
A SURVEY OF APPLICATIONS OF INTERVAL
ANALYSIS TO ROBUST CONTROL

Josep Veh¶³ ¤ Inµes Ferrer ¤ Miguel ¶Angel Sainz ¤¤

¤Dept.Electrµonica,Informµatica i Automµatica, UdG
¤¤Dept.Informµatica i Matemµatica Aplicada, UdG

Abstract: This paper surveys some signi¯cant applications of interval analysis to
robust control ¯eld. Interval analysis is specially powerful in bounding the ranges of
functions while providing mathematically rigorous results. This capability is especially
welcome in robust control, since a variety of analysis and design problems can be cast
in the evaluation of the range of functions over intervals. To organize the paper,
the di®erent approaches are classi¯ed into three control ¯elds, which previously are
stated: parametric space, frequency methods, discrete-time systems. Moreover, some
other applications of intervals are included.
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1. INTRODUCTION

The problem of robust control constitutes a rel-
evant subject in control which has generated a
number of new areas in research over the past
few decades. The ¯rst project on stability analysis
in the case of uncertain coe±cient polynomials
was presented in (Faedo, 1953). However, the ¯rst
study of robust analysis using interval analysis as
a tool was done by Misra (1989).

When setting the problem, it is interesting to go
back to (Dorato, 1987), in which, although none
of the works summarized are based on parametric
methods, Kharitonov polynomials are introduced.
In a later book by Dorato and Yedavalli (1990),
parametric methods begin to appear, triggered by
Kharitonov's results. Approaches concerning this
¯eld are set out primarily in two methods: polyno-
mial methods and parametric methods. Barmish
(1994), Ackermann (1993), Bhattacharyya et al.
(1995) and Djaferis (1994) can be mentioned here
as some of the classical references on these meth-
ods based on Kharitonov's polynomials.

Over the last ¯fteen years, advances on \classical"
robust control for parametric systems has been
run in parallel with the appearance of an increas-

ing number of applications of interval analysis to
the analysis and control of parametric systems.

Interval analysis is an uni¯ed approach to deal
with parametric systems. It is generally accepted
that interval methods are superior to existing
techniques for parametric systems when the un-
certain structure is more complex than interval
or a±ne linear. Many authors consider intervals
very useful when dealing with interval or a±ne
uncertain structures. Moreover, the true value of
interval methods is shown in their application to
robust control design, when uncertainty is usually
very complex.

To introduce interval analysis, let [x] represent an
interval of R (or scalar interval) that is a con-
nected, closed and bounded set of real numbers.
Interval arithmetic extends computation on real
numbers to intervals in a natural and intuitive
way and is the natural tool to use when dealing
with interval models. The basis for this applied
mathematical tool can be found in (Moore, 1966;
Moore, 1979), who was followed by Alefeld and
Herzberger (1983). As a result of maturing in-
terval analysis in the mathematical ¯eld, some
applications using this tool start to arise. For
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Fig. 1. Uncertain system

example, Hansen (1992), suggests the use of this
powerful tool for global optimization.

Since 1990, by which time interval analysis was
well established, it has been applied to di®erent
control problems. The recent book of Jaulin et al.
(2001) as well as the special issue on application
of interval analysis to systems and control Garlo®
and Walter (2000), appeared in the journal Re-
liable Computing, con¯rm this tendency. In this
sense, applications of interval analysis to robust
control have arisen. This paper attempts to show
the most relevant methods concerned with the
application of interval analysis to robust control
developed and suggested in the literature. The
approaches found are presented into four groups:
parameter space approach, frequency methods,
discrete-time and other applications.

Parameter space approach

The ¯rst approaches to robust stability under real
parametric uncertainty, made researchers believe
that the robust control problem could be ap-
proached without conservatism or overbounding.
Later works o®er a more realistic vision of these
approaches.

