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Abstract: This paper presents a modification to the generalized predictive control algorithm
which guarantees closed-loop stability. The GPC controller is designed using a terminal
equality constraint. The available degrees of freedom are presented to the designer as
parameters called principal components. This components can be left or removed from the
solution to get different performances. Two methods to select the degrees of freedom are
presented based on percentage of index minimized and control effort applied to the process
respectively. This methods can be an alternative to the empirical selection of the weighting
control factor λ .
Copyright © 2002 IFAC

Keywords: Predictive Control, closed-loop stability, terminal constraint

1. INTRODUCTION

Generalized predictive control (GPC) (Clarke et al.,
1987a) has been shown to be an effective way of con-
trolling single-input single-output discrete processes.
The strategy proposed by GPC is simple to understand
and makes good practical sense: predict the behaviour
of the output as a function of future control increments
and minimize over these incrementes a cost index.
This cost includes the errors between predicted and
desired outputs and the control effort. Despite its ad-
vantages, GPC is deficient in that it does not offer a
general stability result. Indeed, stability is only guar-
anteed in some special cases (infinite horizons). Sev-
eral publications proposed modifications to the gen-
eralized predictive control algorithm which guarantee
closed-loop stability:

1 This work has been partially financed by European FEDER
funds, project 1FD97-0974-C02-02.

• Constrained receding-horizon predictive control
(CRHPC) (Clarke and Scattolini, 1991) , Sta-
bilizing I/O receding horizon control (SIORHC)
(Moscaet al., 1990): Optimize a quadratic func-
tion over a prediction horizon subject to the con-
dition that the output matches the reference value
over a further constraint range.

• Stable Generalized Predictive Control (SGPC)
(Kouvaritakiset al., 1992)applies the GPC al-
gorithm to the system after it has been stabilized
by means of an internally stabilizing controller.

• Infinite Horizon GPC (GPC∞) (Scokaert and
Clarke, 1993): where an infinite prediction hori-
zon is used but the control horizon is reduced to
a finite value.

It is shown in (Kouvaritakis et al., 1992), that theoret-
ically all approaches are equivalent. Stability results
for some of the algorithms have traditionally been
derived in the state space using the properties of the
solution of the Ricatti equation associated with the
control law. Others, by forcing the objective function
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to be monotonically decreasing with respect to time,
yield stable control-loop systems In this paper, another
algorithm is presented, sharing the terminal constraint
philosophy, but with advantages in terms of numerical
stability.

2. GENERALIZED PREDICTIVE CONTROL

The GPC formulation with quadratic cost index has
been extensively developed in (Clarke et al., 1987a),
(Clarke et al., 1987b) and (Clarke and Mohtadi,
1989). Such formulation uses the following CARIMA
stochastic model:

y(k) =
B(z−1)
A(z−1)

u(k−1)+
T(z−1)
∆A(z−1)

ξ (k)

Where y(k) is the system output, u(k) is the con-
trol action, ξ (k) represents disturbance (white noise),
T(z−1) is a disturbance filtration polynomial,B(z−1)
and A(z−1) are numerator and denominator of the
discrete transfer function of the process and ∆ is the
difference operator (1−z−1).

A GPC controller is obtained by minimizing the fol-
lowing cost index

J(∆u) =
N2

∑
i=N1

αi [y(k+ i)−w(k+ i)]2 +

+
Nu

∑
j=1

λ j [∆u(k+ j −1)]2 (1)

where N = N2 −N1 +1 is the prediction horizon, Nu is
the control horizon, ∆u is the future vector of control
increments, α i is the prediction error weighting factor,
λ j is the control weighting factor and w(k+ i) is the
future setpoint vector.

For simplicity’s sake, α i = α ′, ∀i and λ j = λ ′, ∀ j .

The cost index (1) expressed in matrix form results in

J(∆u) = (Y−W)Tα (Y−W)+∆uTλ ∆u (2)

where α = α ′IN×N and λ = λ ′INu×Nu
are diagonal

matrices, and YN×1 and WN×1 are the output prediction
and projected setpoint vectors respectively.

This cost index, on minimization, gives the uncon-
strained control move vector

∆u = (GTαG+λ )−1GTα (W−Γ∆uf −Fyf ) (3)

where G,Γ,F are matrices from the prediction model,
∆uf and yf are past control moves, and past outputs
respectively filtered by polynomial T .

