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Abstract: In this paper, two new identification schemes based on VSS theory and
sliding mode are developed to address the time-varying parameter identification
problems. The proposed direct identification scheme can successfully estimate
fast time-varying parameters when the process is linear in the parametric space.
The proposed indirect identification scheme further exploits the possibility of
estimating time-varying parameters for some classes of nonlinear processes not
linear in parametric space, but linearizable in the parametric space when the sliding
mode exists. Owing to the robustness of variable structure control, processes with
fast time-varying parameter uncertainties and nonlinearities are now controllable,

and in the sequel identifiable.
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1. INTRODUCTION

Over the past few decades, system identifica-
tion has received increasing attentions. In most
conventional identification methods, such as the
Least Squares related methods and the Lyapunov
method based adaptive methods, an identification
model is required and the model structure must
be identical to the real plant in order to get
the accurate parameters (Zhu and Leung, 2000)
(Bontayeb2k, 2000). To apply those identification
schemes four conditions are indispensable.

(1) The system must be linear in the parametric
space.

(2) Unknown parameters to be identified must be
either constant or slow time-varying in nature.
(3) Process should be stable in general.

(4) Persistent Excitation condition must be satis-
fied.

While the fourth condition is required in general
for all kinds of identification methods, the first
three conditions impose great limitation to solving

real problems. In (Ljung and Forssell, 1999) and
(Forssell and Ljung, 2000), closed-loop identifi-
cation schemes for linear system and constant
parameters are well developed. However, it cannot
deal with the nonlinear system with time-varying
parameters.

In (Xu and Hashimoto, 1993) and (Xu and
Hashimoto, 1996), two VSS-theory based para-
meter identification schemes have been proposed,
which partially addressed the limitation arising
from the first and the third conditions. Even the
original process dynamics is not linear in the
parametric space, it may become linear in the
parametric space when in the sliding mode. This
can be readily seen from the indirect identifi-
cation scheme. Moreover, since the process will
be put under the closed-loop, the outstanding
robustness property of the sliding mode control
can be fully used to stabilize highly nonlinear and
uncertain processes (Utkin, 1992) (Zinober, 1994)
(Man and Yu, 1997) (Young et al., 1999) (Furuta



and Pan, 2000) (Fridman, 2000) (Thein and Mis-
awa, 2000) (Chen and Hiroyuki, 2000). As a con-
sequence the identification mechanism can work
under a stable control environment.

In this paper, we further extend our VSS-theory
based identification methods to the time-varying
cases, namely addressing the remaining second
condition. However, in (Xu and Hashimoto, 1993)
and (Xu and Hashimoto, 1996), the identification
mechanism consists of a set of integrators, which
indicates that only constant unknown parame-
ters can be identified by virtue of internal model
principle. In this paper, we first show that the
direct identification scheme can successfully esti-
mate the unknown parameters which could be fast
time-varying. Next in the indirect identification
scheme, a feedback controller based on variable
structure control theory is designed to ensure the
existence of sliding mode. When the system is
in the sliding mode, an appropriate identification
mechanism can be easily derived to work without
using any explicit identification model. It should
be noted that, when identifying arbitrary time-
varying parameters, we have to use LSE based on
instantaneous measurement to make direct calcu-
lation. Any integration based adaptive schemes
or recursive Least Squares will not work prop-
erly because those methods require an invariant
input-output mapping in the parametric space
(Robert, 1999). In the new schemes, the concept
of the equivalent control plays the key role, which
leads to some important algebraic relationships
from the sliding mode, therefore makes the time-
varying parameters identifiable.

The paper is organized as follows. In Section 2,
a class of nonlinear MIMO system with unknown
time-varying parameters is presented. In Section
3, VSS theory-based direct identification scheme
is proposed with the convergence analysis. In Sec-
tion 4, VSS theory-based indirect identification
scheme is proposed and analyzed first for the
process linear in the parameters, and then ex-
tended to a more general case that the process
is non-linear in the parameters. Two illustrative
examples are given to show the validity of the two
schemes.

2. PROBLEM FORMULATION

Consider the nth order nonlinear system

x = f(x,p,t) + B(x, p, t)u (1)

where x € R™ is the measurable state vector,
u € R™ is the measurable input vector, p € R™»
is an unknown time-varying parameter vector in
the parameter space P, where n, < n, f € R"
and B € R™ ™ are nonlinear functions. For f,

f(x,p,t) = fo(x,t) + (x,t)p (2)

where fy € R™ is a known vector, ® € R"*"r is
a known matrix and p” = [pi(t) - - pn, (t)] is the
unknown time-varying parameter vector.