To formulate the problem, giving the uncertain
system of ¯gure 1,

where k is the parameter vector of the controller,
q is the parameter vector of the process,

X := (X 0; QX) (1)

k = [k1 k2 ¢ ¢ ¢ kl]T (2)

and the uncertainty domain is de¯ned as a box:

K = fk = [k1 k2 ¢ ¢ ¢ kl]T j ki 2
£
ki; ki

¤g (3)
Design speci¯cations are formulated in terms of
closed-loop system stability and performances in
the frequency domain. These speci¯cations, such
as bandwidth, resonance peak, control e®ort, etc.,
can be described as a set of N inequalities of the
type:

fi(!;q;k) > 0 ! 2 ;q 2 Q;k 2K; i = 1; :::;N(4)

where  is a subset of R+ (usually an interval)
and K; a nondegenerate set. Then robust design

can be formulated as follows: given a controller
structure, C(s;k); the aim is to ¯nd the values of
k which conform with the robust control speci¯ca-
tions. Taking this formulation into account some
control problems can be proposed (Veh¶³, 1998):

1. Performance checking. Given the uncertain
system G(s;q) and the uncertain domain P ,
the problem is to see if the designed controller
C(s;k0); achieve the robustness speci¯cations
obtained from 4:

fi(!;q;k
0) > 0 (5)

2. Performance margin computation. Taking set
¦ as a function of its radius ½ :

¦(½) =
n
q :
°°q¡ q0°°w1 · ½

o
(6)

¯nd the maximal set ¦(½¤) so that the designed
controller C(s;k0) achieves robust performances
for all ½ belonging to ¦(½¤).

3. Robust controller design. Taking a particular
structure for the controller and specifying the
uncertain domain where the parameters of the
system Q can vary, ¯nd a ¯xed structure con-
troller C(s;k0) so the controlled closed loop sys-
tem achieves the robustness speci¯cations:

fi(!;q;k
0) > 0 (7)

4. Obtaining the set K for the robust controller
problem. Given an uncertain plant G(s;q); the
variation domain of the system parameters, Q,
and the controller structure, ¯nd the robust set
K which allows C(s;k) to achieve the robustness
speci¯cations:

fi(!;q;k) > 0 (8)

5. Estimating the stability region problem , for a
given k0. This problem consists of constructing
a set of all ½'s giving closed loop stability when
given k0.

Frequency methods

Two methods are presented next. Both are based
on the same problem: how to generate sets.

-Value sets. Some gridding approaches have the
length of time it takes to compute the set of
frequency plots as a drawback. An alternative and
faster technique, suggested by Ackermann (1993),
is to compute the frequency plot p(jw;k) ; w ¸ 0;
for each k on a grid of K. It is advisable to
compute the value set for each w on a grid of
frequencies from 0 to +1.

P (jw;K) = fp(jw;k) 2 C j k 2 Kg (9)



The value set problem is usually considered as a
graphical control tool for analysis using frequency
plots.

Theorem 1. ( zero-exclusion theorem). Given a
polynomial family P (s;K) = fp(s; k) j k 2 Kg:
This set is robustly stable if and only if

1) A stable polynomial p(s;k) 2 P (s;K) exists
and

2) 0 =2 P(jw;K) for all w ¸ 0:
-QFT (Quantitative feedback theory). While value
sets are mainly concerned with analysis, when the
aim is ¯nding a compensator to satisfy design
speci¯cations, QFT is the most important ap-
proach. It can be considered as a natural extension
of classical frequency-domain design approaches.
One of the main objectives is to design a simple
low-order controller where the bandwidth of the
feedback controller being as small as possible. At
a ¯xed frequency, the plant's frequency response
set is called a template. In the bound generation
step of QFT design procedure, the plant template
is used to translate the given robustness speci¯-
cations in domains in the Nichols chart where the
controller gain-phase values are allowed to lie.

Discrete-time

Some problems concerned with discrete-time are:

-Model conversion. Conversion is needed in both
senses, from a continuous-time interval state-
space model to a discrete-time interval model and
also from a discrete-time uncertain system to a
continuous-time uncertain model.

-Schur stability test. The problem of checking the
stability of a discrete-time system is reduced to
the determination of whether or not the roots
of the characteristic polynomial of the system
lie strictly within the unit disc, that is whether
or not the characteristic polynomial is a Schur
polynomial. Given a polynomial

P (z) = pnz
n + pn¡1zn¡1 + :::+ p1z + p;(10)

where the zi are the n roots of P (z). Then, if
P (z) is Schur, all these roots are located inside
the unit circle, jzj < 1; so that when z varies along
the unit circle, z = ejµ, the argument of P (ejµ)
increases monotonically. For a Schur polynomial
of degree n, P (ejµ) has a net increase of argument
of 2n¼, and thus the plot of P (ejµ) encircles the
origin n times. This can be used as a frequency
domain test for Schur stability (Bhattacharyya et
al., 1995; Garlo® and Graft, 1999).

-Non-linear discrete-time control of uncertain sys-
tems. This problem can be formulated as:

Find one c

c 2 Sc = fc 2 C j 8p 2 P; f(c; p) > 0g(11)

where f is a vector function that can be evaluated
using algorithms based on interval analysis.

