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Abstract: The classical method of characteristics is a powerful tool for construction of smooth
solutions to nonlinear first order PDEs. Certain generalization of this approach (method
of singular characteristics (MSC)) is useful for the construction of the surfaces where the
solution is non-smooth. In this paper it is shown that the MSC can be used for the construction
of singular surfaces (weak waves) in some second order PDEs — Euler-Lagrange equation
for multiple integral variational problem. A two dimensional variational wave equation is
considered as an example. The phenomenon of bifurcation of the weak waves (singular lines)
is found using analytical and humerical methods.
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1. REGULAR AND SINGULAR H(z,u,p) = 0inthe(2n + 1)-dimensional space of
CHARACTERISTICS (z,u, p). Using similar geometry one can define such
_ _ . a tangent field for even-dimensional surfaces of co-

Some problems in nonlinear PDEs of the first or sec- dimension3, 5, . ... The corresponding ODE system

ond order geometrically are equivalent to the construc-js called the system of singular characteristics.

tion of the integral surfaces of the1-form o« = du — ) o

pdz, or their projectionsl’ onto the subspac®”, Singular characteristics allow to construct the sur-
(Courant, 1962), (Arnold, 1988). The surfacesand ~ facesX of lower dimension. In the case df —

T may have the dimension n — 1,..., 1. The Cauchy ~ 1)-dimensional surfacé&, and the initial (n — 2)-

problem for the first order equatiofi] (z, v, p) = 0, dimensional surfac&, one must have a submanifold
is formulated in terms of a-dimensional surface W3 C R*"*! of codimensior (z = (z, u, p)):
Yo, while the initial conditions define &n — 1)- Ws: Fo(z)=0, Fi(2) =0, F_1(z) =0 (2)

dimensional surfac®; C X (initial strip). The con-
struction of ¥y, together with a smooth solution o
the equatiorH (x, u, p) = 0, is known to be reduced
to the integration of the following system of regular

¢ Where the functionst’;(x,u,p) are defined by the
conditions of the problem. The modified characteris-
tic system has the same form (1) with the so-called

(classical) characteristics: singular Hamiltonianf 7, instead ofH:
i=H, u={pH,), p=-H,—pH, (1) pH = {1 FoFoy + {Fo 1 by + {Fo P} Ey
with the initial conditions on the manifold; . (3)

Here 11 is a nhonzero homogeneity multiplier chosen
The system (1) defines a one-dimensional (charac-by the convenience reasoning, &G} is the Jacobi
teristic) subspace of the tangent space for the even{Poisson) bracket
dimensional surfacd?; defined by the equation (FGY = (F, + pFy,G,) — (Gy + pGo, F)

The restriction of such system to the maniféld is a
tangent field which actually is used in constructions.

1 Partially supported by the Russian Foundation for Basic Re-
search, grant N 01-01-00376.



A complete formulation of a theorem guaranteeing the
local existence of the surfacé searched for one can
find in (Melikyan, 1998).

Singular characteristics correspond to some singular

paths in nonlinear and optimal control, differential
games (Subbotin, 1995), (Isidori, 1996), (Bardi and
Dolcetta, 1997), (Melikyan, 1998).

2. MULTIPLE INTEGRAL VARIATIONAL
PROBLEM

2.1 First variation formula
Consider the following variational problem with the

unknown scalar function(x), x € G C R™, subject
to some boundary conditions:

J:/F(ac,u(:v),p(x))dx — extr (4)

G
= Ju/0 B =0
(b =0u/dw) Blu@)|
More exact formulation of the boundary conditions
Blu(z)] = 0 is not essential for the sequel. The

functional (4) is considered on the set
U={u(2),G.} ()

consisting of the pairgu*(z), G.), where the con-
tinuous functionu*(z) is defined in its own domain
of definition G, and is piecewise twice differentiable
there. Thus, a variational problem with variable (not
fixed) boundary is considered. The Lagrangins
supposed to be smooth enough.

A twice differentiable solution of the problem (4)
is known to satisfy the Euler-Lagrange equation — a
second-order quasilinear partial differential equation:

F, —divF, =0, z€@ (6)

n 8
ik, = —F,
<d7v » ;&ri m)

Generally, a nonsmooth function from the class (5)
can also solve the variational problem (4). For such
functions the Euler equation (6) is fulfilled only for
the points of smoothness.

