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Abstract: This paper focuses on the problem of designing unknown input observers for both
linear and non-linear stochastic systems. The main objective is to show how to employ the
bounded-error state estimation technique and some transformations of the system equations
to form a new bounded-error unknown input observer. It is shown how to extend the proposed
approach to tackle the problem of state estimation of non-linear stochastic systems. The final
part of this paper shows an example, concerning fault detection of an apparatus that is a part
of the evaporation station at the Lublin sugar factory, which confirms the effectiveness of the

approach.
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1. INTRODUCTION

The design and application of the model-based fault
diagnosis has received considerable attention during
the last few decades. In such a task, the model of the
real system of interest is utilized to provide estimates
of certain measured and/or unmeasured signals. Then,
in the most usual case, the estimates of the measured
signals are compared with their originals, i.e. a diffe-
rence between the estimate and its original is used to
form a residual signal. This residual signal can then
be employed to detect and isolate system faults. No
matter what identification method is used, there is al-
ways the problem of model uncertainty, i.e. the model-
reality mismatch. This uncertainty may dramatically
degrade the reliability of the fault diagnosis system. To
overcome this problem, many approaches have been

proposed (Chen and Patton, 1999; Patton et al., 2000).
Undoubtedly, the most common approach is to use
robust observers, such as the Unknown Input Obse-
rver (UIO) (Alcorta and Frank, 1997; Chen and Pat-
ton, 1999; Chen et al., 1996; Patton and Chen, 1997;
Patton et al., 2000), which can tolerate a degree of
model uncertainty, and hence increase the reliability of
fault diagnosis. In such an approach, the model-reality
mismatch is represented by the so called unknown
input and hence the state estimate, and consequently
the output estimate, is obtained taking into account
model uncertainty. Unfortunately, in this context, the
research is strongly oriented towards linear determini-
stic systems. Indeed, the problem of detecting and iso-
lating faults for systems with both modelling uncerta-
inty and the noise has not attracted enough research at-
tention, although most of the real systems suffer from



both modelling uncertainty and the noise. The exi-
sting approaches (see (Chen and Patton, 1999; Chen et
al., 1996; Keller and Darouach, 1999) and the referen-
ces therein), which can be applied to linear stochastic
systems, rely on a similar idea to that of the classical
Kalman Filter (KF) (Anderson and Moore, 1979). The
main drawback to such techniques lies in their restric-
tive assumptions concerning the noise distribution, i.e.
it is assumed that the process and measurement noises
are zero mean white noise sequences. However, in
many practical situations it is more natural to assume
that only bounds on the noise signals are available
(for a detailed description of such approaches we refer
the reader to (Maksarow and Norton, 1996a; Maksa-
row and Norton, 1996b; Milanese et al., 1996; Walter
and Pronzato, 1997) and the references therein). This
bounded-error approach describes the set of all the
states that are consistent with the model, the measured
data and the error (or the noise) bounds. All members
of this feasible set are then possible solutions to the
state estimation problem. Unfortunately, the set obta-
ined in such a way may become extremely complex.
For the sake of computational complexity, this feasible
set is usually characterized by the smallest (in some
sense) ellipsoid that encloses it. Although, in the case
of the observers of this type, the so-called unknown
input can be treated in a similar way as the process
noise, i.e. the only requirements are the bounds of
the unknown input, it seems especially attractive to
employ the bounded-error approach to design an UIO
for linear stochastic systems. This is especially true
from the fault isolation point of view. Indeed, in order
to design a fault diagnosis system, consisting in a bank
of observers, each of the observers should be insen-
sitive to one fault while sensitive to the others. This
can be achieved by combining the classical UIO with
bounded-error techniques, resulting in an observer for
a wide class of linear stochastic systems.

Another problem arises from the application of fault
diagnosis to non-linear stochastic systems. Unfortu-
nately, the only existing approaches to this class of
systems consist in the application of the Extended
Kalman Filter (EKF) (Anderson and Moore, 1979).
Indeed, the non-linear extensions of the UIO (Alcorta
and Frank, 1997; Chen et al., 1996; Chen and Pat-
ton, 1999; Patton and Chen, 1997; Seliger and Frank,
2000) can only be applied to non-linear determini-
stic systems. Moreover, they require a relatively com-
plex design procedure, even for simple laboratory
systems (Zolghardi et al., 1996). To tackle this pro-
blem, Witczak and Korbicz proposed the so-called
Extended Unknown Input Observer (Witczak and Kor-
bicz, 2001). They used the UIO for linear stochastic
systems (Chen and Patton, 1999) to form an UIO
for non-linear deterministic systems. Moreover, it is
shown that the above observer is convergent under
certain conditions as well as its design procedure is
almost as simple as that for linear systems. Unfortu-
nately, this approach cannot be applied to non-linear

stochastic systems. Thus, it seems to be especially at-
tractive to extend the proposed bounded-error UIO in
such a way as it can be applied to non-linear stochastic
systems.