-Robust analysis. Given a plant assumed to be
described by the following uncertain discrete-time
transfer function (Veh¶³ et al., 2000a):

G(z¡1; q)=
b1(q) z

¡1+ ¢ ¢ ¢+bm(q) z¡m
1¡ a1(q) z¡1 ¡ ¢ ¢ ¢ ¡ an(q) z¡n (12)

which depends on a structured perturbation char-
acterized by (2) and (3).

Here, modal interval analysis (Garde~nes et al.,
1985) can be introduced showing that its use
in the analysis of the robustness of predictive
controllers allows us to convert the robust stability
problem into a problem of checking the positivity
of a rational function.

-Modeling uncertainties through interval values.
Consider the plant to be controlled described in
(Bravo et al., 2000) is described by the following
non-linear time-varying state-space model:

x(k) = f(x(k ¡ 1); u(k)p(k)) (13)

y(k) = g(x(k))

where u(k) is a vector of inputs or manipulated
variables, x(k) is a vector of state variables, p(k)
is a vector of uncertain and y(k) is a vector of
controlled variables or outputs.

The problem to be solved at each sampling time
may be stated as follows:

min
u

J(u(k); y(k); w(k); µ(k)) (14)

subject to

C1(u(k)); C2(y(k)); C3(µ(k)) (15)

J de¯nes an objective function over a ¯nite control
horizon, w(k) de¯nes the set point sequence and
Ci(k) are sets of non linear constrains.

Other applications of intervals

Problems of estimating the unknown parameters
of a model from bounded-error data, including
identi¯cation methods and problems based on the
use of gain scheduling, are also been included in
order to see application ¯elds in this area.

2. PARAMETER SPACE APPROACH

Studies found in this ¯eld have been classi¯ed
into four major categories, namely robustness
analysis, robust design, state space and an H2=H1
approach.



2.1 Robustness analysis

The parametric approach to robust stability anal-
ysis has received a great deal of attention in the
past few years. In (Piazzi and Marro, 1996) has
been already conducted a survey based primarily
on robust stability. Several other approaches il-
lustrate these problems. In (Walter and Jaulin,
1994), is suggested that characterization of the
stability domain can be approached as a prob-
lem of set inversion which can be solved with
interval analysis tools. In (Garlo® et al., 1998),
is presented an approach with a new algorithm
which relies on the expansion of a multivariate
polynomial into Bernstein polynomials and that
is based on the inspection of the value set of
the family of polynomials on an imaginary axis.
In (Jaulin and Burger, 1999), is used interval
analysis as a tool to develop a new algorithm
able to prove that the feasible set is included in
the stability domain. In (Malan et al., 1992), is
given an approach to ¯nding global minima of
multimodal optimization problems. There, they
propose a Bernstein, Branch and Bound algorithm
(B3), which o®ers an e±cient and easy way to
check if the polynomial reaches its minimum on
one of the vertices of the domain.

To conclude this section, an approach proposed
by Didrit et al. (1997) will be presented and their
work will be used to illustrate the approaches
presented above. The idea of this example is
to show the performance and the limitations of
branch-and-bound algorithms, including modi¯-
cations based on modal intervals to improve their
e®ectiveness in non-monotonic regions (Veh¶³ et
al., 1997).

Example 1. Given the third-degree uncertain poly-
nomial:

p(s; q) = 2 + r2 + 6q1 + 6q2 + 2q1q2+

+(2 + q1 + q2)s+ (2 + q1 + q2)s
2 + s3

classify the parameter space in unstable regions,
regions with a stability degree between 0 and 0.1
and regions with a stability degree greater than
or equal to 0.1.

The condition of a stability degree greater than
a is obtained by substituting s with s = ¡a +
j®; ® ¸ 0 in the characteristic polynomial and
applying classic Hurwitz test:

F (q) =¡14q2a¡ 14q1a¡ 32a2 ¡ r2 + 8a3 + 2q22a
+4q1aq2 ¡ 8q1 + 24a+ 32 + q21 + q22
+2q21a+ 8q1a

2 + 8q2a
2 ¡ 8q2 > 0 (16)

For a = 0 and a = 0:1, the stability conditions
are, respectively:

32¡ r2 ¡ 8q1 ¡ 8q2 + q21 + q22 > 0 (17)

and

1 :2
¡
q21+q

2
2

¢
+34:08¡9:32 (q1+q2)¡r2

+0:4q1q2>0 (18)

To calculate the absolute stability region (degree
of stability 0 ) and the region which reaches sta-
bility degree 0.1, a branch-and-bound algorithm
based on modal intervals is used. Using it, two
functions are analyzed and four linked lists are
generated:

(1) Unstable regions
(2) Regions of stability degree between 0 and 0.1
(3) Regions of stability degree greater than 0.1
(4) Residual rectangles.

