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Abstract: The classical method of characteristics is a powerful tool for construction of smooth
solutions to nonlinear first order PDEs. Certain generalization of this approach (method
of singular characteristics (MSC)) is useful for the construction of the surfaces where the
solution is non-smooth. In this paper it is shown that the MSC can be used for the construction
of singular surfaces (weak waves) in some second order PDEs – Euler-Lagrange equation
for multiple integral variational problem. A two dimensional variational wave equation is
considered as an example. The phenomenon of bifurcation of the weak waves (singular lines)
is found using analytical and numerical methods.
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1. REGULAR AND SINGULAR
CHARACTERISTICS

Some problems in nonlinear PDEs of the first or sec-
ond order geometrically are equivalent to the construc-
tion of the integral surfacesΣ of the1-formα = du−
p dx, or their projectionsΓ onto the subspaceRn

x ,
(Courant, 1962), (Arnold, 1988). The surfacesΣ and
Γ may have the dimensionn, n− 1, ..., 1. The Cauchy
problem for the first order equation,H(x, u, p) = 0,
is formulated in terms of an-dimensional surface
Σ0, while the initial conditions define a(n − 1)-
dimensional surfaceΣ1 ⊂ Σ0 (initial strip). The con-
struction ofΣ0, together with a smooth solution of
the equationH(x, u, p) = 0, is known to be reduced
to the integration of the following system of regular
(classical) characteristics:

ẋ = Hp, u̇ = 〈p,Hp〉, ṗ = −Hx − pHu (1)

with the initial conditions on the manifoldΣ1.

The system (1) defines a one-dimensional (charac-
teristic) subspace of the tangent space for the even-
dimensional surfaceW1 defined by the equation
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H(x, u, p) = 0 in the(2n + 1)-dimensional space of
(x, u, p). Using similar geometry one can define such
a tangent field for even-dimensional surfaces of co-
dimension3, 5, . . .. The corresponding ODE system
is called the system of singular characteristics.

Singular characteristics allow to construct the sur-
faces Σ of lower dimension. In the case of(n −
1)-dimensional surfaceΣ1 and the initial(n − 2)-
dimensional surfaceΣ2 one must have a submanifold
W3 ⊂ R2n+1 of codimension3 (z = (x, u, p)):

W3 : F0(z) = 0, F1(z) = 0, F−1(z) = 0 (2)

where the functionsFi(x, u, p) are defined by the
conditions of the problem. The modified characteris-
tic system has the same form (1) with the so-called
singular HamiltonianHσ, instead ofH:

µHσ = {F1F0}F−1 + {F0F−1}F1 + {F−1F1}F0

(3)
Hereµ is a nonzero homogeneity multiplier chosen
by the convenience reasoning, and{FG} is the Jacobi
(Poisson) bracket

{FG} = 〈Fx + pFu, Gp〉 − 〈Gx + pGu, Fp〉

The restriction of such system to the manifoldW3 is a
tangent field which actually is used in constructions.
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A complete formulation of a theorem guaranteeing the
local existence of the surfaceΣ searched for one can
find in (Melikyan, 1998).

Singular characteristics correspond to some singular
paths in nonlinear and optimal control, differential
games (Subbotin, 1995), (Isidori, 1996), (Bardi and
Dolcetta, 1997), (Melikyan, 1998).

2. MULTIPLE INTEGRAL VARIATIONAL
PROBLEM

2.1 First variation formula

Consider the following variational problem with the
unknown scalar functionu(x), x ∈ G ⊂ Rn, subject
to some boundary conditions:

J =
∫
G

F (x, u(x), p(x))dx → extr (4)

(p = ∂u/∂x) B[u(x)]
∣∣∣
x∈∂G

= 0

More exact formulation of the boundary conditions
B[u(x)] = 0 is not essential for the sequel. The
functional (4) is considered on the set

U = {u∗(x), G∗} (5)

consisting of the pairs(u∗(x), G∗), where the con-
tinuous functionu∗(x) is defined in its own domain
of definitionG∗ and is piecewise twice differentiable
there. Thus, a variational problem with variable (not
fixed) boundary is considered. The LagrangianF is
supposed to be smooth enough.