The paper is organized as follows. In Section 2, the
problem of state estimation of linear systems with bo-
unded system and measurement noises is formulated.
Moreover, it is shown how to transform the original
system with an unknown input into a system without
it. Section 3 describes the bounded-error state estima-
tion algorithm. In the next section, an extension of
the proposed approach, which can be applied to non-
linear stochastic systems is shown. Section 5 presents
the experimental results. Finally, the last section is
devoted to conclusions.

2. PROBLEM STATEMENT

Let us consider the following discrete-time linear sys-
tem

Tpt1 = Apxp + Bruyg + Erdy + wy,
Y = Crxp + vp, (D

where 11 € R" denotes the state vector, u; € R”
is the input vector, d;, € R? is an unknown input
vector, ¥y, € R™ is the output vector, and wy, and vy,
are the process and measurement noises (or errors),
respectively. The matrices Ay, By, C}, E}, are assu-
med to be known and have appropriate dimensions. As
has already been mentioned, the robustness to model
uncertainty and other factors which may lead to an
unreliable fault detection is of paramount importance.
In the case of UIO, the robustness problem is tackled
by means of introducing the concept of unknown input
dy,, and hence the term Ed; may represent various
kinds of modelling uncertainty. The remaining factors
can be modeled by wj and vj. Indeed, it is only
necessary to know the bounds of wj, and vy, which
can be defined by the following sets

Wi =({we: —bi <wj <b}, (@

and

Vk:ﬂ{vk:—rigv,ign}. 3)

1

In order to use the bounded-error algorithm described
in (Maksarow and Norton, 1996a) for the state estima-
tion problem of the system (1) it is necessary to in-
troduce some modifications concerning the unknown
input. In the existing approaches the unknown input
is treated in two different ways. The first one (Chen
and Patton, 1999) relies on introducing an additional
matrix into the state estimation equation, which is then
used for de-coupling the effect of the unknown input
on the state estimation error (and consequently the
residual signal). In the second one (Keller and Da-
rouach, 1999), the system (1) is suitably transformed
into a system without the unknown input. In the case



of the algorithm (Maksarow and Norton, 1996a) it
seems more convenient to use the second approach.

Let us assume that rank(C'y E) = ¢ and
Ty =a(l - Hf Hy), €))

where H;, = (CyEj)" denotes the generalized
inverse or pseudo-inverse of C'yFE}, and a is an
arbitrary matrix chosen such that T is a full-row rank
matrix. Since rank ([Hj Tx]") = m the system (1)
can be transformed into an equivalent form
Tp+1 = Arxp + Bruy + Epdy +wyg,  (5)
Hy,., = H;Crxp1 + Hyvgy, (6)
Tiyry1 = TiCrxppr + Trvpg- 7
Substituting the relation (5) into (6) leads to

Hy, = HyCy [Arx + Brug + wi] + dy
+H vy, (8)

or equivalently

d, = H,, [yk+1 - Cy [Aka:k + Bruj + wk]
—Vpt1], )

Inserting (9) into (5) leads to an alternative form of the
system (1)

Tyr1 = Apxp + Brug + EkykJrl + wg,

Ypp1 = CrTry1 + Vg1, (10)

where
. Ak:[I—EkaQk]Aka 1D
B, = [I— EkaCk]Bk, Ek7: Eka, (12)
wy = [I — EkaCk]'wik — By, (13)
Y1 :Tkyk+1, C,=T:Cy, (14)
V1 = TpUpq. (15)

The bounds of wy, and ¥y 1, i.e.
Wy, = ({@k: —b <wj <b;},  (16)
i

and
Vk:ﬂ{i)k:—ﬁfl_)liﬁﬁ'}, (17

can easily be obtained using the equations (2) and (3).

Since the system (1) was transformed into an equiva-
lent form (10) it is straightforward to use the state es-
timation algorithm described in (Maksarow and Nor-
ton, 1996a). The purpose of the subsequent section is
to give an outline of the above algorithm.