Fix two elements ofU: (u(z),G), (h(x),G) with
smooth u(x), h(xz) and a smooth vector function
¢(z) = (41, - - ., Pn). Define one-parameter family of
admissible functions as:

a(z,e) =uw(@) +eh(@)+..., z€G: (7)
T=z+ep(zx) €G
where G, is preemage of5. Fore = 0 one has

G. = G andu(z,0) = u(x) sincez = x.

Substituting the family (7) into the functional (4)
and differentiating with respect te at ¢ 0
one can get the following first variation formula:

§J = [ (F, — divEy)h(z)dz (8)
G
+ / (h(z)F, + Fo(z),n(z)) do
oG

whereh(z) = h(z)— < Ou(x)/dz, ¢ >, andn(z) is
an outward normal to the boundary of the dom@&iat
the pointz € G, a normal to the surface elemeiat.
Here the function:(z) is assumed to be twice differ-
entiable and the surfad®’ to be piecewise smooth.
The formula (8) shows that for the first variation the
values ofp(x) are actually important only at the points
of the boundary)G.

Using in (8) the variations with fixed boundary and
boundary values, when the functigiiz) vanishes in
the whole domairG and the functiom.(z) vanishes
on the boundargG only one can get from.J = 0 the
Euler-Lagrange equation (6).

2.2 Necessary conditions for singular surface

Let a pair(u(z), G) be the solution of the problem (4),
and let a smooth surfadé C G divide the domairG
into two open subdomain§—, G*: G = G~ + T +
G. Suppose that the functian(z) is continuous in
G and twice differentiable in either domat#—, G,
while its gradient has a jump at. The restrictions
of the solutionu(z) to the domaingz—, Gt will be
denoted as* (), w™ (z) and their gradients as:

_ Ou” () _
=5, ° %€ G (9)
_ Out(z) R

oxr

Thus,u=(z) € C?(G7),u™ (x) € C*(GT), while the
vectorsp(z), ¢(x) have, by assumption, continuous
extensions up to the surfatefrom the domaingz—,
GT.

To derive the necessary optimality conditions for the
surfacerl’, let us represent the functiondlas a sum
of two functionalsJ—, JT, defined in the domains
G, G, correspondingly. One hdy/ = 6J~ +46J,
while the variationg.J~, 6J* are due to variations:

du”(z) = (h™ (2), o(2)), (10)

dut(z) = (h*(2), ¢(2))

h™(x) =ht(x) =h(x), €T
The last condition here follows from the continuity
of the solutionu(x) in the domainG. Suppose that
the boundarydG of the original domain is fixed,
the functionsu™(z),u™ (x) satisfy the Euler equa-
tion in the domainss—, GT, their values oroG are
fixed, while the common parf' of the boundaries
of the domainsG—, G* is subject to variation to-
gether with the common values of these functions on
I". The first variation of the functional which van-
ishes for all admissible variations (10), takes the form:



5J:/[h* (Fpn) —h* (Fpm)+  (11)
+<(F(x,u,p) - F(Jc,u,q))n
~{Fpum) p+ (Fy.m) 4, 6)|do

Due to the main lemma of Variation Calculus from the
conditionéJ = 0 it follows that the scalar multiplier
ath(x) and the vector multiplier at(z) vanish onl:

(Fp — Fgym) =0 (12)
(F(z,u,p)—F(z,u,q))n—(Fp,n) p+(Fy,n)g =0
Due to continuity ofu(z), the vectop — ¢ is a normal
toT', i.e.n = A(p — ¢) for some scalah. One has
(Fy,m) (p—q)= (F,,p — ¢) n. This equation together
with the first equality in (12) allows to reduce the
second equality in (12) to the form#(x,u,p) —
F(z,u,q) — (Fg,p — ¢)]n = 0, which means that the
left hand side of the second equality in (12) also is
colinear to the vecton. Sincen is a nonzero (unit)
vector, the scalar multiplier at must vanish. Thus, a
scalar and a vector equalities in (12) are equivalent to
the following two scalar equations which are fulfilled
on the surfacé

we omit the superscript and denote it simplyds),
the branchu™ (z) will be denoted a%(x), while for
the gradients the same notatipry will be used.

For definiteness, we assume that the bran¢h),
g(z), or more precisely, a certain its smooth extension
to the domainG, is known. Substitute the values
v(z),q(z) into the left hand sides of the equalities
(13), and consider these expressions as the functions
of (z,u,p), denoted, correspondingly, by (z, u, p),
R(x,u,p). The surface&2™ in (14) is considered as a
searched for one. Thus, the following three necessary
optimality conditions are fulfilled on that surface:

H(x,u,p) = F(z,u,p) — F(x,v(z),q(x))—-
— (Fy(z,v(z),q(2)), p — q(2z)) = 0,
R(z,u,p) = (Fp(2,u,p)— (15)
—Fy(z,v(2),q(z)),p — q(x)) =0,

Fi(z,u) =u—v(z)=0
The first two equations here represent the modified
Weierstrass-Erdmann conditions, while the last one
means simply the continuity condition of the solution
to the problem (4) on the surfade The latter condi-
tion looks trivial but it is a necessary addition to the

Weierstrass-Erdmann conditions for the implementa-

F(z,u,p) — F(z,u,q) — (Fy,p—q) =0, tion of the method of singular characteristic.