A twice differentiable solution of the problem (4)
is known to satisfy the Euler-Lagrange equation – a
second-order quasilinear partial differential equation:

Fu − divFp = 0, x ∈ G (6)(
divFp =

n∑
i=1

∂

∂xi
Fpi

)
Generally, a nonsmooth function from the class (5)
can also solve the variational problem (4). For such
functions the Euler equation (6) is fulfilled only for
the points of smoothness.

Fix two elements ofU : (u(x), G), (h(x), G) with
smooth u(x), h(x) and a smooth vector function
φ(x) = (φ1, . . . , φn). Define one-parameter family of
admissible functions as:

ū(x, ε) = u(x̄) + εh(x̄) + . . . , x ∈ Gε (7)

x̄ = x+ εφ(x) ∈ G
whereGε is preemage ofG. For ε = 0 one has
Gε = G andū(x, 0) = u(x) sincex̄ = x.

Substituting the family (7) into the functional (4)
and differentiating with respect toε at ε = 0
one can get the following first variation formula:

δJ =
∫
G

(Fu − divFp)h̄(x)dx (8)

+
∫

∂G

〈
h̄(x)Fp + Fφ(x), n(x)

〉
dσ

whereh̄(x) ≡ h(x)− < ∂u(x)/∂x, φ >, andn(x) is
an outward normal to the boundary of the domainG at
the pointx ∈ ∂G, a normal to the surface elementdσ.
Here the functionu(x) is assumed to be twice differ-
entiable and the surface∂G to be piecewise smooth.
The formula (8) shows that for the first variation the
values ofφ(x) are actually important only at the points
of the boundary∂G.

Using in (8) the variations with fixed boundary and
boundary values, when the functionφ(x) vanishes in
the whole domainG and the functionh(x) vanishes
on the boundary∂G only one can get fromδJ = 0 the
Euler-Lagrange equation (6).

2.2 Necessary conditions for singular surface

Let a pair(u(x), G) be the solution of the problem (4),
and let a smooth surfaceΓ ⊂ G divide the domainG
into two open subdomainsG−, G+: G = G− + Γ +
G+. Suppose that the functionu(x) is continuous in
G and twice differentiable in either domainG−, G+,
while its gradient has a jump atΓ. The restrictions
of the solutionu(x) to the domainsG−, G+ will be
denoted asu+(x), u−(x) and their gradients as:

p =
∂u−(x)
∂x

, x ∈ G− (9)

q =
∂u+(x)
∂x

, x ∈ G+

Thus,u−(x) ∈ C2(G−),u+(x) ∈ C2(G+), while the
vectorsp(x), q(x) have, by assumption, continuous
extensions up to the surfaceΓ from the domainsG−,
G+.

To derive the necessary optimality conditions for the
surfaceΓ, let us represent the functionalJ as a sum
of two functionalsJ−, J+, defined in the domains
G−, G+, correspondingly. One hasδJ = δJ−+δJ+,
while the variationsδJ−, δJ+ are due to variations:

δu−(x) = (h−(x), φ(x)), (10)

δu+(x) = (h+(x), φ(x))
h−(x) = h+(x) = h(x), x ∈ Γ

The last condition here follows from the continuity
of the solutionu(x) in the domainG. Suppose that
the boundary∂G of the original domain is fixed,
the functionsu−(x), u+(x) satisfy the Euler equa-
tion in the domainsG−, G+, their values on∂G are
fixed, while the common partΓ of the boundaries
of the domainsG−, G+ is subject to variation to-
gether with the common values of these functions on
Γ. The first variation of the functional which van-
ishes for all admissible variations (10), takes the form:



δJ =
∫
Γ

[
h− 〈Fp, n〉 − h+ 〈Fq, n〉+ (11)

+
〈
(F (x, u, p)− F (x, u, q))n

−〈Fp, n〉 p+ 〈Fq, n〉 q, φ
〉]
dσ

Due to the main lemma of Variation Calculus from the
conditionδJ = 0 it follows that the scalar multiplier
ath(x) and the vector multiplier atφ(x) vanish onΓ:

〈Fp − Fq, n〉 = 0 (12)