3. GPC WITH TERMINAL EQUALITY
CONSTRAINT (CRHPC)

In this algorithm a future control sequence ∆uopt is
chosen minimizing the cost function (1) subject to the
following equality constraints (figure 1) :

y(t +N+ i) = w(t +N+ i) i ∈ [1 . . .m] (4)

∆u(t +Nu + j) = 0 j > 0

where Nu = N + 2− d, and m≤ Nu is the terminal
constraint horizon.

Fig. 1. CRHPC imposes an equality constraint.

Theorem:The closed loop under CRHPC control is
asymptotically stable, in the undisturbed case, if

i) αN ≥ ·· · ≥ α1 ≥ 0
ii) λNu

≥ ·· ·λ1 > 0
iii) N ≥ n+d+ 2, where n = max[deg(A),deg(B)]
iv) Nu = N+ 1−d, where d is the process delay
v) m= n+ 1

Proof: See (Clarke and Scattolini, 1991) and (Scokaert
and Clarke, 1994).

4. CALCULATION OF GPC USING SVD

In this analysis, no weighting factor is assumed (λ =
0), so the GPC control law (3), can be written as

∆u= ((QG)TQG)−1(QG)TQE (5)

where

α = QTQ

E = (W−Γ∆uf −FY f )

Applying the SVD to the QGN×Nu
matrix results in

QG= UΣVT where

Σ =
[

S 0
0 0

]
; S=


σ1 0 · · · 0
0 σ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · σr


and substituting it in (5), the equation can be expressed
as



∆u = ((UΣVT)TUΣVT)−1(UΣVT)TQE

And profiting from the orthogonality of matrices U
and V, the calculation results in

∆u = VΣ+UTQE = (QG)+QE (6)

where (QG)+ is the pseudoinverse matrix of QG.

Solutions (5) and (6) are equivalent if the matrix
QG is of full column rank. However, when matrix
QG is closed to lose its rank (its condition number
is large), the problem is ill conditioned. This means
that small changes in matrix QG can result in large
changes in the elements of the solution ∆u. This is the
case where the solution calculated can be significantly
different from the real solution, mainly due to this ill
conditioning.

Therefore, controllers that are calculated with expres-
sions (5) or (6) usually render large and unaccept-
able control moves because as N and Nu horizons
become large, matrix QG becomes worse conditioned
(Meyer, 2000).

An alternative to manage this problem is the use of the
control weighting factor λ , that reduces the magnitude
of control increments. However, this factor must be
chosen empirically with a few guidelines available to
aid in its selection.

A different way to handle poorly conditioned prob-
lems is called Principal Components Analysis (PCA)
(D.E. Seborg P.R. Maurath and Mellichamp, 1988).
This approach uses a singular value decomposition
(SVD) of matrix QG. By means of a lower rank ap-
proximation to this matrix, a solution can be deter-
mined which results in only a slightly larger residual
cost (poorer control) with a solution vector of smaller
norm (smaller control increments but better robust-
ness).

5. PRINCIPAL COMPONENTS ANALYSIS

The problem with minimizing index (1) 2 for the
calculation of the control law can be written with the
Euclidean norm (‖ · ‖2) as

J(∆u) = ‖ QG∆u−QE ‖2
2

Orthogonal transformations do not modify the Eu-
clidean norm, so if U is orthogonal,

‖Ux ‖2=‖ x ‖2

then the optimization problem can be transformed
through the SVD of matrix QG as

2 Henceforth, no weighting factor λ is assumed.

J(∆u) = ‖UΣVT∆u−QE ‖2
2

J(p) = ‖ Σp−g‖2
2 (7)

where p = VT∆u and g = U TQE

The solution to this least-squares problem is trivial

p = Σ+g (8)

The components of vector p are known as as prin-
cipal components of the solution that minimizes the
quadratic index. The final solution, ∆u, can be calcu-
lated from the former expressions:

∆u=V p= VΣ+UTQE = (QG)+QE

Each principal component pi can be easily calculated
through (8) and the cost index (7) can be written as

J(p) = (σ1 p1 −g1)
2 + · · ·+(σr pr −gr)2 +C(9)

where r is the rank of matrix Σ (with a maximum
rank Nu), and C is a constant that appears if r < N.
Nevertheless, this constant is neglected, as it does not
affect the optimum.