(Fp = Fyp—q)=0 Another useful observation is that the functidh
The equations (13) are generalizations of the Weier-in the second Weierstrass-Erdmann condition can be
strass-Erdmann corner conditions known in the scalarexpressed through the first condition as the following

(13)

integral variational problem.

3. METHOD OF SINGULAR
CHARACTERISTICS

The following two(n — 1)-dimensional surfaces in the
spaceR?"*! of vectors(xz,u, p) are associated with
the surfacd™

¥~ = {(z,u,p) € R*" .

ou~ (x)
or
¥t = {(z,u,p) € R*"*1 .
Ou™ (x)
ox

By construction, the surfac&s* are projected into the
surfacel’ and are the integral surfaces of thdorm

a = du — pdz, i.e. tangent vectors &+ are zeros of
the forma. Such surfaces can be constructed using the
method of singular characteristics (Melikyan, 1998).

(14)

u=u"(z), p= , v eTl},

u=ut(z), p= ,xel}

Modify, first, the Weierstrass-Erdmann conditions
by simplifying notation. The conditions (13) are

quite symmetric with respect to both smooth solution
branchesu™ (). Note, that in a construction proce-

dure (numerical or analytical) one of the branches
could be found prior to the construction of the sur-
faceI', while the construction of the second branch
requires the knowledge df. For the branch:™(x)

Jacobi bracket:

R($7u7p) = {FIH} = <Hp(m7uap)ap - q>
(Hp =I, - Fq)
The Jacobi bracket turns to be the Poisson bracket if
there is no dependence an It should be mentioned
that such a dependence always exists in the continuity
condition F (z,u) = 0, even if the Lagrangiai’ in
(4) does not depend an

(16)

The relations (15),(16) suggest an invariant interpreta-
tion of the Weierstrass-Erdmann conditions.

Thus, the conditions (15) define in the spaR& !
the following manifold W3, generally, of codimen-
sion3:
W3: H(xvuvp)zoa
R(z,u,p) ={F1H}=0, Fi(z,u)=0
This manifold is one of the necessary components for
the construction of the surfade

Using the functions (17) in (2) and (3), taking =
{{F1F}F,} and writing the system (1) in terms of the
correspondingd?, one can get the following system
of singular characteristics:

(17)

&= Hp, = (p Hp), (18)
. {{HM}H}
p= _Hx _pHu - m(p - q(l’))

As an initial manifoldX, for the system (18) may
serve, for instance, some shifting over a submanifold



I's € 0G, dimI'y = n — 2, on which the boundar 1 1

characteristics associated with a nonlinear first ordering the conditions:

partial differential equatioH (x, u,p) = 0. The role a1 = det(A(u)) = —a(u) <0, (23)
of the system (18) for the second order PDE (6) is that
it describes the propagation of the disturbances (nons- aiz =ag =0, axp=1

moothness) of the solution. Using the system (18) oneThus, the functior () is positive for allu.
can find, in particular, a subdomain of the boundary
0G which affects on the value of the solution at a given
point of the domairG.

Introduce the componentwise notations= x1, y =

x2. The domainG is a rectangular lying in the half-
planey > 0, the bottom side lies on the abscissa
In the theory of differential games the system (18) axis y = 0, while its midpoint coincides with the
represents a certain type of singular characteristicsorigin of the coordinate system. One does not need
of the Bellman-Isaacs equation describing so-called g more precise description of the domain because
equivocal singular paths. the considerations below carry a local character and
involve the vicinity of the origin. The Euler equation
(6) using (22) and corresponding initial conditions
have the form:

Quadratic LagrangianIn some problems of mathe-
matical physics the Lagrangian is a quadratic function
of the vectom:

