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Abstract: Quantitative Feedback Theory (QFT) is employed to achieve time domain specifications
on the tip position of a hybrid actuated single-link flexible manipulator. The manipulator payload
conditions are varied to assess the robustness of the synthesised control system to parametric
uncertainty. A combination of QFT multi input multi output (MIMO) design methods 1 (non-
sequential) and 2 (sequential) is utilised in the control system synthesis to overcome difficulties in
the construction of the performance bounds. Time domain simulations validate the design method
and demonstrate the effectiveness of the control system that incorporates hybrid actuation.
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1. INTRODUCTION

This paper presents a robust Quantitative Feedback
Theory (QFT) control system for a single-link
flexible manipulator. Flexible manipulators permit
increased operational efficiencies through lower
inertia and energy consumption. The primary
challenge in their application is the coupled rigid-
flexible dynamics and the resulting degradation of
system stability and end-point tracking performance.
A QFT based control system with hybrid actuation is
proposed to address these challenges.

Numerous actuation techniques and control
methodologies have been proposed for the control of
flexible manipulator systems. Distributed actuators
have been successfully employed for active vibration
control of flexible beams (see, e.g. Yang and Liu,
1995). The inclusion of a discrete actuator gives rise
to a multi input multi output (MIMO) system with
coupled rigid-flexible dynamics. To overcome the
adverse effects of the coupled rigid-flexible
dynamics, a hybrid actuator control scheme (HACS)
that employs a discrete actuator to primarily achieve
the desired angular rotation and a distributed actuator

to suppress the undesirable link vibration is
employed. HACS have been applied recently to both
single and multi-link flexible manipulators resulting
in reduced rest-to-rest slew times (see, e.g. Gu and
Asokanthan, 1999). Non-robust controller synthesis
techniques have been extensively applied to flexible
manipulator systems (see, e.g. Book, 1990). Their
performance is limited due to the inherent uncertainty
in flexible manipulator systems.

The QFT synthesised control system is designed to
achieve robust performance over a specified region of
plant uncertainty that is characterised by the payload
variation. The effectiveness of QFT for flexible
manipulator control has been demonstrated
previously by researchers Chang and Jayasuriya
(1995) and Choi, et al. (1999). The present research
utilises the MIMO QFT methodologies, with the
control system synthesised to satisfy quantitative time
domain specifications on the coupled MIMO system.

2. DYNAMIC MODELLING

The flexible manipulator and sensor-actuator pairs
used in the present study are shown in Fig. 1. The
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flexible manipulator model conforms to the
UQ_ARM, an experimental test-bed at the University
of Queensland (Gu and Asokanthan, 1999). In their
study details of system parameter values and the
development of the linearised model and matrix
transfer function (MTF) are described. One exception
to the model is that the two flexible modes considered
in the present controller design have nonzero
damping ratios, with a damping ratio of 0.005 for
mode 1 and 0.001 for mode 2. The manipulator
consists of a single flexible link with 2 inputs, the
input voltage to the DC motor ( )tVa  and to the
piezoelectric film ( )tV f , and 2 outputs, the hub angle

( )tθ  and the tip deflection ( )tyT , and is therefore a
22×  MIMO system. The transverse elastic

deformation is represented by ( )txw , .

Fig. 1. Schematic of the Single-link Flexible
Manipulator (Not to Scale)

The single-link flexible manipulator has parametric
and non-parametric uncertainty that can be attributed
to simplifications in the modelling of the system,
unknown external disturbances and variations in the
operating configuration. In this research only
parametric uncertainty is considered. The uncertainty
is introduced by varying the tip mass tM  of the
manipulator and is characterised in the controller
design by considering five values for tM ,

kg ]072.0 ,054.0 ,036.0 ,018.0 ,0[∈tM (1)

This results in five plants that characterise the
variation in dynamics of the manipulator, termed
plant1 to plant5, plant5 having the largest tip mass.

3. QFT CONTROL OF THE MANIPULATOR

QFT is employed to synthesise a control system to
satisfy quantitative time domain specifications
imposed on the MIMO flexible manipulator system.
The QFT synthesis procedure requires the translation
of the time domain specifications into frequency
domain specifications and the synthesis of the

controller and prefilter. Detailed explanations of the
MISO and MIMO QFT synthesis procedures can be
found in several references (see, e.g. Horowitz, 1991;
Houpis and Rasmussen, 1999).

