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Abstract: Balanced model truncation has been considered by many authors, since itis a simple
and, nevertheless, efficient model reduction technique. In many cases the approximation error
may be bounded by a function of the neglected singular values. In this paper the performance
of balanced truncation of state space models for ARMA processes is analysed, where the
goodness of fit is measured by the asymptotic Gaussian likelihood function. It is shown that
locally, i.e. close to the set of lower order systems, minimum phase balanced truncation and
stochastically balanced truncation give almost optimal results.
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1. INTRODUCTION if the truen-th order model is ‘close’ to the set of all

k-th order models.
Model reduction is concerned with the problem of

finding a ‘simple’ model, which is a good approxima-
tion of a ‘complex’ model. In this paper state space
models for discrete time, weakly stationary processes™~ , . X =
with a rational spectral density, i.e. ARMA processes, WI.|| pe shown that, given certain re_gular!ty conditions,
are considered. In this setup the asymptotic GaussiafMnimum phase balanced truncation gives the fastest

likelihood is a convenient measure of the goodness of 'até 0f convergence of the truncated model to the
fit of the approximate model. best approximation. In this sense, minimum phase

balanced truncation is ‘locally optimal’.

In this paper, the behaviour of truncation methods,
in the case that a sequence th order models
converges to &-th order model will be investigated. It

In general, the problem of finding the bésth order ) L
state space model for a process, which is generated b ote that ;tochastlcally balanced reallsat.lons are re-
ann-th order systemr(> K), is a difficult optimisa- ated via diagonal state spgce_transformatlons to mini-
tion problem, which only can be solved by numerical MUm phase balanced realisations. Therefore, stochas-
tically balanced truncation shares this optimality prop-
erty.

On the other hand, balanced model truncation is a 4
simple approach, which gives good results, especially

optimisation techniques.

The outline of the paper is as follows: The next sec-
tion 2 defines the problem setting and gives the main
_ results. Section 3 illustrates the results obtained with
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2. MODEL REDUCTIONAND BALANCED
MODEL TRUNCATION

Considera p-dimensional,discretetime, stationary
processyt|t € Z) generatedy statespacesystemof
theform

Yt = Cx +Du

wherex is the n-dimensionalstateand (u;) is white
noisewith varianceEwu = X~ > 0. W.L.o.g. it is as-
sumedthat D = I, and that the system(1) is min-
imal, stable (Amax(A) < 1), and strictly minimum
phase(Amax(A — BC) < 1); i.e. (1) is in innovation
form. Here Amax(X) denotesthe maximummodulus
of the eigevalues of a matrix X, i.e. Amax(X) =
max {|Ai(X)|}, whereA;(X) aretheeigemvaluesof the
matrix X.

Themodel(1) is arealisationof thetransferfunction

W2 = Z)uii =D+C(Z-ATB (2
53

wherez denoteghe backwardshift, i.e. z(y|t € Z) =

(yi—1]t € Z). By minimality, the transferfunction has
McMillan degreen. In the sequel M(n) denoteshe
setof stable strictly minimumphase(p x p) transfer
functionswith McMillan degreen.

Throughoutthis papera shorthandnotation of the

form
AlB
+c 5 3)

is usedto describestatespacesystemsof the above
form. Given the transferfunction p(z), the system
matricesof a minimal realisationare uniqueonly up
to transformation®f the statespacej.e. for ary non
singularT ¢ R™"

AB TAT !TB @
C[b~ ct'|D
is arealisationof p(z).
Next, consideramodel
F|G
HI1 ®)

for atransferfunctionv(z) = | + H(zY - F)"1G e

M(k), for somek < n. Togethewith avarianceQ > 0,

this definesan alternatve (in generalmisspecified)
model for (y). The quality of this model may be
assesselly the negative asymptoticGaussiarog like-

lihood

I(F,G,H,Q;AB,C,Z) = ©6)
logdetQ + EV,.Q 1y

where(v) is thepredictionerrorbasedn (5):
v =V 2y =v i ZuDu. )

The minimum valueof |(-) is equalto logdet> + p,
whichis attainedff Q = X andp(z) = v(z) holds,i.e.
iff Q = 2 and(5) is equalto (4) for someT.

Model reduction is the problem to find the best
model(5) of orderk < n, with respecto the criterion
function (6), i.e. to find parametergF, G,H, Q) such
that(6) is minimal. In generalthereis no closedform
solution to this optimisation problem, and thus the
optimal modelhasto be found by iterative nonlinear
optimisationmethods.