(F (x, u, p)−F (x, u, q))n−〈Fp, n〉 p+〈Fq, n〉 q = 0

Due to continuity ofu(x), the vectorp− q is a normal
to Γ, i.e. n = λ(p − q) for some scalarλ. One has
〈Fq, n〉 (p−q)= 〈Fq, p− q〉n. This equation together
with the first equality in (12) allows to reduce the
second equality in (12) to the form:[F (x, u, p) −
F (x, u, q)− 〈Fq, p− q〉]n = 0, which means that the
left hand side of the second equality in (12) also is
colinear to the vectorn. Sincen is a nonzero (unit)
vector, the scalar multiplier atn must vanish. Thus, a
scalar and a vector equalities in (12) are equivalent to
the following two scalar equations which are fulfilled
on the surfaceΓ:

F (x, u, p)− F (x, u, q)− 〈Fq, p− q〉 = 0, (13)

〈Fp − Fq, p− q〉 = 0

The equations (13) are generalizations of the Weier-
strass-Erdmann corner conditions known in the scalar
integral variational problem.

3. METHOD OF SINGULAR
CHARACTERISTICS

The following two(n−1)-dimensional surfaces in the
spaceR2n+1 of vectors(x, u, p) are associated with
the surfaceΓ:

Σ− = {(x, u, p) ∈ R2n+1 : (14)

u = u−(x), p =
∂u−(x)
∂x

, x ∈ Γ},

Σ+ = {(x, u, p) ∈ R2n+1 :

u = u+(x), p =
∂u+(x)
∂x

, x ∈ Γ}

By construction, the surfacesΣ± are projected into the
surfaceΓ and are the integral surfaces of the1-form
α = du− p dx, i.e. tangent vectors ofΣ± are zeros of
the formα. Such surfaces can be constructed using the
method of singular characteristics (Melikyan, 1998).

Modify, first, the Weierstrass-Erdmann conditions
by simplifying notation. The conditions (13) are
quite symmetric with respect to both smooth solution
branchesu±(x). Note, that in a construction proce-
dure (numerical or analytical) one of the branches
could be found prior to the construction of the sur-
face Γ, while the construction of the second branch
requires the knowledge ofΓ. For the branchu−(x)

we omit the superscript and denote it simply asu(x),
the branchu+(x) will be denoted asv(x), while for
the gradients the same notationp, q will be used.

For definiteness, we assume that the branchv(x),
q(x), or more precisely, a certain its smooth extension
to the domainG, is known. Substitute the values
v(x), q(x) into the left hand sides of the equalities
(13), and consider these expressions as the functions
of (x, u, p), denoted, correspondingly, byH(x, u, p),
R(x, u, p). The surfaceΣ+ in (14) is considered as a
searched for one. Thus, the following three necessary
optimality conditions are fulfilled on that surface:

H(x, u, p) = F (x, u, p)− F (x, v(x), q(x))−

−〈Fq(x, v(x), q(x)), p− q(x)〉 = 0,
R(x, u, p) = 〈Fp(x, u, p)− (15)

−Fq(x, v(x), q(x)), p− q(x)〉 = 0,
F1(x, u) = u− v(x) = 0

The first two equations here represent the modified
Weierstrass-Erdmann conditions, while the last one
means simply the continuity condition of the solution
to the problem (4) on the surfaceΓ. The latter condi-
tion looks trivial but it is a necessary addition to the
Weierstrass-Erdmann conditions for the implementa-
tion of the method of singular characteristic.

Another useful observation is that the functionR
in the second Weierstrass-Erdmann condition can be
expressed through the first condition as the following
Jacobi bracket:

R(x, u, p) = {F1H} = 〈Hp(x, u, p), p− q〉 (16)

(Hp = Fp − Fq)
The Jacobi bracket turns to be the Poisson bracket if
there is no dependence onu. It should be mentioned
that such a dependence always exists in the continuity
conditionF1(x, u) = 0, even if the LagrangianF in
(4) does not depend onu.

The relations (15),(16) suggest an invariant interpreta-
tion of the Weierstrass-Erdmann conditions.

Thus, the conditions (15) define in the spaceR2n+1

the following manifoldW3, generally, of codimen-
sion3:

W3 : H(x, u, p) = 0, (17)
R(x, u, p) = {F1H} = 0, F1(x, u) = 0

This manifold is one of the necessary components for
the construction of the surfaceΓ.

