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Abstract: This paper concerns fault detection and isolation based on neural network modeling.
A neural network is trained to recognize the input-output behavior of a nonlinear plant, and
faults are detected if the output estimated by the network differs from the measured plant
output by more than a specified threshold value. In the paper, a method for determining this
threshold based on the neural network model is proposed, which can be used for a design
strategy to handle residual sensitivity to input variations. The proposed method is used for
successful fault detection and isolation of a diesel engine gain fault in a ship propulsion

benchmark simulation.
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1. INTRODUCTION

Fault detection and isolation (FDI) has been subject
to extensive research in the last three decades. The
main part of the research has been performed on
model based linear systems (Patton, 1997). FDI for
nonlinear systems has come into focus in recent years
(Frank et al., 1999) and dedicated methods have been
proposed to generate fault indicating residuals for
different classes of nonlinear systems (DePersis and
Isidori, 2000; Hammouri et al., 1999).

In order for any fault detection scheme to succeed,
it is necessary for the behavior of a model of the
system in question to match the behaviour of the actual
system. In case of nonlinear, noisy systems it may be
difficult to establish a satisfying model of the system
based on first principles, however, which has caused
several researchers to study data driven approaches to
the modeling task in the framework of fault detection.
Normally, a model identified based on a finite train-
ing set that has been collected a priori, will, unless
the training set is very rich, invariably exhibit some
degree of modeling error. There may also be some

1 Partially supported by the ATOMOS IV project.

effects, such as wear, that may cause the true system
to change gradually with time without actually giving
rise to faults. Hence, it may be advantageous to adopt
some kind of online learning scheme. The main idea
of using such an online adaptive scheme is to allow the
model to adapt to slow changes or model mismatch in
the system, but still observe faster and larger changes
caused by faults. Several results have been published
on fault detection using neural networks and other
nonlinear system identification methods, for instance
(Demetriou and Polycarpou, 1998). However, so far
the tradeoff between detectability and learning in on-
line identification of nonlinear dynamics has had to be
selected in an ad hoc manner, see e.g. (Polycarpou and
Trunov, 1998).

A more conservative approach is to allow a neural
network to learn the behavior of the system, and then
let it predict the system output over a period of time
based on past measurements of system in- and outputs.
If the system output and the corresponding network
estimate deviate considerably from one another, it is
highly likely that a fault has occurred in the system.
If the network output only deviates slightly from the
system output, on the other hand, it may be assumed
that the network is not trained sufficiently well, and
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Fig. 1. Part of the ship propulsion system involving
diesel, shaft, and ship dynamics and developed
thrust and torque and hull characteristics.

the network can be improved through further offline
training.

This paper will consider the problem of fault detection
based on residuals generated by a model that has been
identified from noisy data. However, in this case it can
be quite hard to define a threshold for what constitutes
a fault in a meaningful manner. In this paper, it will be
shown that at least for certain types of neural network
models, it is possible to estimate this threshold given
bounds on disturbances on the input side, which can
be attributed to e.g. structural faults, in a numerically
tractable manner; in other words, it is possible to
estimate how the input variations (due to faults) will
propagate to the outputs. This information can then be
used to choose appropriate threshold values.

2. SHIP PROPULSION BENCHMARK

The ship propulsion benchmark (Izadi-Zamanabadi
and Blanke, 1999) is a simulation model that repro-
duces the non-linear behaviour of a ship’s dynamics.
The benchmark was developed to be used as a plat-
form for development of new ideas for fault-tolerant
control and also for comparison of different FDI meth-
ods. The main components/subsystems modeled in the
ship benchmark are: diesel engine dynamics, shaft dy-
namics, propeller characteristics, ship speed dynam-
ics, pitch angle and shaft speed controllers, and fi-
nally the coordinated control level, which gives set-
points for shaft speed and propeller pitch. To illus-
trate the method, only the torque-thrust related part of
the benchmark is considered. An outline of this part
is shown in Fig. 1, where the involved components
are numbered. The components, denoted by C;,i =
1,...,10, are: diesel engine dynamics C,,, shaft speed
dynamics Cg, propeller torque characteristics Cg, pro-
peller thrust characteristics C-, hull characteristics Cg,
and ship speed dynamics Cg. The related sensors are

Table 1. Consequences and severity levels
for the benchmark faults

Fault  Consequence Severity
deceleration = .

