

PREDICTIVE GAINS 
 

To obtain the optimal values of the gains, the 
Generalised Predictive Control (GPC) algorithm is 
used. For process control problems default setting of 
output cost horizon N N N1 2 1: :; @ : ?= , and the control 

cost horizon Nu = 1 can be used in GPC to give 

reasonable performance (Clarke et al.,1987). GPC 
consists of applying a control sequence that 
minimises the following cost function: 
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The minimum of J, assuming there are no constraints 
on the control signals, is obtained using the usual 
gradient analysis, which leads to [Camacho and 
Bordons, 1999]: 
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which can be summarised as: 
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To compute the optimal values of predictive control 
PID gains with Nu = 1 [ � ( ) ( )u k u k= ], the PID 

control signals should then be made the same as GPC 
controller. This means using equation  (15) and (17) 
the following optimal problem should be solved:  
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(i) A minimum norm solution is sought from: 
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(ii) It is assumed that it is possible to find 
suitable gain K  close to K0  so that 
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2
is suitably small. 

(iii) It is assumed that R kt ( )  (rebuilt future set 

point) will be calculated so that: 
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2
0  

 
The above reasoning leads to: 
J K K I K K F G Z

I K K F G Z

f g

f g

( , ) ( )

( )

0
1

2

1

2 2

= − +

≤ − +

−

−

α

α

∆

∆
 

if: 
( ) ( ) ( )

( )

I K KR k K W k

I K K F G K

t GPC

f g

+ =

+ =

%
&
K

'K

−

−

α

α

1

1
0

  (20) 

 
To calculate the control signals, steady state values 
of the control inputs and outputs are used. These 
values are assumed to be almost constant at steady 
state plant operation, hence, the assumption (ii) will 
be satisfied, ∆Z

2
is suitably small, and the cost 

function will be minimised.  
 
The solution for K can be found in terms of K0  from 

second equation in (20), and then W (rebuilt future 
set point) will be calculated from the first equation. 
After some straightforward algebra: 
K I K K F G K I K KSf g0

1
0

1
0= + → = +− −( ) ( )α α  

K I K KS K S K K0 0 0 0 0( ) ( )+ = → − =α α  (21) 

where:   
S F Gf g0 =  

A unique solution to equation (21) always exists and 
takes the form (Levine, 1996): 
K K S K S K S KT T= − − − −

0 0 0 0 0 0 0
1( ) [( )( ) ]α α α (22) 

From first equation in (20) the rebuilt future set point 
will be calculated as: 
R k K I K K W k K W kt GPC S( ) ( ) ( ) ( )= + =−1 α  (23) 

where:   K K I K KS GPC= +−1( )α  
 



     

Predictive Control Algorithm 
 
The predictive PID controller can be implemented 
using the following procedure. 
Algorithm 1: Predictive PID controller for MIMO 
process. 
Step 1: Initialisation 

1. Find a system model and calculate the 
discrete polynomials matrices, A and B 

2. Choose the value of prediction horizon, 
M, and formulate the future set point 
vectors w 

Step 2: Off line Calculation 
1. Calculate the matrices α , ,F Gf g

 in 

equation  (15) using equation (13) 
2 Calculate the GPC gain, KGPC , using 

equation (18)  
3 Calculate the optimal value of predictive 

PID gains using equation (22)  
4 Iterate over the value of M to minimize 

the cost function. 
Step 3: On line Calculation 

1 Calculate the following signals 
(a) F G Z Kf g ( )  

(b) R kt ( )  using equation (23)  

2 Calculate the control increment 

         
u k u k I K K

R k F G Z Kt f g

( ) ( ) ( )

[ ( ) ( )]

= − + +

−

−1 1α
 

Step 4: Assessment 
1 Apply the control signal. 
2 Check closed loop performance. 

 
4.  SIMULATION RESULTS 

 
In this section, the performance comparison of 
proposed method and GPC for two industrial systems 
will be discussed, the systems are: 
 
1- A small signal model for stirred tank reactor was 

described by the following transfer matrix 
(Camacho and Bordons, 1999): 

 

G s s s

s s

1

1

1 0 7

5

1 0 3
1
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2

1 0

( ) . .
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  (24) 

 
where the manipulated variable u s1( )  and u s2 ( ) are 

the feed flow rate and the flow of coolant in the 
jacket respectively. The control variables Y s1( )  and 

Y s2 ( )  are the effluent concentration and the reactor 

temperature respectively. 
2- The boiler model has been considered. (Katebi 

et al, 2000) 
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(25) 

 
where the manipulated variable u s1( )  and u s2 ( ) are 

the feed/air demand and the control valve position  

 
 
 
 
 
 
 
 
 
 
 
 
                                          (a) Output 1   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                           (b) Output 2 
Fig.2: The comparison of GPC with Proposed PID 
Method for a stirred tank reactor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              (a) Output 1                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             (b) Output 2 
Fig.3: The comparison of GPC with proposed 
Method for Boiler model. 
 
respectively. The control variables Y s1( )  and Y s2 ( )  

are throttle pressure and the steam flow respectively. 
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Table 1: Comparison between GPC and Proposed 
PID control design for G1 and G2. 
System   G1 
GPC Gains: 

   

-.072  .285  .019  -.062  -.0006  .0031  -.02  .01

.236  .018  -.064  -.0038  .002  .0002  -.008  -.273

�
! 

"
$#  

Predictive PID Gains: 
M=0 

    

-.02  -.054  -.0006 .055  .23  .003

.06  .174  .002 .0034  .014  .0002

�
! 

"
$#  

M=10 

    

-.019  -.029 -.005 .0067  .038  .0017

-.037  -.04  .012 -.013  -.031  .0026

�
! 

"
$#  

System   G2 
GPC Gains: 

    
.087  -.0   .0597   .0001   .041   

-.003   .026  -.002   .003  -.0013  

.0001   .011 .00  

.001  -.0004 .002

.003   .00   .162  

-.0001  .0   -.003

 .033   .055   .014 .015   .003

   .27   -.0087    .056 -.0005   -.023

−
−

�
! 

"
$#

 

Predictive PID Gains: 
M=1 
    -0.05   0.14   0.04 -0.0003 - 0.00031  - 0.0002

0.03   0.03   0.01 -0.0034   0.0135  - 0.0058

�
! 

"
$#
 

M=5 
    -0.004   0.05  - 0.013 .0005   .0015    0.0002

.0005   .0015   .0002 .017    .047   - 0.061

�
! 

"
$#
 

 
 
GPC and Multivariable predictive PID methods were 
used to design the controller for two systems G1 and 
G2 with transfer function mentioned in equations 
(24) and (25), respectively. For GPC, the horizon 
prediction of output N=20, control input horizon 
Nu=1 were assumed. The controller gains for the two 
methods are shown in Table1. It is clear from the 
Table 1 that for the first order 2I2O system 
conventional PID is enough to achieve the GPC 
performance (M=0). For second order 2I2O system 
also M=1 is suff icient to approximate the GPC 
performance. The step response of the closed loop 
system for two methods has been shown in Fig 2 and 
Fig 3. The results show that the proposed method can 
achieve GPC performance levels provided M is 
chosen correctly. 
 

5.  CONCLUSIONS 
 

From the simulations performed, it can be observed 
that the control system has an adequate behaviour. In 
the case in which a reference trajectory is used, the 
system transitions are smoother and use less energy 
during the initial transient response. This behaviour 
is understandable since the zero frequency quadratic 
error (cost) has a lower magnitude than when the set 
point is used directly, so control actions need less 
energy to achieve the control objective. 
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