Using the functions (17) in (2) and (3), takingµ =
{{F1F}F1} and writing the system (1) in terms of the
correspondingHσ, one can get the following system
of singular characteristics:

ẋ = Hp, u̇ = 〈p,Hp〉 , (18)

ṗ = −Hx − pHu −
{{HF1}H}
{{F1H}F1}

(p− q(x))

As an initial manifoldΣ2 for the system (18) may
serve, for instance, some shifting over a submanifold



Γ2 ⊂ ∂G, dimΓ2 = n − 2, on which the boundary
value is nonsmooth.

The system (18) describes one of the types of singular
characteristics associated with a nonlinear first order
partial differential equationH(x, u, p) = 0. The role
of the system (18) for the second order PDE (6) is that
it describes the propagation of the disturbances (nons-
moothness) of the solution. Using the system (18) one
can find, in particular, a subdomain of the boundary
∂Gwhich affects on the value of the solution at a given
point of the domainG.

In the theory of differential games the system (18)
represents a certain type of singular characteristics
of the Bellman-Isaacs equation describing so-called
equivocal singular paths.

Quadratic Lagrangian. In some problems of mathe-
matical physics the Lagrangian is a quadratic function
of the vectorp:

F (x, u, p) =
1
2
〈A(x, u)p, p〉 (19)

HereA is a square symmetric matrix,A = AT , with
elementsaij depending, generally, onx, u. Computa-
tions show that the HamiltonianH(x, u, p), the func-
tionR(x, u, p) and the Jacobi brackets in the relations
(15), (18) for the case of quadratic Lagrangian take the
form:

H(x, u, p) ≡ 1
2
〈A(x, u)(p− q(x)), p− q(x)〉

≡ F (x, u, p− q(x)),

R(x, u, p) ≡ {F1H} ≡ 2H(x, u, p) (20)

{{F1H}F1} ≡ −4H, {{HF1}H} ≡ 0

In this case two of three functionsFi(x, u, p) in (17)
coincide, the manifoldW3 has the codimension less
than three, and thus, the uniqueness conditions for the
surfaceΣ1 are violated. Indeed, one can choose arbi-
trarily the missed third condition in (17) and obtain,
generally, different surfacesΣ1. One can show, that in
case of the quadratic Lagrangian the projectionΓ1 of
the surfaceΣ1 will be the same for all the choices of
the missed function, and for the constructions one can
use the system of regular characteristics (1) with the
Hamiltonian (20). The latter system can be simplified
to the form ((ξ = p− q)):

ẋ = Fξ, ξ̇ = −Fx − qFu, u̇ = 〈q, Fξ〉 (21)

whereq = q(x) is regarded as a known function. Since
the solution is continuous onΓ the last equation is
decoupled from the first two equations by substituting
u = v(x).

4. EXAMPLE

4.1 Problem formulation

Consider a two-dimensional problem (4) with the
quadratic Lagrangian of the particular form:

F (x, u, p) =
1
2
(−α(u)p2

1+p2
2) =

1
2
〈A(u)p, p〉 (22)

The matrixA here is diagonal with the entries satisfy-
ing the conditions:

α11 = det(A(u)) = −α(u) < 0, (23)

α12 = α21 = 0, α22 = 1

Thus, the functionα(u) is positive for allu.

Introduce the componentwise notations:x = x1, y =
x2. The domainG is a rectangular lying in the half-
plane y > 0, the bottom side lies on the abscissa
axis y = 0, while its midpoint coincides with the
origin of the coordinate system. One does not need
a more precise description of the domain because
the considerations below carry a local character and
involve the vicinity of the origin. The Euler equation
(6) using (22) and corresponding initial conditions
have the form:

∂2u

∂y2
= α(u)

∂2u

∂x2
+

1
2
α′(u)

(∂u
∂x

)2

(24)

u(x, 0) = w(x),
∂u(x, 0)
∂y

= ψ(x)

The functionsw(x), ψ(x) are smooth enough every-
where except for the origin,x = 0, wherew(x) may
be nonsmooth (being continuous); the functionψ(x)
may have also a finite jump.

The second order terms of the equation (24) are the
same as in a quasilinear wave equation with the wave
speeda(u) =

√
α(u) depending upon the solutionu,

but the first order term is different. Such an equation
is called the variational wave equation. The use ofα
instead ofa2 happens to be more convenient for the
computations in the sequel.