3. STATE ESTIMATION

In a similar manner to the classical Kalman filtering
procedure, the bounded-error approach consists in al-
ternating two phases, i.e. the time and measurement
updates. Unlike the classical approach where the ini-
tial state estimate Zq is assumed to be a random varia-

ble, it is assumed that &y belongs to an ellipsoidal set
defined as

Ey = {fvo (a0 — fﬁo)T
Pyl (zg — ) <1}, (18)

where &; denotes the centre of the ellipsoid (the
state estimate), and Py is a positive definite matrix
describing its size and orientation. Thus, the ellipsoid
containing all the admissible states at time k£ — 1 is

Ey—1 = {mkq C(@py — B )"
Pl (zpoy — &41) < 1}, (19)

As a result of the time update, being a consequence of
transforming the [E;,_; according to the state transition
equation, the ellipsoid [ /1,1 is obtained. The centre
of the new ellipsoid is

Zyp—1 = Ap_1Zx_1 + Br_1up_1 + Ery,. (20)

The matrix defining its size and orientation is succes-
sively computed by

= +T
P} =Ar 1Py 1Ay, @21
Pzﬁq =(1 +pi)P2/k—1
+(1+p;y o2, (22)
i=1,...,n—1,
1
T
where I; = [0,..., 1 ,...,0]". The value of the

parameter p; > 0 in (22) is the positive root of
np; + (n — trace(Q,;)p; — trace(Q;) = 0, (23)
where
- ; -1
Qi =bi (Pij) Ll 24)
Finally Py/x—1 = Py, _y.

The measurement update intersects the predicted el-
lipsoid Ey, ;1 with the pairs of parallel hyperplanes
defined using (17), i.e.

Or = ﬂ{mk gL — 7 < (@)l < i +7i},

’ (25)
where €7 = [€1,...,Cm]. As a result the ellipsoid
Ex C Egyx—1 N O is obtained. The centre, size and
orientation defining matrix is successively computed
as

&) = &p/p—1, Py =Prp_1, (26)
i . Siee;
W= E g @7)

Pt = (1 +ai - 7%6;9) Si @)

4 + -
a’ +ao; a; — o
LR A= vEt @)

gi=¢ Pi¢;, i=0,...,m—1. (30)
In the standard procedure any hyperplane bound
which does not intersect Ef, is replaced by the closest



parallel hyperplane touching E}. The parameters aj

and a; denote the normalized distances from the cen-
tre of the ellipsoid E}, to each of the i-th hyperplane
after such a replacement. The above parameters can
be obtained in the following way.

Let the ¢-th hyperplane bound be
Vi ={v,:8F <elx, <pB; }. 31)

For each ellipsoid B j = 0,...,1, the normalized
distances are

+ gllg — EzTi'?e + F;c
J

af =7k Tk Tk (32)
\/ el Pie;
=i _ 2Tl _
a; =% SiZk Tk (33)

\/eT Pie;
In the next step

Ifaf > 1then 8 =efa] + /el Piei, (34)
Ifa;y < —1then 8; =¢]&] — /el Piei, (35)

If —1<aj <1then B} =gi+7}, (36)

If —1<af <1thenfBf =y; -7, (37

If aj < —lora; > 1 then Vi does not intersect
the j-th intermediate ellipsoid at time k. This may
correspond to an inaccurate selection of the noise
bounds. Such a property makes it possible to check
the consistency of the whole model with the measured
data. Moreover, faults can be detected in a similar
way. Indeed, a fault occurrence may (in some sense)
be equivalent to the model inconsistency with the
measured data. The parameters B:‘ and [3:' in (31) are
defined as

B zmjinﬁj, i =maxf;, j=0,....i, (38)

and finally the parameters aj and a; in (29) are
defined as

+ =T 518 - T 41
. —C; X _ . —C; &
Oé:»r — Bz ik a = Bz i Ic. (39)

. ’ 1 .
\/ el Pe; ¢l'Pe;
If of @y < —1/n, then E;' = Ej, else the para-
meter ¢; minimizing the volume of IE};H should be
obtained as positive root of

a1q; + azq; + az = 0, (40)
where
a1 = (n—1)g7, 41
az = ((2n — 1)d} — g; + €3) gi, (42)
az = (n(di — €7) — g:) di. 43)

Finally &;, = &' , and Py, = PJ.

4. AN EXTENSION TO NON-LINEAR SYSTEMS

As has already been mentioned, the application of the
EKF to the state estimation of non-linear systems has

received considerable attention during the last two de-
cades. This is mainly because the EKF can be directly
applied to a large class of non-linear systems as well
as the implementation procedure is almost as simple
as that for linear systems. The main drawback to such
an approach is that its performance strongly depends
on the difference between the non-linear system and
the model linearized around the current state estimate.
This is mainly because of the fact that in the EKF
case the linearization errors are neglected. In the pro-
posed approach, as in the EKF, the state equation is
linearized around the current state estimate. The main
difference between these two approaches is that in the
proposed technique the linearization errors are taken
into account as additional disturbances.