Throughout the present paper, the following concise
transfer function notation is employed: the DC gain is
represented by a constant in the numerator without
parenthesis, poles and zeros at the origin are
represented as ( )0 , and simple nonzero poles and
zeros and complex conjugate nonzero poles and zeros
are represented as,

( ) ( )[ ] [ ] ( ) ( )[ ]12:   , 1 2 ++⇒+⇒ ωζωωζωω sss . (2)

3.1 Time Domain Specifications

The performance requirement is a rest-to-rest slew to
be completed within five seconds. The system is
considered to have completed the slew when the hub
angle error ( )eθ  is less than 02.0  radians and the tip
displacement ( )tyT  is less than 001.0 m. These
requirements are related to the step response figures
of merit on the outputs of the system, being the hub
angle ( )tθ  and the tip displacement ( )tyT . The time
domain specifications are:

S1: The hub angular response ( )tθ  should be stable,
settle in five seconds and have an overshoot % 2≤ .
This is expressed as:

Overshoot: % 21 ≤Mp
Settling Time: s 5 1 ≤sT (3)

S2: The tip displacement ( )tyT  is required to be
stable, reject the cross-coupling disturbance and settle
in five seconds.  This is expressed as:

Tip Displacement:
{ }

m 001.0max
s 5

≤
≥∈ t

TPP
y

Settling Time: s 52 ≤sT (4)

3.2 MIMO QFT

The application of the QFT design methodology to a
coupled 22×  MIMO system requires the MIMO
system to be converted into equivalent multi input
single output (MISO) systems. The cross-coupling
from the off-diagonal elements in the plant MTF
become equivalent disturbance inputs to the MISO
systems. The conversion is performed using the so
called MIMO QFT design method 2 (Houpis and
Rasmussen, 1999). The QFT MISO design
methodology is then used to synthesise controllers
and prefilters for the equivalent MISO systems that
guarantee satisfaction of the quantitative time domain
specifications on the original MIMO system.

The control structure is comprised of two feedback
loops, loop1 from rθ  to θ  and loop2 from ry  to Ty .
The plant MTF P is a member of the set of all
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possible plants {P} that arise from system
uncertainty. The controller G and prefilter F are the
two degrees of freedom utilised in the QFT control
structure. The controller G is assumed diagonal to
simplify the control system synthesis. Due to the zero
command input for ( )tyT , ( )sF11  is the only
synthesised element in the prefilter. Therefore only
two MISO systems need to be considered. The
equivalent plants of the MISO systems are ( )sQ11  for

( )tVa  to ( )tθ  and ( )sQ e22  for ( )tV f  to ( )tyT . The
cross-coupling in the MIMO system is represented by
the two disturbances ( )sD11  and ( )sD21 . Using
MIMO QFT design method 2 the equivalent plants
and disturbances, and the closed loop transfer
functions ( )sT11  and ( )sT21  resulting from the closure
of loop1 and loop2 respectively, are expressed as:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )sQsG

sQsDsQsGsF
sT

1111

1111111111
11  1

   
+

+
=

( ) ( ) ( )
( ) ( )sQsG

sQsD
sT

e

e

2222

2221
21  1

 
+

=  (5)

where,

( ) ( )][ sPsP ij= ,  ( ) ( )][1 sPsP ij
∗− = ,  ( ) ( )sPsQ ijij

*1= ,
( ) ( ) ( )sQsTsD 122111 −= , ( ) ( ) ( )sQsFsD e211121 −= .

( ) ( ) ( ) ( )( )
( ) ( )sGsQ

sGsQsQ
sQ e

1111

111121
21   

  1 +
= ,

( ) ( ) ( ) ( ) ( )
( ) ( )sPsG

sPsPsG
sPsQ e

1111

122111
2222  1

  
+

−= . (6)

3.3 Frequency Domain Specifications

The time domain specifications are translated to
closed-loop frequency domain specifications in the
form of the tracking and disturbance bounds. In a
QFT design low order bounds typically suffice and
are justified if the bounds capture the dominant
dynamics of the closed-loop transfer functions over
the frequency range where the bounds are enforced.
For the single link manipulator low order tracking
bounds suffice. Low order disturbance bounds are
however ineffective due to problems in the translation
of the disturbance specification. These problems are
alleviated using a modification of the QFT method as
detailed in the forthcoming sections.

Tracking Bound Development; The translation of the
tracking specification (S1) is achieved using the
traditional QFT approach of an upper and lower
bounding 2nd order transfer function, with an
additional pole and zero added to increase the
allowable uncertainty in the high frequency range.
The resulting upper and lower tracking bounds are
detailed in equation (13).