Onthe otherhand,principal subsystentruncation(in
the following simply called truncation)is a simple
approacho getareducedrdermodel.Let thesystem
matricesbe conforminglypartitionedas:

A11 A12|By
Ao1 Axn|Bo (8)

C Gl

whereA;; € RK*K Thenthe truncatedmodelis de-

finedas:
FIG . AulB
W%"TJT 9)

In general,thereis no guaranteethat the truncated
modelis minimal, stable,and minimum phase.Fur
thermore,it is easyto seethat the truncatedmodel
is a ‘bad’ approximationof the true model, unless
(A12, B2) and/or(Ag1,Cp) are'small’.

Sincethe systemmatricesareuniqueonly up to basis
transformationg4), it is importantto selecta suitable
realisationbeforetruncation.In particular balanced
realisationshave been proposedby mary authors,
becauseof their good behaiour from the point of

view of modelreduction For anoverview of balanced
realisationseee.g.(Ober 1996),(McGinnie, 1994).

Herethefollowing two balancingschemesreconsid-
ered:

Letthetwo GramiangP, S) bedefinedasthesolutions
of theLyapunw equations:

P=AR +BsB (10)
S=AA+Cs"IC (11)

where A = A — BC. The system(1) is saidto be in
minimumphasebalancedformiff

P=S= diag(yl, ceey Vn) (12)

wherey; > --- >y, > 0 arecalledtheminimumphase
singularvaluesof the system.This schemehasbeen
introducedandanalysedn (McGinnie,1994).



Considetthetwo Gramiang P, P) definedby

P=AP 4 BB
P=APA+CZ'C

(13)
(14)

where M = APC' + BS, C=C— M'PA T =3 +
CPC' — M'PM, andwhereP is the minimal solution
of the above Riccati equation(14). The system(1) is
saidto bein stodasticallybalancedform iff

P=P=diagpy,...,pPn) (15)
wherel > p; > --- > py > 0 arethe canonicalcor-
relation coeficients of the process(y;). Note that P
is the statevarianceof a (minimum phase)ackward
realisationof the procesg(yt). This schemehasbeen

proposedn (DesaiandPal, 1984).

Thereis acloserelationbetweerthesetwo balancing
schemesas can be seenby the following lemma (a
proof of this lemmafor the continuoustime casehas
beengivenin (McGinnie,1994)):

P)~!andy? = p?/(1-pf).

Lemmal. S= (P~ —

This implies that minimum phaseand stochastically
balancedrealisationsare relatedto eachother by a
diagonaltransformatiorir .

Thenext lemmacollectssomeimportantpropertieof
thesetwo balancingschemes:

Lemma2. (1) Thevy’s (pi’s) do not dependon the
particularrealisationof the system.
(2) Thesystemis minimaliff v, > 0 (pn > 0) holds.
(3) Thebalancedorm is uniqueup to signchanges
T = diag(£1,...,£1), if all yi’s (pi’s) are dis-
tinct.

Item (2) may be generalisedn the sense,that the
size of yk41 is @ measureof the ‘distance’ of the
transferfunctionp(z) to thesetof lowerordertransfer
functionsM(k). In particular one canderive bounds
for the approximationerror of the truncatedsystem,
which dependon the singularvaluesy;j, j > k; see
e.g.(McGinnie, 1994). However, theseboundsrefer
to the continuougime case andto the H., norm.

Here the performanceof thesebalancedtruncation
schemewill be evaluatedwith respecto the likeli-
hoodfunction (6). In particular the casethatthe true
transferfunction is ‘close’ to the set of k-th order
transfer functions M((k) is considered.To be more
precisea sequenc®f modelscorveming to a system
of orderk will be consideredIn orderto makethe
exposition simpler the analysisstartswith a given
sequencef realisationsratherthanwith a sequence
of transferfunctions.

Let A(g), B(g), C(g), Z(¢), be a sequencef realisa-
tions,which continuouslydependn thescalare > 0.

Throughouthe paper it is assumedhat:

A(g),A(g) areuniformly stable
Z(e)™" = O(1)

Pri(e) = () Sii(e) = O(1
Po(e) = O(e%) So(g) = O(e?)