From (9), it is deduced that every principal compo-
nent pi , contributes to improve the solution. If the i-th
component is excluded from the solution (pi = 0), the
residue is increased in g2

i . On the contrary, if compo-
nent pi is included, then the solution is improved, as
the residue is decreased exactly g2

i .

Furthermore, since matrix V is orthogonal and ∆u =
V p, vectors p and ∆u have the same Euclidean norm.
If a component pi increases the magnitude of vector
p in a quantity corresponding to p2

i , the magnitude
of the control increments will also be increased the
same. So, components that correspond to the smallest
singular values only decrease the residue in a very
small quantity (gi are small), but on the other hand
they significantly increase the magnitude of vector p
(p2

i is large). Therefore, the suppression of such com-
ponents would be desirable in order to conditioning
the problem, yielding the same effect than using the
weighting factor λ .

6. PRINCIPAL COMPONENT GPC WITH
TERMINAL EQUALITY CONSTRAINT

Using the predictions from CARIMA model:

y(k+ i|k) = G′
i∆u(k+ i−1)+Γi∆uf (k−1)+Fiy

f (k)︸ ︷︷ ︸
f (k+1|k)

With G
′
i , Γ i and Fi polynomials recursively calculated

as in (Clarke et al., 1987a) for i = 1..N, the output
response for the prediction horizon can be obtained:



 y(k+1)
. . .
y(k+N)

 =

 G
′
1

. . .

G
′
N


 ∆u(k)

. . .
∆u(k+Nu −1)

+

+

 f (k+1)
. . .
f (k+N)


The above set of predictions can be written in a matrix
form as follows:

YN×1 = GN×Nu∆u+FN×1

This prediction can be extended, over the terminal
constraint, from N+ 1 to N+m:

 y(k+N +1)
. . .
y(k+N +m)

 =

 G
′
N+1

. . .

G
′
N+m


 ∆u(k)

. . .
∆u(k+Nu−1)

+

+

 f (k+N +1)
. . .
f (k+N +m)


which in matrix form is:

Ym×1 = Gm×Nu∆u+Fm×1

The cost index (1) and the equality constraint (4) can
be rewritten as:

J(∆u) = (G∆u+F −W)Tα (G∆u+F −W)+

+ ∆uTλ ∆u (10)

G∆u= (W−F) (11)

where W is the future set-point from k+N to k+N+
m.

The minimization of (10) subject to (11) is presented
in (Clarke and Scattolini, 1991) via Lagrange multipli-
ers. The implementation of this algorithm requires the
inversion of two matrices which, though symmetric,
may nevertheless be very badly conditioned. An alter-
native approach to this problem can be to obtain an
expression for the general solution of the underdeter-
mined linear system (11) and minimize (10) over the
remaining degrees of freedom in this general solution.

Reducing [G|W−F ] 3 to a row echelon form using
Gaussian elimination and then solving for the basic
variables in terms of the free variables leads to the
general solution:

∆u = {∆up+z | z∈ N (G)} (12)

where

• ∆up is a particular solution of the nonhomoge-
neous system

3 [G|W − F] is the augmented matrix for the nonhomogeneous
system in which rank(G) = m

• z is the general solution of the associated homo-
geneous system Gz= 0:

z= h1∆uf1
+ . . .+hNu−m∆ufNu−m

= HNu×(Nu−m)∆uf(Nu−m)×1

where ∆ fi
are the free variables and the set of

vectors {h1, . . .hNu−m} is a basis for the null

space of G, say N (G)

One particular solution is the least-norm solution,
which is very suitable for control purposes:

∆up = G
+(W−F)

where G
+

is the pseudo-inverse of G

As z characterizes available choices in the final solu-
tion, it must be obtained so that the cost index (10) is
minimized. Using (12), eqn. (10) can be rewritten as:

J(∆uf ) = ‖ QG(∆up+H∆uf )−Q(W−F) ‖2
2 +

+ λ ‖ ∆up+H∆uf ‖2
2

If no weighting factor for the control increments is
used, that index can be written as

J(∆uf ) =‖ QGH∆uf − Ẽ ‖2
2 (13)

where Ẽ = Q(W−F −G∆up).