Assumption 1: The matrix B can be described

as

B(x,p,t) = Bo(x,t) + Bo(x,t)E(x,p,t) (3)

where By is known and of full column rank. For
matrix E, each element of FE is linear in P, i.e.
€ij (X7 D, t) = eijp7 and
Vt € RT,Vxe D* C R",Vp € P,
1 1
Anin(=E+ =ET) =r > —1, (4)
2 2
where A\, indicates the minimum eigenvalue of
the matrix E£. D* is an open subset of R™ in
which the solution of (1) is unique with respect to

the desired trajectory x4(t), which is continuously
differentiable at least up to (n+1)th order.

Assumption 2:

VP € P, DPi,min < pi < Pi,mazx 1=1,-- ',Tlp,(5)
where D; mae and pimin are known constants.

From Assumption 1, Bu can be expressed as

B(X, p, t)u = BO(X7 t)u + BO (X, t)E(Xa p, t)ll
= Bo(x,t)u+ ¥(x,u,t)p (6)
where U € R™ " is a known matrix. Then the

system in (1) can be rewritten as

x =f5(x,t) + P(x,t)p + Bo(x,t) [I + E(x,p,t)]u
=fy + Bou + Ap, (7

where A = A(x,u,t) = ®(x,t) + ¥(x,u,t).

3. VSS DIRECT IDENTIFICATION SCHEME

A. Identification Algorithm

In this scheme, the identification model is selected
in the form

i:f0+B0u+v (8)
where v is an input for identification
o
v =k(x,t)—, 9)
o

where o0 = x—X, k(x,t) = |A|1|p|m +¢€, € is a pos-
itive constant, [Pl = [|p1fm - |pnp|m]T, where
|pz|m = max(|pimaw|a|pimin|)a 1= 17"'7np' The



column vector norm |w|; and matrix norm |W|;
are defined as

|w | lwir] - |win]
;W=

Theorem 1: Sliding mode will exist under the
identification model (8) and the control law (9).
If the matrix AT A is nonsingular, np, < n, then
the time-varying parameters can be estimated by
the following LSE formula

p=(ATA) ATV, (10)

where v, is the equivalent control input while the
system is in the sliding mode.

Proof: The Lyapunov function is V =
10T, Using (7), (8) and (9),

V=0cl6=0"(x-x)
= O'T[fo+Bou+Ap—f0 — Bou — v]
T o
=0 |Ap — k(x,t)—
o]l
< ALplmlloll = kx, ol < —¢llo].
Thus the sliding mode exists. When the system

is in the sliding mode and if the matrix AT A is
nonsingular, we have

G(V=Veq) = Ap — Veq =0,
p=(ATA) A v
|

Remark 1: From (10), it is noted that the non-
singularity of the matrix AT A is directly related
to the persistent excitation condition. Thus the
dimension of the vector p should be lower than
the dimension of the system states, i.e. n, < n.

4. VSS INDIRECT IDENTIFICATION
SCHEME

In this scheme, the control law is designed as

u=u.+ u,, (11)

where u,. is the compensation part and u, is the
switching part. The switching surface is

oc=C(xq—x)=y,;—Cx,

oy, €R" CeR™ ™, (12)
where x4 are desired trajectories, y, = Cxq. The
matrix C is chosen such that rank(C) = m,
and CBjy is full rank. Define p as the adjustable

parameter, then p is calculated in terms of the
adjustable parameter p and their bounds p,,,,
and p,,;n

Dimin if Pi < Pimin,
ﬁl(t) = ﬁl(t) Zf ﬁ’L S [pimznaplmaz](l?))
Pimax Zf ﬁz > Pimaz>

The compensation part is designed as

u. = [CBO + CBoE]il[yd —fy— C(I)f)L (14)

where E = E(x,p,t) and p(t) is the time-varying
parameter vector defined in (13).

The switching control input is designed as

u, = { g(CBO)TFO' z]} 57:&8, (15)

a=(CBy)'To, 0 =010,

d= [(plmax - plmzn) T (pnpmaa: - pnpmin)]Ta
oD A1 (d + €)
1+l

p , A = C [P 4 ¥ (x,u,,t)],

(16)

where I' = I'T > 0 is constant matrix and € =
[e--€T is a vector with n,, elements.