Figure 2 shows the results obtained using the
modal intervals based algorithm. In Figure 2-a,
the outer region has a stability degree greater than
0.1, the inner region corresponds with unstable
regions, while regions into intermediate zone have
a stability degree between 0 and 0.1. A particular
case, such as when r = 0, is represented in ¯gure
2-b. Here, the unstable region of the parameter
space is a point, thus there is one unique unstable
polynomial.
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Fig. 2. Stability regions for a: r = 0:5 b: r = 0

Note that, contrary to other methods, modal in-
terval algorithms do not leave the unstable point
out as there is an undetermined region around it.

2.2 Robustness design

To illustrate this problem, an example suggested
by Fiorio et al. (1993) and later studied by Malan
et al. (1997) with the aim of tuning a PI controller
for an interval plant is presented. In (Veh¶³, 1998),
modal intervals are applied to this example. Fiorio
suggests a method based on Bernstein's polyno-
mial expansion for the problem of designing ro-
bust controllers of ¯xed structure dependent on
some free design parameters.



Example 2. The plant is described by the transfer
function

G(s;q) =
q1

1¡ s
q2

(19)

where q1 and q2 are the uncertain parameters
remaining inside an interval qi = [0:8; 1:25].

The PI controller is expressed as:

C(s;k) =
k1

³
1 + s

k2

´
s

(20)

where k = [k1 k2]
T is the design parameter vector.

The design aim is to ¯nd the parameter set K
of the controller that completes the following
performance speci¯cations:

(1) Closed-loop stability.
(2) Velocity error less than 2%.
(3) Control signal less than 20.
(4) Resonance peak of the closed-loop transfer

function less than 3 dB.

Given the initial range Kinit as a starting point,
the algorithm calculates the set of controllers K
which ful¯ll the performance speci¯cations. In this
example, as illustrated in Figure 3, the regions
of the feasible controllers for each one of the
speci¯cations are computed in a separate form.
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Fig. 3. Feasible regions

The parameter space region of the feasible con-
trollers is the intersection of the four regions
determined by application of the four di®erent
speci¯cations.

The application of coercion theorems from modal
interval theory reduces the computation time to
less than half in the worst cases.

Following this line of research, Malan et al. (1997)
make an overview of some of the main interval
mathematical algorithms to test their e±ciency

on several problems such as robustness design.
Fiorio and Malan present their approaches tak-
ing into direct account the presence of paramet-
ric perturbations, which has not been treated by
many authors. Piazzi and Visioli (1998b) propose
a new feedforward/feedback synthesis design with
the aim of minimizing the worst-case settling-time
relative to the transition. Rocco et al. (2001) pro-
pose an approach based on the combination of two
tools: Interval Analysis and CES (Cellular Evolu-
tionary Strategies). The result is the achieving of
only one interval evaluation and of the exact range
of the constraint functions inside the generated
box.

An approach suggested by Shashikhin (2001) con-
siders the problem of design of the robust con-
troller for uncertain time delay systems. The pro-
posal consists on ¯nding solutions of two algebraic
Riccati equations with real coe±cients that corre-
sponds to boundary values of interval coe±cients.
In this case the techniques of interval analysis
are used to solve an interval matrix Ricatti type
equation, which result gives the parameters of the
robust controller. This design method guarantees
properties of robust stability of the closed system
concerning to the structured parameter perturba-
tions and values of ¯nite time delays.

2.3 State space

Misra (1989), who is considered the ¯rst to have
used interval arithmetic in an explicit form to
study stability analysis, proposes the problem of
¯nding the state feedback vector which achieves
stability for an interval coe±cient polynomial.

The solution suggested by Misra uses Routh's
table for the feedback interval polynomial and
calculates the elements of the ¯rst column via the
evaluation of its natural extension. As is known,
the result of computing the elements of the table
using interval arithmetic overestimates the exact
range, so su±cient conditions for stability are
obtained.

Then Misra suggests a problem with many restric-
tions which only consider the case of polynomials
with interval coe±cients and only has a partial
solution. The problem can be solved more easily
with the Kharitonov theorem.