Let us consider a class of non-linear systems which
can be modeled by the following equations

Tpp1 = g({L‘k) + h(uk) + Ed; + wy,
Ypy1 = Crt1Tra1 + Uiy, 44)
where g () is assumed to be continuously differen-
tiable with respect to «j. In order to linearize the

system (44) around the current state estimate, let us
define the following matrix

a4, =20 , (45)

dy, Tp=Tp

then the state equation of the system (44) can be
transformed into an equivalent form
Tpr1 = g(xr) + Ar(x, — Tx) + h(ug) + Erdy
twy, + r(@k, Tp), (46)
with the linearization error r (xy,, &) satisfying
7 (@k, Zi)lloo < Vl@k — Zk||oo, 1, ke € B, (47)
where ||Z]lcc = max;—1___p|z;|. The equation (46)

can be expressed in a more convenient form

Tpi1 = Arzp + up,p + Erdy + wy + 7(xk, Tp),
(48)
where

Uk, f = g(ii?k) — Apxyp + h(uk), (49)

For the purpose of further considerations, it will be
more convenient to express the ellipsoid E; as a
deviation from its centre

Ep ={z:&p+2 €E}. (50)
Let
$r = sup |zlloo = [[VPr(1,1), .., v/ Pr(n,1)] oo,
z€f, 51
then, using (47), the following relation is satisfied
llr (e, Zk)lloc < YOk, (52)

which implies that

—yér < (@K, 21)° < VPR,

This means that the linearization error r(xy, Z) can
be treated as an additional disturbance vector with

i=1,...,n. (53)



known bounds (53). Finally, the system (44) can be
put in the following form

Tpt1 = Apxp + Uk, + Edy + wy,

Ypr1 = Crr1Thp1 + Vi, (54)
where
Wi = Wi + 7(Tk, Tr), (55)
The bounds of w

Wi :ﬂ{'wk :—b; <, Slvh'}, (56)
1
can easily be computed using (2) and (53). Since the
system (44) is expressed in the form (54), it is straight-
forward to perform the system transformation detailed
in Section 2 and then to use the state estimation algo-
rithm described in Section 3.

5. EXPERIMENTAL RESULTS

The purpose of this section is to design a fault detec-
tion system for an apparatus that is a part of the eva-
poration station. A detailed description of the above
plant and its model can be found in (Witczak and
Korbicz, 2002). Unfortunately, the modelled system
is an MISO one and hence it is impossible to design
any UIO. Indeed, if d;, € R?, g < m = 1, then the
matrix T, equals zero, i.e. T, = 0, which makes
it impossible to perform the system transformation
described in Section 2. The same problem occurs with
the decoupling approach presented in (Chen and Pat-
ton, 1999). Nevertheless, this drawback pertains to all
unknown input observers, not only those presented in
this work. Irrespective of the above consideration, it is
possible to use the model described in (Witczak and
Korbicz, 2002). Indeed, the second system output ys j
can be simulated by the model while the first output
Y1,x remains original.

The unknown input distribution matrix was obtained
using the approach described in (Chen and Patton,
1999) (assuming that ¢ = 1) and, as a result, the
matrix Ej, was Ej, = [11,95.8]7. The constant iy was
assumed to be v = 0.2.

To demonstrate the effectiveness of the obtained fault
detection scheme, the following fault scenarios were
considered:

Case 1: An abrupt fault of an actuator

_ 0, k< 250’
Jok = { —0.25uy , otherwise, (57)
Case 2: An abrupt fault of an actuator
_ 0, k < 100,
Jok = { 0.3us ), otherwise, (58)

As can be seen from Fig. 1, the residual is sensitive
to all the faults. Moreover, detection of the considered
faults was performed relatively fast.

Y1,k = 91k

. . . . . . .
0 50 100 150 . 200 . 250 300 350 400
Discrete time

0 5‘0 150 1 ;)0 260 2;:0 3(;0 35;0 400
Discrete time

Fig. 1. A residual and its bounds for actuator faults:

Case 1 (left), Case 2 (right).

6. CONCLUDING REMARKS

The main purpose of this paper was to propose a new
unknown input observer for linear stochastic systems.
This was achieved with the use of the bounded-error
state estimation technique and a suitable transforma-
tion of the system equations. An extension of the
proposed observer, which can be applied to the state
estimation of non-linear stochastic systems was pro-
posed as well. This was performed by applying the
linearization technique similar to that of the classical
EKF. Unlike in the case of the EKF, the proposed
approach does not neglect the linearization errors. In-
deed, these errors are taken into account as additional
disturbances.

The drawbacks and advantages of the proposed appro-
ach were discussed during its application to fault de-
tection of the apparatus that is a part of the evaporation
station at the Lublin sugar factory in Poland.
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