Atigh manoeuvering risk high
acceleration = -

Aow  collision risk very high

Ak, diesel overload = medium

wear, sl owdown

C,,C,,C5, and Cy. The related relations (and govern-
ing equations) are listed below:

Cl: fl(e, em) =0 9= em

Cy: fy(n,nm) =0 n=nm

Cy: fo(Y,Ym) =0 Y=Yn

Cy f4(Y,Ky,Qeng) =01 Qeng+ TcQeng = KyY
Cs: f5(Qeng, Qprop,N) = 0 ImN = Qeng — Qprop
Ce: f5(n,0,U,Qprop) =0 Tableg

C;: f5(n,0,U,Tprop) =0 Tabley

Cg: fg(U,Tprop,Ry) =0: mU =Ry +t;: Tprop
Cy: fy(U,Ry)=0: Tableg

Cio: f1o(U,Um) =0 U =Un

6 denotes the propeller pitch, n and U denote shaft
and ship speed, Y is the fuel index, and Ky is the
engine gain. Qeng is the engine torque and Qprop and
Tprop are torque and thrust developed by the propeller.
Ry represents the hull characteristics. The thrust re-
duction number t; represents losses in the thrust pro-
duced by the propellers. m, Iy, Tc, and t; are con-
stant parameters. Qprop and Torop are functions of n,
0, and U, and R, is a function of U, i.e. Qprop =
Qprop(N, 8,U), Tprop = Tprop(n, 6,U), and R; =R(U).
These are calculated by interpolating between data
in Tableg, Tabler and Tableg, which represent the
nonlinear behaviour of the propeller and hull charac-
teristics obtained in model propeller test and sea trials.

Two faults (among the original four in (1zadi-Zamanabadi

and Blanke, 1999)) are considered; fault in the shaft
speed (An) measurement and the engine gain fault
(AKy). The shaft speed is measured by a dual pulse
pick-up. EMI disturbances on one pick-up can gener-
ate a maximum signal An,, .., while a minimum signal
An,,, is produced due to loss of both pick-up signals.
A drop in generated shaft torque, manifested by AKy,
may happen due to the following causes: less (or hot)
air inlet, less fuel oil inlet (due to leakage), degen-
erated cooling oil inlet, or drop-out of one or more
cylinders. The consequences and the severity level of
these faults are shown in table 1.

3. SYSTEM ANALYSIS

Performing an analysis of the system’s structural
model ((Cassar et al., 1994) (Declerck and Staroswiecki,
1991), (Izadi-Zamanabadi, 1999), (Izadi-Zamanabadi
and Blanke, 2002)) results in identifying the subsys-
tems with inherent redundant information, which can
then be used for FDI purposes. The following expres-
sions are obtained:

fl(em,Um, nm) = O (l)
fz(emaUm,nm, Ky,Ym) =0 2
Each expression indicates that there is a relation, for

instance f;, which imposes a constraint on the in-
volved variables (in this case Bm, Ny, and Uy,) under



normal conditions (i.e., no-fault situations), so that
the value of each variable cannot be changed inde-
pendently of the other involved variables values. This
means that there exists a certain invariant structure
between the involved variables.

Both expressions (1) and (2) can be used directly for
fault detection and isolation. However, both residu-
als obtained from these expressions will be affected
by faults in the shaft speed measurement. In (Izadi-
Zamanabadi and Blanke, 2002) a structural method is
used to obtain residual expressions that can be directly
used to detect gain fault independent of the shaft speed
measurement fault. The obtained expression has the
following form:

f(em, Um,Ym, Ky) = 0 (3)

Taking system causality into considerations, the in-
variant structure between the involved variables can
be captured by a neural network defined by:

U = fn (6, KyYm) (4)
A residual can be defined as
r=Un—0U (5)

Obviously, this residual will be affected by a fault in
the engine gain, while the shaft speed fault has no
direct effect on the residual.