4.2 Initial conditions

The irregularities of the functionsw(x), ψ(x) at the
origin may cause a nonsmoothness in the solution,
i.e. generate several weak waves propagating from the
point (0, 0) into the domainG.

As shown in (Melikyan, 1998) the number of waves
in generic case is2. These waves divide the upper
half-plane into3 sectors. By assumption, the solution
is twice differentiable in each sector and in linear
approximation has the form:

ui(x, y) = aix+ biy + c, i = 1, 2, 3 (25)

ai =
∂ui(0, 0)
∂x

, bi =
∂ui(0, 0)
∂y

,

c = ui(0, 0) = w(0)

The constantc = w(0) here is the common value of
all the branches at the origin. Letki be the slope of
the tangent line to thei-th wave at the origin. Due to
continuity of the solution two neighboring branches
(25) equal each other at the common curve of the weak



jump. It follows from here that the parameterski and
ai, bi satisfy the relations:

ai+1 − ai + ki(bi+1 − bi) = 0, i = 1, 2 (26)

From the total number of9 parameters:c, k1, k2, a1,
a2, a3, b1, b2, b3, the following 5 parameters are given
due to the initial conditions:

c = w(0), a1 =
∂w(+0)
∂x

, b1 = ψ(+0),

a3 =
∂w(−0)
∂x

, b3 = ψ(−0)

The two coinciding Weierstrass-Erdmann conditions:
R = 2H = 0, see (20), give the following quadratic
equation with respect tok:

α11k
2 − 2α12k + α22 = 0

(
k = −ai − ai+1

bi − bi+1

)
k1 =

α12 −
√
α2

12 − α11α22

α11
,

k2 =
α12 +

√
α2

12 − α11α22

α11

The entries of the matrixA should be taken at the
origin: αij = αij(0, 0, c). As soon as the values
k1 > k2 are known, the coefficientsa2, b2 can be
found from the equations:

k1 = −a2 − a1

b2 − b1
, k2 = −a3 − a2

b3 − b2
(27)

One has:

a2 =
k1a3 − k2a1

k1 − k2
+

k1k2

k1 − k2
(b3 − b1)

b2 =
a1 − a3

k1 − k2
+
k1b1 + k2b3
k1 − k2

Substituting the entries of the matrix (23) into the
above formulas, one can get the following expres-
sions:

k1 =
1

√
α0
, k2 = −k1 = − 1

√
α0

(α0 = α(c))

a2 =
a3 + a1

2
− 1

2
√
α0

(b3 − b1) (28)

b2 =
b3 + b1

2
−
√
α0

2
(a3 − a1)

4.3 Equations of singular characteristics

For definiteness we will consider in the sequel one
of two shock wavesΓ corresponding tok1, and the
sectorG+ (one of the three sectors) in the half-plane
y ≥ 0, bounded byΓ and by positive half-axisy = 0,
x ≥ 0. The smooth branch of the solutionu(x, y)
restricted to that sector will be denoted byv(x, y). The
Hamiltonian (20) for the considered problem has the
form:

H(x, y, u, p1, p2) = F (x, y, u, ξ1, ξ2)

= (1/2)(−α(u)ξ21 + ξ22),
ξ1 = p1 − q1(x, y), ξ2 = p2 − q2(x, y),

q1 = ∂v/∂x, q2 = ∂v/∂y

Using the componentwise notationsξ = ξ1, γ =
ξ2, one can write the following equations of singular
characteristics, defining the curveΓ, in the form:

ẋ = −α(u)ξ, ẏ = γ, u̇ = −q1α(u)ξ + q2γ (29)

ξ̇ =
1
2
q1α

′(u)ξ2, γ̇ =
1
2
q2α

′(u)ξ2

The initial conditions for the system (29) on the base
of (28) take the form:

x(0) = 0, y(0) = 0, u(0) = c (30)

ξ(0) = ξ0 = a2 − a1 =
a3 − a1

2
− 1

2
√
α0

(b3 − b1)

γ(0) = γ0 = b2 − b1 =
b3 − b1

2
−
√
α0

2
(a3 − a1)

= −ξ0
√
α0

To integrate the system (29) one has to find in advance
and substitute into the system the gradient

q1(x, y) =
∂v

∂x
, q2(x, y) =

∂v

∂y

of the smooth branch of the solutionv(x, y), defined
in some neighborhood of the sectorG+.