(16)

Hereandin the sequel subscripts)ike Py1, referto a
partitioning of the correspondingmatrix conforming
to (8). The notation X(g) = O(&°) meansthat there
exist constantgg > 0, andc < o suchthat ||X(g)|| <

ceS holds for all g > € > 0. Furthermore||X|| =

v Amax(X'X) denotesthe 2-norm of the matrix X.

Uniform stabilityis definedasfollows: A (continuous)
squarematrix function X(¢) is saidto be uniformly

stableiff there exist constantseg > 0, ¢ < o, and
A < 1suchthat||X(g)¥|| < cAX holdsfor all k> 0 and
€ >€>0.

Togethertheseassumptiongmply that

¢ thepolesandzerosof the transferfunctionsare
uniformly boundedaway from the unit circle.

e thelimiting transferfunctionis in M(k).

¢ the transfer functions are, in a certain sense,
boundedavay from the setof systemsof order
s< k.

Thenext lemmagivesanequivalentformulationof the
above assumptions.

Lemma3. Theassumption§l6) areequivalentto

A11(€), Aoa(€), Ara(€) andioa(€)
areuniformly stable

(17)

Note that the above realisationsneednot to be in
balancedorm. However, it is assumedhatthe lower
right (n— k) x (n—Kk) blocks of the two gramiansP
andS corverge to zerowith the rate O(€?). This will
imply that the truncatedmodelis a ‘good’ approxi-
mationof the true model. However, aswill be shavn
in theoremb5, one getshetterresultsif the gramians
are ‘almost’ block diagonal.Sucha block diagonal
realisationrmaybe obtainedby thefollowing lemma.

Lemmad. Let a sequencef systemssatisfying(16),
anda sequenc®f (continuous)}ransformationsatis-

fying
B ( | le(s)>
B T21(8) |
whereTiz(g) = O(€) andTo1(€)

(18)
= 0(8).
begiven.

(1) Thetransformedsystemdefinedby A=TAT 1,
B= TB, C = CT~! alsosatisfieq16).



(2) If the transformationis chosento be Ti» =
Sl_f'slz, To1= —P21P1_11, then

Pi2(€) = O(€3) and Sip(e) = O(e?) (19)
holds.

Notethatin generaPi2 = O(g) andS;2 = O(g). If (19)
holds, then the sequenceof systemsis said to be
minimum phaseblock balanced.

In orderto formulatetheresults,a parametrisatiormof
thesetM(k) of transferfunctionsof McMillan degree
k is needed.

Let 1t denotethe k(k + 2p) dimensionalvector of
stackedentriesof the matrices(F, G,H). Thereis a
mapping@ : Tt 6 = @(1) € R?P, which attaches
a vector of parameterdo ary realisation.Of course
¢(Ty) = @(Tp) holdsiff the transferfunctionscorre-
spondingto Ty andTr, areidentical.Corversely there
is amapping®: 8 — 1= @(08), which attaches par
ticular realisationto a vector of parametersk.g. one
could usea parametrisatiolasedon balancedorms,
seee.g.(Ober 1996). Thesemappingsarecompatibel
in thesensep(¢(6)) = 6.

In particularlet 8o = ¢(1), whereTp correspondso
thelimit (F(0), G(0),H(0)) = (A11(0), B1(0),C41(0)).

Thenit sufficientthatthe abose mappingsaredefined
andsmoothin anopenneighbourhooaf 5 and6g.

Note that the likelihood function dependson the pa-

rametersof the transferfunction 1t (8), on the vari-

ance Q, as well as on the data generatingprocess
(A,B,C,%). ThereforeJet N denotethe stackedsector
of entriesin the matrices(A, B,C, X). Furthermordet

Mo correspondo thelimit (A(0),...,Z(0)).

In orderto simplify the expositions,only the simpli-
fiedmodelreductionproblemwith fixedQ = X is con-
sidered.This simplificationis justified by Theorem5,
item (1). Thereforewith aslightakuseof notation let

L(6:11) =1((6); ) =
(FGH5ABCE @O
Let 6 and & denotethe parameterof the truncated
and of the optimal systemrespectiely. In order to
assesghe distance(6 — 8), the following regularity
assumptionsvill beimposedonL:

There exist an open neighbourhood(U x 7)) C
(R2KP x R(P)?) of (Bp, o) suchthat

o thelikelihood functionhasa uniqueglobal mini-
mumfor all M € 9

e theinverseof the Hessiarof L is boundedor all
(6,M e (Ux V).

