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Abstract: This work presents a powerful and flexible alternative for tuning PID controllers
using Genetic Algorithms. The potential of this technique is shown using non-linear process
models and a reference trajectory. Flexibility is demonstrated by showing how to tune an
optimal PID in various situations: model errors, noisy input, IAE minimization, and following
a reference models, etc. These problems are solved by changing the minimization index.
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1. INTRODUCTION

PID controllers are the most common controllers in
industry, in fact, 95% of control loops use PID and
the majority are PI. (Aström and Hägglund, 1995).
Accordingly, there are many tuning techniques, and
most are based on:

(1) Empirical methods, such as Ziegler-Nichols meth-
ods. (Aström and Hägglund, 1995).

(2) Analytical methods, for instance, the root locus
based techniques. (Aström and Hägglund, 1995)
(Blasco et al., 2000).

(3) Methods based on optimization, such as Cian-
cone or Lopez methods (Marlin, 1995). These
obtain PID parameters by optimising an IAE in-
dex and a linear model with the following struc-
ture.

G(s) =
kp

τs+1
e−θs

1 This work has been partially financed by European FEDER
funds, project 1FD97-0974-C02-02.

In all of these cases, PID tunings are obtained for an
operation point where the model can be considered
linear. This implies there is sub-optimal tuning when
a process operates outside the validity zone of the
model. This situation is common when the reference is
not a set point but a trajectory (robot control, heating
trajectories in furnaces, etc.).

An alternative method to solve this problem is to
obtain a model for different operational zones, tune
a PID controller for each, and establish a mechanism
for changing from one controller to another depending
on the operation zone (gain planning).

Another alternative is tuning a PID controller by tak-
ing into account all non-linearities and additional pro-
cess characteristics. At this point appears the idea of
using Genetic Algorithms (Herreros et al., 2000) (a
global optimization technique) to obtain a PID tuning
that meets all the requirements established in a mini-
mization index by the designer.
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2. GENETIC ALGORITHMS

Genetic Algorithms (GA) (Goldberg, 1989), (Holland,
1975) are optimization techniques based on simulating
the phenomena that takes place in the evolution of
species and adapting it to an optimization problem.
These techniques imply applying the laws of natural
selection onto the population to achieve individuals
that are better adjusted to their environment.

The population is nothing more than a set of points
in the search space. Each individual of the popula-
tion represents a point in that space by means of his
chromosome. The individual’s degree of adaptation is
given by the objective function.

Applying genetic operators to an initial population
simulates the evolution mechanism of individuals. The
most usual operators are as follows:

• Selection: The main goal is selecting the chro-
mosomes with the best qualities for integration
in the next generation (these would depend on
the cost function for each individual).

• Crossover: By combining the chromosomes of
two individuals, new chromosomes are generated
and integrated into the population.

• Mutation: Random variations of parts of the
chromosome of an individual in the population
generate new individuals.

The variations of the Genetic Algorithms can be dis-
tinguished by the kind of codification used for the
chromosomes and the genetic operators used.

GA have demonstrated very good performances as
global optimisers in many types of applications (Michalewicz,
1996), (Blasco et al., 1998) (Blasco, 1999).

3. OPTIMAL PID FOR A THERMAL PROCESS
CONTROL

A thermal process (figure 1) is used to illustrate the
application of Genetic Algorithms to PID controller
tuning. This process presents non-linearities, satura-
tion model errors, and input noises. The state space
representation is used and the parameters are obtained
by identification using GA (?):

ẋ1 = k1 ·u
2 − k2(x1 −Tin)

ẋ2 =
1

16.75
(x1 − x2)

ŷ = x2

where:

• ŷ: resistance temperature in oC (Controlled vari-
able).

• u: voltage percentage at the control of the actua-
tor (manipulated variable).

• Tin: air temperature (in oC) in the resistance
neighbourhood (Disturbance).

• x1, x2: temperatures (in oC) involved in heating
exchange (internal variables).

• k1, k2: model parameters. Nominal parameters
are k1 = 86 ·10−6 and k2 = 6.027 ·10−3.
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Fig. 1. Thermal Process Scheme.