Theorem 2: Sliding mode can be reached
in finite time under the control law (11) with
(14) and (15). If the matrix FTF, where F =
C[®(x,t) + ¥(x, Ueq, t)], is nonsingular, then the

time-varying parameter ¥ can be estimated by the
following LSE formula

p=(F'F)'FT(y,— Cfy — CBou,,), (17)

where u.q is the equivalent control input forcing
the system in the sliding mode.

Proof: The Lyapunov function is V =
30 To > 0. Using (7), (11) and (14), then the
derivative of V' is

V=0"Te =0"T(y, - Cx)

=0T [y, — C(fy + ®p) — CBo(I + E)u]

=o'T [y, — C(fo + ®p) — CBy(I + E)u,
~CBy(I + E)u,)

=o'l [y, — C(fo + ®p) — CBo(I + E)u,
+CBy(E — E)u. — CBo(I + E)uv]

=o' [C®(p — p) + CBo(E — E)u,
—CBo(I + E)u,]

=0 T[C(® + ¥(x,u, ) (P — P)
~CBy(I + E)u,]

=0"'TA.(p —p) — ' TCBy(I + E)u,

’

=0 TA.(p—p)— 6" TA]1(d+€)p .



Using Assumption 2 and the definition (16),

pi —pi < di,
, oI+ 3E+ E")a
p= (1+r)ala

>1.  (18)

Thus V < —|oTT A.|1€, which means the sliding
mode can be reached in finite time. When the
system is in sliding mode, we have

og(u=ue) =y, — C[P(x,t) + ¥ (x, e, )] p
—Cfo(x,t) — CBy(x,t)ueq
:yd —Fp—Cfo —CBoueq =0.

If the matrix FTF is nonsingular, then

p=(F'F)'F'(y,— Cfy — CBou,,).
]

Now let us extend the second identification
scheme to a class of systems nonlinear in para-
metric space P.

Theorem 3: Consider the nonlinear system

x =G (x,p,t) [fix,p,t) + B(x,p,t)u] (19)

where the definitions of the nonlinear vector
flx,p,t) and the matrix B(x, p,t) are the same
as those defined in (1) except that B € R™*". Gx
can be expressed in a matrix form

G(x,p,t)x = gy(%x,x,t) + M (%, x,t)p, (20)

where g, is a known vector and M is a known
matrix. Define My = M (Xx4,%x4,t) and N =
A — My. If the matrix NTN is nonsingular, and
the sliding mode exists, then the time-varying
parameter W(t) can be estimated by the following
LSE formula

p=(N"N)"'NT(g, — Boue, — ), (21)

where U4 is the equivalent control input when the
system is in the sliding mode.

Proof: Using (19), when the system is in the
sliding mode, u = u¢q, X = X4 and X = xg,

6(ueg) =%(u=1u¢) —%¢ =0
fo + Ap + Boueqg — Map — gy =0
fo + Np + Boueg — gy = 0.

Thus if the matrix NTN is nonsingular, then we
can directly derive the LSE formula

p=(NTN)"'NT(gy — Boue, — fo).

Remark 2: In the indirect identification scheme
(Theorem 2 and Theorem 3), the existence of
the sliding mode is ensured by properly design-
ing the VSC based feedback controller. For time-
varying parameters identification, any integration
based identification schemes, which have devel-
oped mostly for constant parameters identifica-
tion, will not work. In the proposed scheme, the
instantaneous information of the equivalent con-
trol signal is used to assist LSE based identifica-
tion.

5. ILLUSTRATIVE EXAMPLE

Consider the following system which is a nonlinear
MIMO system

G(x,p)x = f(x,p) + B(x,p)u (22)

where x = 7 x2]7 is the measurable state vector,
21(0) = =2, 22(0) = 2, u = [ug u)? is the
measurable input vector, p = [a1(t) a2(t)]T is
the unknown time-varying parameter vector,

3 1
G(x,p) = _O 1_|_a1(t)|$iﬂ(l’1)|] ’

_ [ aa(t)ad
f(Xap) - -_21_2% _ .’L']_.’L'Q:| )
M 1
<ol—| 3 —cos(x1) .
B(x,p) vt 2", ]

The unknown parameters are

a1(t) =2 + sin(bnt),
as(t) =2 — 0.5cos(5nt) + 0.5sin(107t),

and their bounds are given by
Qlmin = Q2min = 1.