Another interesting approach, more general than
Misra's one, is related by Kwon and Cain (1995),
Kwon and Cain (1996). They consider the prob-
lem of ¯nding a state feedback vector for an un-
certain system with two matrices A and B, which
depend on an uncertain parameter vector.

They consider a linear system with parametric
uncertainty and a static state feedback control,
given by



_x(t) =A(p)x(t) +B(p)u(t) (21)

u(t) =Kx(t)

where x(t) 2 Rn is the state vector, u(t) 2 Rm
the input vector, p an unknown parameter vector
and K 2 Rm£n the constant matrix. The purpose
of control is to ¯nd a constant matrix which can
stabilize the perturbed system against all para-
metric perturbations over a variation domain Q.
By putting k = vec(K) and calling g(k;q) the
vector formed by the coe±cients of the character-
istic polynomial, Kwon and Cain show that the
problem of robust pole-location is equivalent to
¯nding a vector k¤ such that g(k;q) > 0; 8q 2 Q:
Then the problem can be formulated and solved as
an NP-hard optimization problem. The algorithm
used to implement this optimization is based on
interval analysis and the theory of semi-in¯nite
programming.

Another approach in this ¯eld is presented in
(Smagina, 1997) and (Smagina and Brewer, 2000)
where is proved the direct correlation between
interval dynamical system controllability and ex-
istence of robust regulators. The main advantage,
is the result of comparing it with the analytic syn-
thesis of regulators, achieving a smaller number of
operations with polynomial matrices.

2.4 H2/H1

Optimal H2=H1 controller design aims to ¯nd a
k¤ so that a feedback controller C(s; k¤) internally
stabilizes the plant while minimizing a nominal
H2 cost, subject to the robust closed-loop stability
constraint (H1):

With this aim of determining a global minimizer
k¤ , an e®ective option is a global optimization
algorithm with hybrid features. This algorithm is
based on a genetic algorithm at the upper level
and on an interval procedure at the lower level to
handle the semi-in¯nite constrains. Another pos-
sibility is to use a technique based on the partially
elitistic genetic algorithm. Applying this method,
the computation of some terms makes a special
interval procedure necessary, i.e. a deterministic
algorithm which uses concepts of interval analysis.
An algorithm of this kind is presented by Guarino
Lo Bianco and Piazzi (1996).

Taking into account the problem of calculating
compensators, Weinhofer and Haas (1997) present
a new H1-approach which builds the compensator
using interval arithmetic in order to avoid numer-
ical problems, thus obtaining a precision bound
on the results. This approach uses frequency do-
main methods for the design process which o®er a
minimal degree for the compensators. As a result,
a numerically stable design tool is presented in

which the obtained interval can be adjusted dy-
namically, making it possible to calculate results
with a prede¯ned precision, (Haas, 1998).

Haas and Weinhofer (1996) have made an ap-
proach in the case of design methods for H2-
compensators (two parameter compensators) for
linear multivariable plants. The method presented
o®ers two main advantages over most published
H2-design methods: ¯rst the decoupling of the
design of reference tracking and disturbance rejec-
tion and second the optimization of a cost function
with respect to non-square integrable determinis-
tic signals. To get a bound on the precision of the
results, interval arithmetic is introduced.

Once approaches H2 and H1 have been pre-
sented, a mixed study between these two tech-
niques is presented by Guarino Lo Bianco and
Piazzi (1999b). They propose a solution to a
H2=H1 ¯xed-structure controller design problem
via a global optimization approach. To implement
this approach a necessary preliminary step is to
convert the H1 constraint into semi-in¯nite in-
equality over a real bound interval. Thus, the
optimization problem is reduced to a bound-
constrained problem. In order to solve this new
problem, the genetic/interval algorithm in Guar-
ino Lo Bianco and Piazzi (1996), is presented as
the best option. In a previous study by these
authors, (Guarino Lo Bianco and Piazzi, 1997),
interval analysis was also applied to a global op-
timization problem, in this case, via an ad hoc
interval procedure which uses concepts of interval
analysis to obtain the convergence with certainty
within the prespeci¯ed numerical tolerance.

The approach by Haas (1998), presents a control
toolbox in which the most common algorithms
used in the frequency domain are implemented.

3. FREQUENCY METHODS

In order to carry out frequency response analysis
and design incorporating robustness with respect
to parameter uncertainty we need to be able to
determine the complex plane images of various
parameterized sets. Two relevant lines of inves-
tigation in this ¯eld are remarkable: qualitative-
feedback-theory (QFT) and value sets.