As usual, control tuning has to achieve different types
of specification, such as:

(1) Obtaining dynamic performances evaluated with:
• minimization of a performances index such

as IAE (integral of absolute value error).
• Adjusting time specifications.

(2) Obtaining robustness properties:
• Model error robustness.
• Input noise robustness.

GA is simply a global and powerful optimization
technique and, to use it in the tuning process, it is
necessary translate all these types of specification to
a cost function that the GA has to minimize. The
advantage of a GA is that it is possible to solve very
complicated cost functions and that allows the PID
designer to establish any type of specification.

The following explains how to adjust the PI controller
(two parameters, Kc and Ti)

2 for different types of
specification in order to control the thermal process.

At the end of this section a summary table with the
PI controllers, which has been designed for the IAE
minimization, model error and input noise robustness,
will be shown.

3.1 PI tuning for reference model

In this case, the objective is to obtain a controlled
variable following a time specification 3 . This type
of specification can be represented as an ideal closed
loop model - called the reference model.

Now the tuning process has to minimize, over a simu-
lation time (tsim), differences between reference model
output (ymr(t)) and the non-linear model controlled by
the PI output (y(t)), see figure 2. This is represented as
a cost function:

2 PI used is an ISA standard structure with anti-windup. PI(s) =
kc(1+1/(Tis))
3 Restricción on: settling time te, overshoot δ , steady-state errors,
etc.
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Fig. 2. Tuning structure for reference model.

J(Kc,Ti) =
tsim

∑
t=0

|ymr(t)− y(t)| (1)

Reference models used in this examples, have been
selected to achieve these specifications:

• Settling time te(98%) = 100seconds
• Overshoot δ = 0%
• Steady-state error ep = 0

MR(s) =
1

(25s+1)

C
%

(2)

The optimization problem is two-dimensional (two
parameter Kc, Ti), there is no guarantee that it is a
convex problem (non-linear model, saturation, PI anti-
windup, etc.), and there is no computational restriction
(off line optimization). Therefore, GAs offer a good
alternative for solving the problem.

GA characteristics are:

• Real codification chromosome.
• Number of individual: 400.
• Ranking operator.
• Selection operator: Stochastic universal sam-

pling.
• Crossover operator: Intermediate recombination

with a probability of 0.85.
• Mutation operator: Random with a Gauss distri-

bution (σ = 2%) and a probability of 0.05.
• Search space: Kc ∈ [0.1 . . .20]

oC
% and Ti ∈

[10 . . .600]sec.

The solution is:

Kc = 2.14 , Ti = 559.97 , J(Kc,Ti) = 66.24

Figure 3 shows Kc, Ti and J(Kc,Ti) evolution dur-
ing the optimization process. It shows optimization
process convergence in the 20th iteration. The high
number of individuals and the GA operator selected
assure a good search space exploration, and that means
the solution has a high degree of confidence.

Figure 4 shows control results obtained with this solu-
tion and compared with the reference model.

3.2 PI tuning for IAE minimization

The objective is adjusting PI parameters Kc and Ti
to minimize the IAE index of closed loop response
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Fig. 3. Kc, Ti and J(Kc,Ti) evolution for reference
model optimization.
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Fig. 4. PI closed loop control for reference model.

(figure 5). That means, minimizing the following cost
index:

J(Kc,Ti) =
tsim

∑
t=0

|yr(t)− y(t)| (3)

Where yr(t) is the reference trajectory, y(t) is the
model closed loop simulation with PI controller, and
tsim is the simulation time.
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Fig. 5. Tuning structure for IAE minimization.

The GA characteristics are the same as in the previous
problem and the solution is:

Kc = 9.18 , Ti = 179.13 , J(Kc,Ti) = 533.07



Figure 7 shows optimization convergence behaviour
is good. Figure 6 shows control result with the PI
obtained.
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Fig. 6. PI closed loop control for IAE minimization.
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Fig. 7. Kc, Ti and J(Kc,Ti) evolution for IAE mini-
mization.