Now themainresultof the paperis asfollows:

Theoemb5. Considera sequencef systemssatisfy-
ing assumption$16), andassumehatthe above reg-
ularity conditionson the likelihood function are ful-
filled. Furthermorejet s= 0 in generalands = 2 if
the systemsareminimum phaseblock balanced.

(1) EwV =Z+0O(e%).

(2) Thegradientof thelikelihood function satisfies:
%(8,M) = O(**9)

(3) (6-8) = O(e**).

The first item shaws that the truncatedmodel is a
‘good’ approximatiorof thetruemodel,providedthat
the lower right blocks of the gramiansare ‘small’.
This canbe only achieved, whenthe (n— k) smallest
singular valuesyj, j > k are ‘small’, and when a
suitable realisation has been chosen.On the other
hand,it followsfromitems(2) and(3) that,by picking
a minimum phasebalancedrealisation the truncated
systemwill corverge very fastto the optimal reduced
ordersystem.In this senseminimum phasebalanced
truncationis locally optimal. Note that the truncated
systemgorrespondindo a block balancedealisation
andto a balancedealisationrespectiely, arerelated
to eachother by a state spacetransformationand
thus representhe samek-th order transferfunction.
Hence, for the above results only an approximate
block balancedealisationis needed.

By Lemmal, it is clearthatthe abose Theoremand
thusthe samelocal optimality propertyhold true for
stochasticallypalancedruncation.

3. EXAMPLE

In this sectionthe resultsobtainedwill be illustrated
by thesimplesecondorderSISO(p = 1) systems:

~0.25 0.7¢ |23
A®)IBE) _ 7 05 |0.3e
Ol 1 o5 —00% 1

with ¥ = 1. The goal is to find an optimal first
order system (k = 1). We will comparethe per
formance of the truncatedsystem® = (f,g,h) =
(—0.25,2.3,—0.15), with the minimum phasebal-
ancedtruncatedsystemd = (f,§,h), andthe optimal
first order model 6 = (f, 8, h). Notice that the latter
two reducedmodelsdepencbn €, wherea$ doesnot
dependne, andis equalto thelimit Bg. In thissimple
example,onemayused = (f, f —gh), i.e.thepoleand
the zeroof thetransferfunction,asparameters.

Figurel shows the partial derivative of thelikelihood
functionwith respecto f, for thetwo truncatednod-
els.Figure2 shavsthedistanceof thepolesf, f of the
two truncatedmodelto the pole of the optimalmodel
f. In both plots a log-log scaleis used,suchthatthe
rate of corvergencecanbe easilyseen.Note thatone
obtainssimilar picturesfor theotherpartialderivatives
andfor the zeroof thereducedrdersystem.
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Fig. 1. Absolute value of the partial derivative of
the likelihood function with respectto f, asa
function of €. The dashedline correspondgo
the truncatedmodel, and the solid line to the
minimum phasebalancedruncatedmodel.
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Fig. 2. Absolute differenceof the polesof the trun-
catedmodel(dashedine), andof the minimum
phasebalancedruncatednodel(solid line) with
respecto the pole of the optimal reducedorder
model.

4. CONCLUSIONSAND REMARKS

In this paperthe problemof finding a simple state
spacemodel for an ARMA processis considered,
where the approximationerror is measuredby the

asymptoticGaussianlikelihood. It has beenshavn

that, given certain regularity conditions, the model
obtainedby minimumphasebalancedruncation(and
equivalently by stochasticallybalancedtruncation)
convergesto the optimal reducedorder model with

a rate O(g%), when the (n— k) smallestminimum

phasesingular valuesof the true n-th order system
convergeto zerowith rateO(g?). For othertruncation
schemesn generalpnly arateO(e?) will beattained.
In this senseminimum phasebalancedruncationis

‘locally optimal’. Sloppy speakingthis meansmini-

mum phasebalancedruncationis ‘almost’ optimal if

thetrue n-th ordersystemis ‘close’ to the setof k-th

ordersystems.

This result has a close relation to the so called
CCA subspacestimationmethod.lt hasbeenshavn
in (DahlenandScherrer2001)thatthe CCA subspace
is asymptoticallyequivalentto the following two step
procedurgseealso(Dahlen,2001)):

(1) a(long) autorgressve modelis estimatedrom
thedata.