The next issue that will be considered, is the deter-
mination of an appropriate threshold value, which is
dependent on the allowable variation in system param-
eters and/or measurements.

4. NEURAL NETWORK MODELING

The type of neural networks that will be employed in
this paper for the modeling task, is the so-called multi-
layer perceptron (MLP). It is assumed that the actual
system can be written on the general form

Xp1 = f(X,U), Y =Cx, (6)

in which k is the discrete-time sample number, x € R"s
is an appropriately chosen state vector, u € R™ is a
vector containing external inputs and y € RP is the out-
put. As was proven in (Hornik et al., 1989), an MLP
with one hidden layer can approximate any continuous
function to any desired degree of accuracy, assuming
that a sufficiently rich training set is available and the
number of neurons is sufficiently large. The following
recurrent neural network will thus be used to identify
the nonlinear mapping

Repr = Woo (Wi g +W,), Vi =Cx (7
& =Yk — Yk 8
where y, € RP denotes the prediction of the actual out-

put vector y, € RP at sample k, and g, is the prediction
error to be minimized. {, € R is a vector of inputs

to the network. W; € R¥"¢ W, € R9 and W, € R™s*d

are matrices containing the weights and biases of the
network. The neuron function o(-) : R — R% is a con-
tinuous, diagonal, monotonously increasing nonlinear
mapping with g(0) = 0; these requirements are for
instance satisfied by the hyperbolic tangent function.
If the states in (6) are available for measurement, the
most natural approach is to select ¢, = [x} uJ|". If
only output samples are available for measurement,
on the other hand, it is possible to train the network
using the choice of inputs ¢, = [Xf u} &7]". Since
networks of the latter type involves delayed feedbacks
from the network output to the input, they are known
as recurrent networks, while networks of the first type
is known as non-recurrent networks.

The Back Propagation Error Algorithm (see e.g.,
(Chen and Billings, 1992)), abbreviated BPEA, is used
due to its simplicity and robustness. The BPEA is
the most commonly used algorithm for training MLPs
and can be briefly summarized as follows. The aim is
to find the parameter vector © which minimizes the
standard performance function over N samples,

1
2N

Mz
_|

J(N,0) = & &

1

@ is a column vector containing all the MLP weights,
arranged such that the weights of the first neuron in the
hidden layer come first, then the weights and biases of
the second neuron etc., ending with the output weights
of the last neuron. The minimization is achieved using
so-called sample updating. Assume a measurement
Y, is available at sample number k. After calculating
X Yo and g according to (7)—(8), the parameters are
updated in the direction of the negative gradient of the
instantaneous performance functional

1
J = §£|ng

according to the parameter update rule

dJ,

@k:ek—l_anl

= @k_l + r) l,UkCTgk (9)

n is a step length which dictates how large the parame-
ter updates are. The model gradient g, = d&] /d®, ,
is the gradient of the network state estimate with re-
spect to the parameter vector. It thus depends on the
chosen neural model structure, neuron function, etc.
In case of non-recursive networks the calculation of
Y, is fairly straightforward, while for recurrent net-
works it is necessary to calculate recursive estimates
of the derivatives of the network state estimate with
respect to the fed back signals as well. Refer to for in-
stance (Sarkar, 1995) for further information on train-
ing MLPs using the BPEA.

Now consider a model described by (7)—(8) and as-
sume that the neural network model has been suf-
ficiently well trained to generate a prediction error



which yields a satisfactory performance.? Then it can
be estimated how large an effect an input perturbation
will have on the network output, due to the following
lemma.

Lemma 1. Consider the bounded input perturbation
d € [-9; 9] C R with 4 > 0. If this perturbation only
affects a single input channel of a neural network de-
scribed by (7), all possible network outputs resulting
from J belong to a convex set.