3.3 PI tuning for model error robustness

A method to increase robustness when there is model
error, is by introducing in the cost index the minimiza-
tion of the nominal process behaviour (IAE or refer-
ence model), y1(t), and introducing the behaviour of
several variations of the nominal process, y j(t) j 6= 1,
(changing model parameters value). In this way, the
cost index for IAE minimization follows a reference
trajectory (yr(t)) and increasing robustness against
model errors could be:

J(Kc,Ti) =
n

∑
j=1

tsim

∑
t=0

|yr(t)− y j(t)| (4)

For instance, the PI of the thermal process is tuned
while assuming three situations: firstly, ( j = 1) nomi-
nal parameters value, secondly, ( j = 2) an increase of
30% from nominal value in parameter k1 and thirdly,
( j = 3) an increase of 25% in k2. Obviously, other
situations can be added if necessary.

j k1 k2
1 0.000086 0.006027
2 0.000110 0.006027
3 0.000086 0.0075

PI parameters obtained are:

Kc = 10.68 , Ti = 136.84 , J(Kc,Ti) = 1645.90

Figure 8 shows closed loop control results with the
optimal PI obtained. The IAE obtained for the nominal
process is 540.14 which is greater than the 533.07
obtained when it was only optimised for the nominal
process. Figure 9 shows evolution during the opti-
mization process.
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Fig. 8. PI closed loop control for IAE minimization
with model error robustness.
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Fig. 9. Kc, Ti and J(Kc,Ti) evolution for IAE mini-
mization with model error robustness.

If model errors are present and the process parameters
are:

k1 = 0.000070 ; k2 = 0.0100

figure 10 compares nominal and robust PI closed loop
simulations. Now the IAE obtained for the robust PI is
709.79, but the nominal PI IAE case obtained 866.49.
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Fig. 10. Closed loop control with nominal and robust
PI.

3.4 PI tuning for input noise

Another important source of problems in processes
can be input noise. It can be possible to take this into
account if the tuning optimization process simulates a
noise of similar characteristics to that observed in the
process.

Cost index shows no changes in the IAE minimiza-
tion and reference model after changing nominal be-
haviour (y(t)) for noisy behaviour (yn(t)), simply
adding a noise (n(t)) with the same characteristics as
the real one:

Non-linear model

of Thermal Process

Outputu

yn

n

Fig. 11. Structure with input noise.

The cost index for a IAE minimization is:

J(Kc,Ti) =
tsimul

∑
t=0

|yr(t)− yn(t)| (5)

For thermal processes, the noise is a random signal
with a normal distribution of 10% amplitude.

The obtained result is:

Kc = 11.34 , Ti = 281.70 , J(Kc,Ti) = 544.79

Figure 12 shows closed loop control results with the
tuned PI. The IAE obtained for the nominal process
without input noise is 542.45 which is greater than
the 533.07 obtained when it was optimised only for
nominal process. Figure 13 shows Kc, Ti and J(Kc,Ti)
evolution in the optimization process.

With a normal distribution noise of 10% amplitude,
the simulations are repeated for the nominal and noise
PI. Obtained results are shown in figure 14. Now the
IAE obtained for the noise PI is 544.79, but in the
nominal PI case the IAE obtained is 600.67.
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Fig. 12. Closed loop nominal process control with PI
for noise robustness.
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Fig. 13. Kc, Ti and J(Kc,Ti) evolution for IAE mini-
mization with input noise.
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Fig. 14. Closed loop control with nominal and noise
PI.

The following table shows the results obtained through
the section.



PI Nominal Model Input
Parameters Process Error Noise

kc,Ti J(kc,Ti) J(kc,Ti) J(kc,Ti)
9.18,179.13 533.07 866.49 600.67

10.68,136.84 540.14 709.79 ...
11.34,281.70 542.45 ... 544.79

4. CONCLUSIONS

This work shows how simple and powerful a GA
application for controller tuning can be. Because the
GA is a very good optimization technique, all control
specifications that can be translated to a cost index can
be applied.

Application for different performance specifications
(IAE minimization and restrictions in time domain)
and robustness quality improvement (model errors and
input noises) are shown. Everything applies to a non-
linear process.

Only the application for a PID industrial controller is
shown because it is one of the most important basic
controllers. However, this technique can be applied to
many linear and non-linear controllers. It is also pos-
sible to extend application to a multivariable control
by simply adapting the cost index function. The only
limitation is the computational cost of the optimiza-
tion process - however, for off-line tuning this is not a
major problem.
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