Almaz = A2mazx = 47

The switching surface are

01 = X1d — X1, 02 = T2q — T2,

where the desired trajectory are

214 = 0.5cos(rt) + 0.5cos(27t) + 0.3sin(3nt) — 5,
224 = 0.3sin(3wt) + 0.2cos(5mt)
+0.15sin(67t) + 2.

The identification mechanism is constructed ac-
cording to (11) and (17). The equivalent control
input can be obtained from ¢ = 0. However, in
practice, the existence of a discontinuity and the
limited sampling rate will influence the acquisition
of the equivalent control signal and as a result
deteriorate the identification result. One way to



Identification error

recover the equivalent control is to get the average
value of the switching control by using a low pass
filter (Utkin, 1992). The average signal will ap-
proach the ideal one when the switching frequency
approaches infinity. An alternative is to use a
smoothing scheme. Here a fractional interpolation
is employed and the high switching component in
(15) is replaced by

loTT A 1d(aTa + 61
1+7r)(aTa+9)?

if o#0,
if o=0

U, =

where ¢ is a small positive constant, §; = 26 + &
It ensures that the equivalent control signal can
be approximated to any degree of accuracy by
choosing the precision bound a’ a = 7 sufficiently
small. The sampling period is selected as Ts =
0.1 ms.

Case 1: Indirect identification without measure-
ment noise

In this case, n = 0.01, § = 0.003. Fig.1 shows
the identification result for the time-varying pa-
rameters aj(t). It is shown that the estimated
parameters take some time to approach their true
values. This is because during the reaching phase,
the sliding mode does not exist, hence the identi-
fication mechanism cannot work properly.
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Fig. 1. Estimated time-varying parameter aq(t)
and identification error: (a) Evolution of a4 (t)
(Solid-line: @;(t); Dashed line: real a;(t)); (b)
Identification error of a;(t); (¢) Identification
error near the equilibrium.

Case 2: Indirect identification with measurement
noise

In this case, measurement noise with the magni-
tude 0.01 is considered. In consideration of noise,
n = 0.5 and 6 = 0.5 is selected. The identifica-
tion results of the time-varying parameters as(t)
is shown in Fig.2. It is observed that there is

Identification error

Estimated parameter al(t)
o
B o N o w O s

Estimated parameter al(l)

chattering in the identified parameters. This is due
to the effect of the noise on the acquisition of the
equivalent control signal and the calculation of the
LSE formula in Theorem 3.
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Fig. 2. Estimated time-varying parameter aq(t)
and identification error: (a) Evolution of a1 (¢)
(Solid-line: a4 (t); Dashed line: real a1(t)); (b)
Identification error of aj(t).

Case 3: Indirect identification with integrators

In this case, the integration based indirect iden-
tification scheme is implemented for time-varying
parameters (Xu and Hashimoto, 1996). There is
no measurement noise applied. Here n = § = 0.1.
The identification results of the time-varying pa-
rameters aj(t) is shown in Fig.3. It is observed
that the identified parameter d;(t) cannot ap-
proach the real one. This is because the integra-
tion based identification scheme is not for time-
varying parameters though it will work well for
constant parameters identification.
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Fig. 3. Estimated time-varying parameter aq(t)
(Solid-line: a4 (t); Dashed line: real ay(t)).
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Fig. 4. Estimated time-varying parameter aq(t)
(Solid-line: a4 (t); Dashed line: real ay(t)).

To explore the capability of the integral type iden-
tification scheme, a number of simulations are con-
ducted where the magnitude and frequency of the
time varying part in a;(t) are kept decreasing. It
shows that the profile of a;(¢) is able to approach
the real a1 (t) (F'ig.4) only when the magnitude is
reduced from 1 to 0.1, and frequency from 57 to
0.37, i.e. a1(t) = 2+ 0.1sin(0.37t).

6. CONCLUSIONS

In this paper, two new identification approaches,
which are based on the variable structure con-
trol theory, have been developed to identify time-
varying parameters. In the direct identification
scheme, an identification model is used and it can
be applied to those systems which are linear in
the parametric space. In the indirect identifica-
tion scheme, a variable structure controller is first
used to ensure the existence of the sliding mode.
When the system is in the sliding mode, the time-
varying parameters can be achieved by an ap-
propriate identification mechanism which can be
easily derived to work without using any explicit
identification model. An immediate advantage of
the indirect scheme is that it can be applied to
systems that, originally not linear in parameters
but becomes linear in the parameters when enter-
ing the sliding mode.
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