Proof: The perturbed input can be written as Zk =
{, + ', & = de, where g € R" is the i’th unit
vector. Denote the output from the neuron function
(the hidden layer in ANN terminology) by & € R% and
the perturbed output from the hidden layer by & € R9.
The input perturbation yields the following:

& = a(W,{, +W,) = o (W, +W, +W}d)

where w} is the i’th column vector of W,. Looking at
the j’th neuron, j =1,...,q, it is then noted that

Y (\lek +Wb_ |Wi1,j|5) < O; (lek+Wb+Wi1,1'6)

< 0 (W + Wy + [Wh ;15)
(10)

for all 6 € [-9;9], since oj(-) is a monotonously
increasing scalar function. Let us define the vectors
EX = [&,...,&",k = 1,...,29, where the scalar
entries £ is given by either & = g; (W, ¢, — |wy,|0)
or & = 0, (W, g, +|w}|6) for I =1,...,q. Now, from
(10) and the continuit’y of oj(-), it is deduced that all

perturbed output vectors & are contained in the set

— 24 oy 24

== {5|§ =52 e T2 = 1} CRY (11)
i.e., the polygon formed by all convex combinations
of &X. Then it is immediately seen that, since W, is
a linear mapping from RY to R", the set 27({,,0) =
{X|x=W,¢&,¥& € =} C R™ is a convex set as well. ¢

This tells us that, for a given pair ({,,5), we can
find bounds on the output estimate in a numerically
tractable way, since all output estimates are contained
in the polygon in the output space given by the ‘ver-
tices’ § = CW,&¥. If, for instance, y is scalar, the
interval in which the perturbed output estimate can
end up, is simply found by taking the maximum and
minimum value of these 29 values.

5. STRATEGY FOR APPLYING NEURAL
NETWORKS IN FAULT DETECTION

The dynamics of the considered system is assumed
to be mainly time invariant. However, the method

2 The network is considered sufficiently trained when the perfor-
mance function reaches a preset value, say, J(N,0) < J, and the
auto-correlation of g is sufficiently close to that of white noise

can also be used on systems with very slow varying
dynamics. The basic strategy is as follows:

The neural network will be trained and validated with
sets of non-faulty data covering the complete range of
operation (to the extent possible). It is assumed that
some small deviation from the range of operation is
allowed in order to take the possibilities for parameter
variations in the system into consideration. These al-
lowable deviations, if not learned, have an impact on
the residual. The strategy is to register these deviations
over a given time interval. When the mean value of the
residual stays within a predetermined boundary, but
still differs from zero, then this indicates that some
adjustment to (or updating of) the neural network
weights is required. The approach is then to update the
network online with the new set of data (gathered dur-
ing the specified time interval). If the plant had been
completely static and perfectly known, a fault would
yield a residual for which an indicative threshold could
be estimated off-line. However, since the weights are
allowed to adapt to slow changes in the nonlinear plant
or slight model mismatch, it is difficult to determine a
priori what effect a fault will have on the output. This
necessitates the recalculation of the threshold value at
the given operation point, as outlined in the previous
section.

Obtaining useful results requires the residual to be
insensitive to the variations in the input signals. This
requirement is similar to the requirement for the an-
alytical case (Isidori et al., 2000). However, the dif-
ference is that the requirement in this case concerns
insensitivity w.r.t. variations in the input signals and
not w.r.t. the input signals. This requirement arises
from the fact that the trained neural network behaves
as a static model. Thus, it cannot reproduce exactly the
same output as the system during the transient states.
The generated residual will hence differ from zero
(in mean value) when the neural network is subjected
to (fast) variations in the inputs. To cope with this
problem, the rate change r; in the individual inputs,
ie.
; Au;
[ TS )
where Ts is the sampling time, is computed. The
obtained residual will not be evaluated when the value
of the rate change differs from zero. When noisy
inputs are used, as in the case considered here, a
dedicated adaptive CUSUM algorithm is designed to
detect the rate change in the inputs. The adaptive part
is designed to ensure that the residual is not affected
by unmodeled dynamics generated in the transient
state. The algorithm is described below:
The cumulative sum value (Basseville and Nikiforov,
1994) at time k is

i = l, ...,ns

1
Sk = Tﬂ('ri,k|_“0)2_(|ri,k|_“1)2) (12)

where o2 represents the variance of the noise on r;.
Mo and p; represent the expected value of r; in the
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stationary and non-stationary case. The absolute value
of the rate change is used to cover both negative
and positive input variations. A decision function g is
defined as