4.4 Asymptotics in the vicinity of the origin

In the vicinity of the origin the curveΓ is the graph of
some functiony = g1(x), whose Taylor expansion up
to several first terms can be written as:

y = Y1x+ Y2
x2

2
+ Y3

x3

6
(31)

By definition of the slopek1 one has for the first
coefficient in (31):Y1 = k1= 1/

√
α0. The aim of

this section is to find the second coefficientY2.

Consider the expansions up to the cubic terms for the
boundary functions:

w(x) = c+ a1x+A1x
2/2 +D1x

3/6 (32)

ψ(x) = b1 +B1x+ E1x
2/2

for the primary solutionv(x, y):

v(x, y) = c+a1x+b1y+(A1x
2 +2B1xy+C1y

2)/2
(33)

+(D1x
3 + 3E1x

2y + 3F1xy
2 +G1y

3)/6

and for the functionα(u) = α(v) (since onΓ one has
u = v):

α(v) = α0 + α1(v − c) + α2
(v − c)2

2
+ α3

(v − c)3

6
(34)

The same parametersc, a1, b1,A1, B1,D1, E1 are used
in different expansions here to meet the boundary
conditions. The remaining coefficientsC1, F1, G1 one
can find by substitution of the series (32) – (34) into
the Euler equation (24).



Substitute into the system (29) the following expan-
sions using foru the valueu = v:

x = x1t+x2
t2

2
+x3

t3

6
, y = y1t+y2

t2

2
+y3

t3

6
(35)

ξ = ξ0+ξ1t+ξ2
t2

2
+ξ3

t3

6
, γ = γ0+γ1t+γ2

t2

2
+γ3

t3

6
Since the first two equalities in (35) give the paramet-
ric representation of the curve (31), one has:

Y1 =
y1
x1
, Y2 =

x1y2 − x2y1
x3

1

, (36)

Y3 =
x1y3 − x3y1

x4
1

− 3Y2
x2

x2
1

Using the expansions (32) – (35) in the system (29)
one can find the following expressions for the coeffi-
cients of the expansions (35):

x1 = −ξ0α0, x2 = −α0ξ1 − α1ξ0(a1x1 + b1y1)

y1 = γ0, y2 = γ1, ξ1 =
1
2
a1α1ξ

2
0 , γ1 =

1
2
b1α1ξ

2
0

in therms of which the formula forY2 in (36) takes the
form:

Y2 = −1
2
α1(b1 + a1

√
α0)

α2
0

(37)

Depending upon the sign ofY2 the curveΓ may be
either convex or concave in the vicinity of the origin.
A global analysis of this curve requires numerical
computations.

4.5 Bifurcation and smoothening of weak waves

Two weak waves may intersect at some point P.
Asymptotic analysis in the vicinity of P is similar to
that of the origin. Let the functionsy = gi(x) for
i = 1, 3 represent the right wave and fori = 2, 4
the left wave passing through P. One can find the fol-
lowing expressions for the second derivatives of these
functions(A = α1/2α2

0):

Y21 = −A(b1 + a1
√
α0), Y23 = −A(b3 + a3

√
α0)

Y22 = −A(b3 − a3
√
α0), Y24 = −A(b1 − a1

√
α0)

This follows from (28) and a symmetry of the equation
(24) with respect toy → −y. Thus second derivative
of a wave jumps at a point of wave intersection. These
expressions and the formula (28) show that if through
a point P (possibly initial) passes only one wave (say,
left), then the second derivative of that wave must be
continuous:

b3 − a3
√
α0 = b1 − a1

√
α0

The second derivative remains continuous when the
second (right) wave has zero jump of the gradient at
the point P. In that case the formula (27) fork1 = ẏ/ẋ
has an uncertainty removable by the L’Hospital rule:

−
√
α = lim

γ

ξ
= lim

γ̇

ξ̇
=
q2
q1

Takinga1 = q1, b1 = q2 one gets:

b1 + a1

√
α = 0

which means that the right wave, generally, has an
inflection point.

Using the results of this subsection, numerical compu-
tations were carried out by the author and V.A.Korneev.
The bifurcation of the weak waves was constructed.
Using appropriate initial conditions the situations
were found when only one wave runs generated by an
initial singularity.
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