3.1 Value sets

Ohta et al. (1990) introduced PIA (Polygon In-
terval Arithmetic) as a powerful tool, which solves
robust controller design (and robust stability anal-
ysis) more e±ciently than other classical methods.
Later in (Ohta et al., 1994a), he presented an
improvement on this tool to reduce the computing



time of execution in. The same year, Ohta pro-
posed two design methods as applications of PIA.
The ¯rst, (Ohta et al., 1994c), is based on the
gain phase shaping approach, with the main ad-
vantage of guaranting the worst case performance.
The second one, (Ohta et al., 1994b), proposes a
method of computing an almost exact gain mar-
gin. Another ¯eld of control in which Ohta applies
PIA is solving zero-exclusion problems e±ciently,
(Ohta et al., 1995). In these cases, PIA is used to
estimate the value sets of multi-linear functions.

A new version called NPIA (Non-convex Polygon
Interval Arithmetic) in (Ohta et al., 1996), can be
seen as the arithmetic de¯ned in the set of all poly-
gons in the complex plane. It is very useful to com-
pute estimates of value sets of transfer functions
including uncertain physical parameters in a rea-
sonable computing time. In a more applied paper,
(Ohta et al., 1997), is proposed a method to com-
pute a region of PID parameters which guarantees
robust stability and several robust performances
for systems with uncertain parameters. Again in
the ¯eld of PID controllers, Ohta (1999) addresses
the design of two degrees of freedom robust PID
controller by solving minimization problems. Be-
cause in this last approach the regions obtained
are not convex, set operations are used to compute
level sets of the minimization problems. In further
work, (Ohta, 2000), is described the implementa-
tion of NPIA as tool for the analysis and design of
robust control systems to show that its de¯nition
and implementation allows estimating of value
sets in an e±cient computation cost. For non-
linear control systems with uncertain parameters
and constant reference inputs (Lur'e systems), the
possibility of shifting in the equilibrium state or
a loss of stability increases. Wada et al. (1998)
check conditions for parametric absolute stability
in this case by computing value sets using the PIA
algorithm, because its use considerably simpli¯es
computation.

Other approaches are focused on more applied
¯elds. For instance, Hedrich and Barke (1999) for-
mulate a possible veri¯cation technique of linear
analog circuits with parameter tolerances based
on a curvature driven bound computation for
value sets using interval arithmetic.

3.2 QFT

In several applications of quantitative feedback
theory (QFT), templates of non-rational trans-
fer functions have to be numerically generated.
Sardar and Nataraj (2000) propose an algorithm
for generating templates of uncertain non-rational
transfer functions which completes its task with-
out the requirement of rational transfer func-
tion approximation. Nataraj and Sardar (1999)

introduce an algorithm based on the Moore-
Skelboe global optimization technique of inter-
val mathematics to generate Bode plot envelopes
for uncertain transfer functions. In a further ap-
proach, Nataraj and Sardar (2000a) present QC
(quadratic constrains) algorithms for computing
QFT bounds to achieve robust sensitivity reduc-
tion and gain-phase margin speci¯cations. As im-
provement on other existing algorithms where dis-
crete controller phase values are used, these new
algorithms can generate bounds over intervals of
controller phase values solving the di±culty that
at the non-selected phase the bound values are not
actually computed. In this sense, in (Nataraj and
Sardar, 2000b) are presented algorithms which use
interval analysis as tool to build plant templates,
achieving important improvements as eliminating
safety problems associated with the phase dis-
cretization process in QFT bound generation and
security of computed results.

4. DISCRETE-TIME CONTROL

Shieh et al. (1996) present a methodology of con-
version from a continuous-time interval model to
an enclosing discrete-time interval model, which
uses interval arithmetic.

In a further study, (Shieh et al., 1999), is proposed
a method to convert a discrete-time uncertain
system to an equivalent continuous-time uncertain
model. In this case, interval analysis is used for
the construction of the proposed procedure which
is based on an interval geometric-series method.

In reference to robust Schur stability problem, an
approach is presented by Garlo® and Graft (1999),
where they consider it with coe±cients depending
polynomially on parameters varying in given in-
tervals. They propose an algorithm which relies
on the Bernstein expansion of the symmetric and
anti-symmetric parts for the polynomial family to
reach the veri¯cation of this Schur stability.