0= gk—1+sk (13)

Two separate identifiers are used: id, classifies the
cases where the input variations occur and ide is used
to indicate that these variations cease to occur. The
identification part of these cases as well as correspond-
ing actions are performed in a sequential manner in the
following

ge=Th

If {?de_Toh then { id, =1 (14)
e |de:1

If {idezo then ide = 0 (15)

The value of the threshold Th is determined by the
designer. The filter in egn. (16) ensures a smooth
and slow (as determined by the value of y) change
of the decision function from Th back to zero. It
hence ensures that the residual is not affected by the
unmodelled dynamics in transient states.

Ymin

6. SIMULATION EXAMPLE OF FAULT
DETECTION

An MLP model with ten neurons in the hidden layer
was trained based on 12000 samples collected from
the ship propulsion process with a sample period of 1
second. The in- and outputs to the network was chosen
as indicated in (4) supplemented by an extra input,
the ship speed measurement delayed by 25 samples.
This extra input was included in order to prevent the
network estimate from drifting slowly away from the
measured ship speed.

After the model was trained, another simulation (6900
samples) was carried out, where the trained MLP
predicted the ship speed at each sample. The adap-
tive CUSUM algorithm explained in Section 5 was
also applied, and whenever the adaptive threshold
indicated that the inputs were not changing signifi-
cantly the vertices corresponding to a 10% disturbance
in KyYm were calculated. To reduce the effects of
the measurement noise, these values were calculated
based on mean values of the network inputs over peri-
ods of 50 samples at a time.

The top plot in Figure 2 shows the measured and es-
timated ships speed along with the adaptive CUSUM
threshold value. Two faults were made to occur during
the simulation, a shaft speed sensor fault at sample
number 2800 and a diesel engine gain falt at sample
number 6000. The effects of each fault was removed
again after approximately 500 samples. The bottom



plot shows the residuals and the upper and lower fault
limits indicated by the network. These values are set
to zero whenever the CUSUM threshold indicated that
the inputs were varying significantly, thereby prevent-
ing the fault indication at the speed sensor fault. The
diesel engine gain fault, on the other hand, is clearly
indicated, as the residual is below the lower limit value
in the period from 6000 to 6500 samples.

7. DISCUSSION

In this paper an approach to employing artificial neu-
ral networks for nonlinear fault detection and isola-
tion was examined. The approach relies on training a
multi-layer perceptron network to predict system out-
puts based on measurements taken from the plant. This
output prediction allows the generation of a residual,
which, if a fault occurs, will exceed an appropriately
chosen threshold value. As the system is nonlinear,
this threshold can be expected to depend on the local
operating point, and may therefore be hard to specify
in advance. The main contribution of this paper was
therefore to devise a numerically tractable way of es-
timating this threshold, given a fault of a given size
on the input side. The idea is that it is often easier to
quantify the effects of a fault in the same subsystem
or component where it occurs, for instance an engine,
than to quantify its effects on a measured output a
priori, such as the overall vehicle speed. The thresh-
old estimation approach was used for fault isolation
purposes in conjunction with the so-called adaptive
CUSUM method, which was also reviewed in the pa-
per. By applying the CUSUM method, it is possible
to remove the influence from dynamics caused by ex-
ternal influences. It is still possible to detect changes
in the internal structure, however, since their influence
on the output can be considered equivalent to input
disturbances.

The principle was illustrated on a ship propulsion
simulator. After a structural analysis of the system, a
neural network was trained to estimate the speed of the
ship based on measurements of the fuel consumption,
propeller pitch angle and old measurements of the ship
speed. The simulation showed that it was possible to
detect and isolate the gain fault in the diesel engine
from a propeller shaft speed sensor fault.

Finally, the approach opens up for possibilities for
letting the neural network train online, in case there
are areas in the operating range where the network has
not been trained sufficiently well. If the mean value
of the residual is nonzero, but not large enough to be
considered to caused by a fault, the network can be
trained online to learn the new behavior of the plant.
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