0%u Pu 1 ou\ 2
1 7 Z a2y -
Fewp) = 2 A@app) (9) 5~ oW 3 (5) 9
Here A is a square symmetric matrid = A7, with du(z,0)

elements:;; depending, generally, an «. Computa- u(@,0) = w(z), Ay =¥(@)

tions show that the HamiltoniaH(:v, ’U,7p), the func- The fur]ctiongw(x)7 ¢($) are smooth enough every-
tion R(z, u, p) and the Jacobi brackets in the relations where except for the origin; = 0, wherew(z) may
(15), (18) for the case of quadratic Lagrangian take the pe nonsmooth (being continuous); the functiofx)

form: may have also a finite jump.
H(z,u,p) = % (A(z,u)(p — q(z)),p — q(z)) The second order terms of the equation (24) are the
same as in a quasilinear wave equation with the wave
= F(z,u,p — q(x)), speed:(u) = \/a(u) depending upon the solutiar
R(z,u,p) = {F1H} =2H(z,u,p) (20) but the first order term is different. Such an equation
({FHYR Yy = —4H, {{HF}H} =0 is called the variational wave equation. The usexof

instead ofa? happens to be more convenient for the

In this case two of three functions; (z, u, p) in (17) computations in the sequel

coincide, the manifold?; has the codimension less
than three, and thus, the uniqueness conditions for the
surfaceX; are violated. Indeed, one can choose arbi-
trarily the missed third condition in (17) and obtain,
generally, different surfaces;. One can show, thatin . . .
case of the quadratic Lagrangian the projectigrof The_ irregularities of the functlon&)(x),w(x) at the_
the surfaces; will be the same for all the choices of ©Figin may cause a nonsmoothness in the solution,
the missed function, and for the constructions one cani-€- génerate several weak waves propagating from the
use the system of regular characteristics (1) with the POInt (0, 0) into the domairt.

Hamiltonian (20). The latter system can be simplified As shown in (Melikyan, 1998) the number of waves
to the form (§ = p — q)): in generic case i€. These waves divide the upper
i = F, §=_F,—qF,, = (¢, Fe)  (21) half-plane into3 sectors. By assumption, the solution

] ] . is twice differentiable in each sector and in linear
whereg = ¢(x) is regarded as a known function. Since  5pproximation has the form:

the solution is continuous oh the last equation is ‘
decoupled from the first two equations by substituting ui(r,y) = ax +biy+e, =123  (25)

4.2 Initial conditions

u=v(z). o ui(0,0) ,_ 9ui(0,0)
1 T 61‘ ) 1T 6y I
4. EXAMPLE ¢ =u;(0,0) = w(0)
The constant = w(0) here is the common value of
4.1 Problem formulation all the branches at the origin. L&t be the slope of

the tangent line to théth wave at the origin. Due to
Consider a two-dimensional problem (4) with the continuity of the solution two neighboring branches
guadratic Lagrangian of the particular form: (25) equal each other at the common curve of the weak



jump. It follows from here that the parametéssand
a;, b; satisfy the relations:
aip1 — a; + ki(biy1 — b;) =0, (26)

From the total number o parameters; k1, k2, a1,
as, as, b1, ba, bz, the following 5 parameters are given
due to the initial conditions:

i=1,2

e=uw(0), o= p — o),
az = 8w8(;0)7 bz = ¥(=0)

The two coinciding Weierstrass-Erdmann conditions:
R = 2H = 0, see (20), give the following quadratic
equation with respect tb:

a; — am)

a11k2—2a12k+a22:0 <k‘:—b b
i — Vi41

Q12 — 04%2 — (1129
kl = )
a1
Q12 + 4/ 04%2 — Q1109
ko =
i1
The entries of the matrixd should be taken at the
origin: a;; = «;;(0,0,¢). As soon as the values

ki1 > ko are known, the coefficients,, by can be
found from the equations:

a2 — a1 az — a2
ki =— = — 27
e BT
One has:
k1a3 — k2a1 klkg
= b‘ _b
T S . G
b, — 41793 k1by + kobs
27k — ko k1 — ks

Substituting the entries of the matrix (23) into the
above formulas, one can get the following expres-
sions:

1 1
k?]_ = \/70[707 kQ = —kl = —\/70470 (G{O = Oé(C))
. asz + ay 1
a2 = — W (b3 — b1) (28)
bs + b Vo
b2: 32 1 20((137(11)

4.3 Equations of singular characteristics

For definiteness we will consider in the sequel one
of two shock waved" corresponding td:;, and the

sectorG™ (one of the three sectors) in the half-plane U

y > 0, bounded byI" and by positive half-axig = 0,

x > 0. The smooth branch of the solutiar(z, y)
restricted to that sector will be denoteddy:, y). The
Hamiltonian (20) for the considered problem has the
form:

H(zvyvuaplvp2) = F(I7yau5§17£2)