Many design problems, including control and sig-
nal processing, can be formulated within the
framework of guaranteed tuning. In (Jaulin and
Walter, 1996b) is given an approach concerned
with this framework, presenting a prototype nu-
merical algorithm. This algorithm is based on
interval analysis, a very useful tool in this case
because in the algorithm it is necessary to char-
acterize sets de¯ned by inequalities, and for this
function interval analysis is the best tool.

The same authors in another approach, (Jaulin
and Walter, 1997), use interval analysis to com-
pute all the sequences of control driving a deter-
ministic nonlinear discrete-time state-space sys-
tem from a given initial state to a given desired
set of terminal states.



In (Veh¶³ et al., 2000a), interval techniques are ap-
plied to the analysis of the robustness of predictive
controllers. The basic tool used is modal interval
analysis, (Garde~nes et al., 1985). The authors base
their approach on the a±rmation that checking
the robustness of a predictive controller is equiv-
alent to verifying the positiveness of the range of
a set of functions.

Model Predictive Control (MPC) is one of the
most popular control strategies. A new version of
the MPC strategy is presented in (Bravo et al.,
2000), called Interval Model Predictive Control
(IMPC). This approach appeared in order to
complete the MPC strategy in the case that
the process or the constrains were not linear or
the cost function was not quadratic. To solve
these special cases, global optimization algorithms
which use interval analysis, are introduced as the
best tool.

5. OTHER APPLICATIONS OF INTERVALS

There are a few other problems that do not ¯t
with any of the control subjects studied up to now,
but also use interval analysis.

Estimation

Bounded-error parametric estimation approaches
have arisen in the last decade, mainly for two
reasons:

-These approaches can deal with deterministic
structural errors not adequately described by ran-
dom variables.

-They are well suited to the guaranteed character-
ization of parameter uncertainty.

Some authors have built their approaches around
these kinds of control problems applying interval
techniques with the aim to obtain improvements
over classical methods.

Given a model structure, one problem is the choice
of the criterion to be optimized in order to ¯nd
the best model in the class to be de¯ned. That
is to say, the criterion for this selection is the
optimization of a scalar cost function j(½) with
respect to the model parameters p.

An estimator is said to be robust if its perfor-
mance does not deteriorate too much when the
hypotheses on which it is based are not satis¯ed.
Some approaches to obtain robust estimators have
been studied in (Walter and Pronzato, 1997).

Following the same line of study, (Jaulin and
Walter, 1993; Jaulin and Walter, 1996a; Jaulin
and Walter, 1999), cast non-linear bounded-error
estimation into the framework of set inversion,
and present an algorithm to solve it using in-

terval analysis. In (Jaulin and Walter, 1999) the
SIVIA (Set Inverter Via Interval Analysis) is pre-
sented as an adapted algorithm from (Jaulin and
Walter, 1993) which characterizes the set of all
values of the parameter vector to be estimated.
In (Jaulin et al., 1999), is applyied interval anal-
ysis to bounded-error parametric estimation for
discrete-event systems (DES), in which behaviors
are governed by occurrences of di®erent types
of events rather than by ticks of a clock. Prob-
lems involving DES systems are generally non-
linear, non-convex and non-di®erentiable, so clas-
sic methods often fail to give reliable results.

Kie®er et al. (1998) present a state estimator
based on interval analysis, which evaluates a set
estimate guaranteed to contain all the values of
the state which are consistent with the available
observations, given the noise bounds and a set
containing the initial value of the state.

Another algorithm for parameter estimation is
presented by Feng et al. (1999). In this case it is a
recursive algorithm for calculating axis-aligned or-
thotopes, or boxes, which bound the set of feasible
parameters. It is shown that interval mathematics
can be used as an e±cient tool to calculate these
orthotopic bounds at each iteration, providing
very accurate estimates.

Markov and Popova (1996) consider the problems
of interpolation and curve ¯tting in the presence of
unknown but bounded errors in the output mea-
surements, using generalized polynomials under
bounded measurement uncertainties.

In (Munoz and Kearfott, 2000) is suggested an
approach to estimate accurate model parameters
that provide the best ¯t to measured data, despite
small-scale noise in the data or occasional large-
scale measurement errors. In contrast classical
methods, the proposed techniques use interval
arithmetic to compute in a reliable way the global
optimum for the nonlinear parameter estimation
problem. The estimators used are: nonsmooth
least absolute value and minimax.

In the approach suggested in (Brahim-Belhouari
et al., 2000) Set Inversion Via Interval Analysis
(SIVIA) is used to make the model selection for
measurement purpose.