Solution to this least squares problem can be calcu-
lated, using the SVD of matrix QGH:

QGH = U

[
S
0

]
VT

and defining the partitioned vector U TẼ as[
Ẽ1m×1

Ẽ2(Nu−m)×1

]
= UTẼ

the cost index (13) is transformed as:

J(∆uf ) = ‖U

[
S
0

]
VT − Ẽ ‖2

2

J(p) = ‖ Sp− Ẽ1 ‖2
2 + ‖ Ẽ2 ‖2

2

and the principal components can be obtained as

p = S−1Ẽ1

These principal components can be seen as the avail-
able degrees of freedom. Finally, the optimal solution
is given by

∆u = ∆up+HV p

Theorem:The closed loop is asymptotically stable, in
the undisturbed case, if

• α > 0



• N ≥ n+d+ 2, where n is the system order
• Nu = N+ 1−d, where d is the process delay
• m= n+ 1
• p < r , where p is the number of components

included in the solution and r = rank(QGH) is
the number of singular values.

Proof: See (Scokaert and Clarke, 1993), and set the
weighting factor λ = 0.

7. SIMULATED EXAMPLES

7.1 Example: SISO process

In order to illustrate the application of this design, the
following non-minimum phase underdamped process
is considered (Scokaert and Clarke, 1993):

G(z−1) =
z−4(−z−1 + 2z−2)

1−1.5z−1 + 0.7z−2

The parameters for the GPC design were chosen to be

N1 N2 m Nu T(z−1) α λ
1 15 3 12 1 1 0

(14)

There are Nu−m= 13 degrees of freedom available,
therefore some criteria to select the components can
be defined. For example, the percentage of cost index
that is minimized if i components are included in the
solution, can be calculated as

ri = 100 ·
i

∑
k=1

g2
k

gTg
%

Using the criterion that r i ≤ 95%, 4 components are
selected as it is shown in fig. 2. In figure 3, the closed
loop response and control increments are shown. Fi-
nally, fig. 4 demonstrates how the objective function
is monotonically decreasing with respect to time.
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Fig. 2. Percentage of minimized index if each compo-
nent is included.

7.2 Example: MIMO process

The ideas exposed above can be generalized straight-
forwardly to multivariable systems. Only the matrices
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Fig. 3. Closed loop responses using 4 components.
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Fig. 4. Cost index values using 4 components.

size increases according to the number of inputs and
outputs of the system. For example, Ogunnaik and
Ray (Luyben, 1990) give the following transfer func-
tion matrix for an industrial distillation column:

G(s) =



0.66e−2.6s

(6.7s+1)
−0.61e−3.5s

(8.64s+1)
−0.0049e−s

(9.06s+1)
1.11e−6.5s

(3.25s+1)
−2.36e−3s

(5s+1)
−0.012e−1.2s

(7.09s+1)
−34.68e−9.2s

(8.15s+1)
46.2e−9.4s

(10.9s+1)
−0.87(11.61s+1)e−s

(3.89s+1)(18.8s+1)



Using a sample time of 2.5 min. the parameters for the
multivariable GPC were chosen to be

N1 N2 Nm Nu T(z−1) α λ
Y1 1 25 2 26 1 1 0
Y2 1 25 2 26 1 1 0
Y3 1 50 3 51 1 10 0

(15)

The total number of principal components are 103.
Other guideline to select a subset of components is
based on the magnitude of the future control incre-
ments calculated. The Euclidean norm of the control
vector if i components are included in the solution can
be written as

ni =
i

∑
k=1

(
gk

σk

)2

Using the criterion ni ≤ β , the components can be
selected. In fig. 5, the values for ni are shown and
setting β = 3, at the most 45 components could be
selected.
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Fig. 5. Control vector norm for the first 70 compo-
nents.

In fig. 6 the closed loop responses are shown whereas
in fig. 7, the decreasing property of the cost index is
depicted.
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Fig. 6. Closed loop responses for 45 components.
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8. CONCLUSIONS

In this work a new algorithm for GPC design is pre-
sented based in principal component analysis. Further-
more, the inclusion of a terminal equality constraint
ensures the stability of the closed loop. Some criteria
for principal component selection are discussed. This
criteria can be an alternative for the empirical selection
of factor λ . Two illustrative examples for SISO and
MIMO processes have shown the good behaviour of
the proposed methodology.
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