(2) a stochasticallybalancedruncationof this AR
model gives the desiredestimateof the state
spacemodelgeneratinghe data.

Therefore,in view of the resultsobtainedhere,the
secondstep,in acertainsenseis closeto optimalwith
respecto thelikelihood function.

5. PROOFS

PROOF of Lemma 1. Let
o' = (C'|AC,..)

Y—:- = (yt’yt+lﬂ"'.)
My = EY+Y_:_

andlet the infinite block toeplitz matrix £ be defined
by its block entries:%j = 0, for j > i, i = | and
%j = CA—I~1B for i > j. Furthermore,an infinite
block diagonalmatrix $ is definedby S = . Then
it is straightforwardo seethat

My =OPO +ESE

Thematrix inversionlemmathengives

OI(ES‘EI)—lO — Olr:lo_
oritort-or;toytorito.

In (Lindquist and Picci, 1996) it is proved that
0'r310 = P, andtherefore,againby the matrix in-
versionlemma,oneobtains

O(ESE) o= (Pt-P)™?

Finally it is easyto provethat £=10 = (C’,K’C’, )
andthus

O(ESE) o= Z)(/?)ic'z-lc/ﬂ =s
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The maintool in proving Theorem5 is the following
lemma:

Lemmab. Let A,F betwo squarematricessatisfying
||AK|| < ek, ||[FX|| < cAk, for someA < 1, thenthe
solutionof thegeneralised.yapunw equation

X = AXF +Q

satisfieg|X|| < (2/(1—A2))||Q].



PROOF.

K0

IXI[= 11 Y AQFY < 3 Q]
2 2.

PROOF of Theorem 5. Firstagenerakxpressiorfor
the gradientof the likelihood functionis derived. Let
F=F-GH,L(2 = (Y —F)~tandw = L(2)Gy,
thenthetotal derivative of the predictionerrory; with
respecto theentriesin F, G, andH is givenby:

v = v(2y = (I -HL(2G)y
—dwk = HL(2)(dF — GdH)w (21)

+HL(2) dG\ + dHw

A statespacemodelfor (V,w{)’ (with inputs(u)) is
givenby:

(22)

Giventhis model,define:

= APA' +BzB'

= APC' +BsD'
F'XA+H'Q™Y(C,—H)

XM = (Y1,Y2),  YieRKK
Fw = EwV, = (C,—H)P(C,—H)'+ %
Mw = Euw, = (C,—H)P(0,1)'

< X Z’U)

Then, by standardcalculus,the following expression
for the total derivative of the likelihood may be ob-
tained:

—(1/2)dl = —EV,Q7dv =
EMQ™! ZOL'J' dz-j+v Q™ dHw) = (23)
J
tr(Y'(dF — GdH, dG)) + tr(MwQ1dH)

Herel, = HF1=%, dz = (dF — GdH)w + dGw and

> LiQ T Eveyj ()" =

>0 A
Z)(F’)JH’Q_l(C,—H)AJM =
iz .
XM=Y
have beenused.

Now considerthe caseof a sequencef datagenera-
tion models(16), andwherethe reducedordermodel

is obtainedby truncation,andwhereQ = . In this

casethe model(22) (aftera suitablestatetransforma-
tion) maybewritten as:

A1 A 0 |Bg

N A1 A 0 |Bp

é[B) = 0 —Aj_2 Aj_]_ 0 (24)
| 0 I |0

0 C -Gl

By Lemma6, oneobtains
Pll 0(81+S) 0(82+S)

P= (O(sHS) O(e?) Of(e%) )
O(e***) O(e%) O(e*)

Ao1Pr1+ O(8l+s) By2 + 0(83)

A A11P11+ O(e7*9) ByZ + O(e9)
M=
O(82+S)

O(e%)

X — (0(82+S),O(81+S), —S+ O(82+S)).

Henceijt followsthatly, = = 4+ O(e4), My = O(e?*9)
andY = O(e?*9). This provesitems (1), and (2), by
using(23) andthefollowing relation

oL @)= dl o

8 /" omoe’

By themeanvaluetheoremijt followsthat

, 0°L
0600

oL — — A — A
(@M @E-8) =69

(6",1)(6—8)

where®* = a8+ (1—a)8, for some0 < a < 1. Now
the boundednessf the inverseof the Hessianmplies
item(3). O
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