Robotics

Staying with estimation approaches but now ap-
plying them to robot localization, Kie®er et al.
(1999) introduce a methodology which makes it
possible to compute a set guaranteed to contain
all values of the parameter vector, and that pro-
vides that an upper bound on the number of tests
at fault is available. The estimator used is ob-
tained from an adaptation of the SIVIA algorithm
(Kie®er et al., 1998).



Guarino Lo Bianco and Piazzi (1999a) try to
compute optimal robot trajectory planning. Their
approach combines two optimization techniques:
stochastic optimization using a genetic algorithm
and deterministic optimization using an interval
algorithm, to arrive at a feasible certain esti-
mation of the global solution. In later papers
from (Piazzi and Visioli, 1998a; Piazzi and Visi-
oli, 2000), the same planning problem is presented
but in this case it is solved by using a global de-
terministic approach based on a procedure which
uses interval analysis tools. In their ¯rst study
(Piazzi and Visioli, 1998a), the aim was to com-
pute the total traveling time required to perform
the robotic task, which is stated as an optimal
trajectory planning problem with minimum-time
criterion. Their second, (Piazzi and Visioli, 2000),
was concerned with jerk constrains due mainly to
the fact that joint position errors increase when
the jerk increases, and to limit excessive wear on
the robot and the excitation of resonances so that
the robot life-span is extended.

An example is used in (Veh¶³ et al., 2001) to show
that the controller obtained using modal interval
analysis tools, exhibits a much more robust perfor-
mance in the convergence of the tracking error and
the stabilization of the controlled process, than
a nominal predictive controller based on a single
value of the parameter vector.

Another basic robot control problem consists of
computing the actuating torques required to make
the robot follow a desired trajectory. Veh¶³ et al.
(2000b) , concentrating on this kind of problem,
take a non-holonomic mobile robot as a prototype
and then obtain a velocity control based on an
estimated model. They present a method to design
and implement an interval model based on a PI
controller. The method they use is by means of
Modal Interval analysis (Garde~nes et al., 1985),
which provides tools to solve the interval equa-
tions that appear during the design process and
to compute control laws as interval functions.

Gain Scheduling

Gain-scheduling compensators are usually used in
closed loop in order to achieve good performance
in spite of large parameter variations. Fadali and
Bebis (1998), use a linear time-invariant (LTI)
system and propose a robust design synthesis ap-
proach based on the solution of a Diophantine
equation. Interval analysis is used to extend the
synthesis procedure proposed by Fadali et al. to
systems which contain uncertain transfer function
coe±cients. As result, a satisfactory controller or
family of controllers for bounded parameter un-
certainty are obtained. Following along the same
line of controller design, Fadali and McNichols
(2000), propose a methodology to control non-

linear systems with slowly varying dynamics using
gain scheduling (GS). Again, interval analysis is
used to extend this approach including slowly
varying non-linear interval systems by applying
GS.

McNichols and Fadali (2001) use an interval arith-
metic tool to determine intervals which restrict
the closed loop poles of the system to regions
around the ideal transfer function coe±cients. The
aim of their design is to determine a minimal set of
design points which connect with GS. As a result
they have obtained its ideal controller coe±cients
which in turn place the closed loop poles at their
nominal design locations.

6. CONCLUSIONS

In this paper, some key approaches concerned
with robust control have been surveyed in order to
point out the improvements suggested by interval
analysis. Interval analysis, over all the survey is
presented as a very useful tool that allows to avoid
numerical problems. In addition, it can mainly
be interesting for problems of set characterization
involving optimization, nonlinear inequalities and
quanti¯ers, for which interval analysis should be
much helpful. This is due to its ability to produce
guaranteed results even in a nonlinear context.
Interval analysis has been also shown to be very
powerful in bounding the ranges of functions ef-
¯ciently while providing mathematically rigorous
results. This capability is especially welcome in ro-
bust control since a variety of analysis and design
problems can be cast in the evaluation of the range
of functions over intervals. The arising relevance
that this tool has been taking is shown by the high
number of approaches that have been appeared
in order to achieve a perfect match with the
corresponding problem. In this sense, the survey
shows interval analysis variants as: PIA (Polygon
Interval Arithmetic), NPIA (Non-convex Polygon
Arithmetic), Modal interval analysis, and so on.

As a ¯nal assessment, it can be stated that from
this study of state-of-the-art works, the lack of
approaches concerned with design is noted. This
fact gives encourage to following this research line,
because the impression is that it rests a lot of work
to do.
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