= (1/2)(—a(u)&} +£3),
S=p1—qx,y), & =p2—qy),

q1 = 0v/0x, ¢ = 0v/0y

Using the componentwise notatiods = &;, v
&2, one can write the following equations of singular
characteristics, defining the curl7gin the form:

i =—a(u), §=7, 4= —qa(u)é+qgqy (29)
-1 . 1
£= 500/ (W 7= 50a (u)e?
The initial conditions for the system (29) on the base
of (28) take the form:

z(0)=0, y(0)=0, u(0)=c (30)
E0)=bo=a—a = BT 2;%@3_@1)
Y(0) =0 =by — b1 = b3;b1 - \/2670(03 —ay)

= —Sovo

To integrate the system (29) one has to find in advance
and substitute into the system the gradient

ov ov

= M%w:@

q1 (fﬂ, y) o 9
of the smooth branch of the solutierz, y), defined
in some neighborhood of the sectar .

4.4 Asymptotics in the vicinity of the origin

In the vicinity of the origin the curvé&' is the graph of
some functiory = g1 («), whose Taylor expansion up
to several first terms can be written as:
332 $3

y=Yz+Ys 5 +Y; 5
By definition of the slopek; one has for the first
coefficient in (31):Y7 = k1= 1/,/ap. The aim of
this section is to find the second coefficiéft

(31)

Consider the expansions up to the cubic terms for the
boundary functions:

w(z) = c+arx + Ajx?/2 + D% /6

¢($) = b1 + Bll’ + E1$2/2
for the primary solution(z, y):

(32)

v(,y) = c+arz+biy+ (A2’ + 2By +Ciy?) /2
(33)
+(D12® + 3E 2%y + 3F xy® + G1y®) /6
and for the functiony(u) = «(v) (since onl’ one has
=)
AY AT
(v=cp , , (=0
6
(34)

The same parametetsay, b1,A1, B1,D1, E1 are used

in different expansions here to meet the boundary
conditions. The remaining coefficierds, F;, G, one
can find by substitution of the series (32) — (34) into
the Euler equation (24).

av)=as+a1(v——c)+ as




Substitute into the system (29) the following expan-
sions using for the valueu = v:
2 3

2 3

t
=1t e = Ut Yo — - 1Yn —
&= aittay o ey, Y =yt s (35)
If2 ﬁS 2 t3
§=Sotattlas +8e0 7 = tnttrs H e

Since the first two equalities in (35) give the paramet-
ric representation of the curve (31), one has:

T —x
Y, = g’ Y, = 1Y2 . 2?/1, (36)
T Ty
Y = L1Y3 —4$3Z/1 _ SYQ%
L1 1

Using the expansions (32) — (35) in the system (29)
one can find the following expressions for the coeffi-
cients of the expansions (35):

r1 = =g, T2 =—apé —aréo(arzs + biyr)

1
2a1alf§, m= §b10¢1§g
in therms of which the formula far; in (36) takes the

form:
_1 Oq(b1 + al\/oTo)
2 o
Depending upon the sign df; the curvel’ may be
either convex or concave in the vicinity of the origin.
A global analysis of this curve requires numerical

computations.

1
Y1 =", Y2 =71, §1 = =

Yy = (37)

4.5 Bifurcation and smoothening of weak waves

Two weak waves may intersect at some point P.
Asymptotic analysis in the vicinity of P is similar to
that of the origin. Let the functiongs = g;(x) for

i 1,3 represent the right wave and for= 2,4

the left wave passing through P. One can find the fol-
lowing expressions for the second derivatives of these
functions(A = a1 /2a3):

Yo1 = —A(b1 + a1v/ag), Yoz = —A(bz + azy/ag)

Yoo = —A(bs — azy/a), Yaou = —A(by — a1/)
This follows from (28) and a symmetry of the equation
(24) with respect toy — —y. Thus second derivative
of a wave jumps at a point of wave intersection. These
expressions and the formula (28) show that if through
a point P (possibly initial) passes only one wave (say,
left), then the second derivative of that wave must be
continuous:

b3 — a3\/ Qg = b1 — a1/ Qg
The second derivative remains continuous when the
second (right) wave has zero jump of the gradient at
the point P. In that case the formula (27) far= g/
has an uncertainty removable by the L'Hospital rule:

4

(2]

— azlimzzlim
§ @

Takinga; = ¢1, by = g2 One gets:
by +a1va=0

which means that the right wave, generally, has an
inflection point.

Using the results of this subsection, numerical compu-
tations were carried out by the author and V.A.Korneev.
The bifurcation of the weak waves was constructed.
Using appropriate initial conditions the situations
were found when only one wave runs generated by an
initial singularity.
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