Disturbance Bound Development; The translation of
the disturbance specification (S2) presents unique
difficulties. These stem from two factors; namely the
sensitivity of the resulting synthesised controller to
the variations in the disturbance bound and the lack

of a priori knowledge of the cross-coupling
disturbance dynamics from the rigid mode feedback
loop (loop1). The sensitivity function of the resulting
Nichols chart bounds on the controller ( )sG22  to
changes in the specified performance bound 21β  is:

( )eD j
e

G
B eqgd

GdG
S

2222

22
2

22222121

2222 11 θφββ +−−== (7)

where ( ) 22
2222

φjegsG = , ( ) ej
ee eqsQ 22

2222
θ=  and the

disturbance bound ( )s21β  is magnitude only. For the
degenerate case when °×±=+ 36002222 ne φθ , large
sensitivity levels occur due to the low authority of the
PVDF films. Consequently differences between the
dominant dynamics of ( )s21β  and ( )sT21  have a
profound effect on the synthesised controller and the
resulting time domain response may be unacceptable.
This problem is exacerbated by the lack of a priori
knowledge of the cross-coupling disturbance
dynamics and control system elements in loop2.

The choice of a 2nd order disturbance bound for the
disturbance closed-loop transfer function ( )sT21  is
unacceptable. The principal reason is the presence of
two differentiators in the disturbance ( )sD21 . The
disturbance is a function of both the prefilter ( )sF11

and the diagonal controller for loop1 ( )sG11 .
Therefore ( )sD21  can not be known a priori and the
choice of a disturbance bound ( )s21β  that captures the
dominant dynamics of ( )sT21  is difficult prior to the
closure of loop1.

To overcome the problems in developing the
disturbance bound it is proposed that the bound be
chosen after loop1 is closed and ( )sQ e22  and ( )sD21

are known. This ensures that the dominant dynamics
and frequency response (both gain and phase) of the
disturbance bound matches that of the closed-loop
transfer function ( )sT21 . The difficulty in
implementing this proposition is that the design of
loop1 requires knowledge of the disturbance bound
for loop2 to conservatively upper bound the closed-
loop transfer function ( )sT21 . This problem is
overcome through the use of QFT MIMO design
method 1 to conservatively approximate ( )sT21  and
QFT MIMO design method 2 to formulate the
disturbance bound on ( )sT21 . The primary difference
between the two methods is that method 2 utilises the
knowledge of previously synthesised control elements
in the design of the latter loops. Additionally, the
proposed method requires that loop1 be closed prior
to loop2. The procedure is summarised below:

Design of Loop1; In the design of loop1 ( )sT21  is
conservatively approximated by the closed loop
transfer function developed using QFT MIMO design
method 1 with ( ) 122 =sG , termed ( ) ( )sT 1

21 . Due to the
variation in the plants fundamental natural



frequencies several closed-loop transfer functions are
developed. The resulting approximation for ( )sT21  is:

( )( )
{ } ( )

( ) ( )  max 1
21

1
21 jiPPj TT ωω

∈
= (8)

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )sQsQ
ssQ
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ii

i
i

2221

11221
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−
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β
   ; ( )5,1∈i  (9)

where ( )sT11  is conservatively approximated by its
upper frequency bound ( )s11β . Importantly, all the
elements in ( ) ( )sT 1

21  are known. The design of ( )sG11

and ( )sF11 , and the closure of loop1 then proceeds.

Design of Loop2; The disturbance bound ( )s21β  for
loop2 is now chosen with full knowledge of ( )sD21

and ( )sQ e22 . The disturbance bound is developed
using as a basis the closed loop transfer function from
QFT MIMO design method 2 with ( ) 122 =sG :

( ) ( ) ( ) ( )
( )sQ

sQsD
sT

e

e

22

22212
21 1

 
+

= (10)

A reduced order model of ( )( )sT 2
21  is developed with

only the first resonance retained, termed ( ) ( )sT R
2

21 .
( ) ( )sT R
2

21  matches the structure and frequency response
of ( ) ( )sT 2

21  up to the second resonance. Disturbance
bounds are then developed by increasing the damping
level of the resonance in ( ) ( )sT R

2
21  until the time-

domain disturbance specification S2 is satisfied. This
is repeated for each of the plants in the plant set
resulting in 5 closed-loop disturbance bounds. The
resulting bound ( )s21β  is the maximum magnitude
over the frequency responses of all the bounds as
detailed in equation (16).

4. QFT CONTROL SYSTEM SYNTHESIS

The frequency domain specifications are detailed
below. Specifications F11a and F21a provide stability
margins. Specifications F11b and F21b are a result of
time domain specifications S1 and S2. Specification
F3 is introduced to ensure that, where possible, the
design of ( )sG11  does not introduce additional RHP
poles into the equivalent plant for loop2 ( eQ22 )
(Yaniv and Schwartz, 1991).

F11a: ( ) dB 5
1

1

11
≤

+ sL
; 0≥ω . (11)

F11b:  ( ) ( ) ( )ssTs 111111 βα ≤≤ ; 1hωω ≤ . (12)

where, ( ) ( )
[ ] ( ) [ ]( )4 2.1:1

44.1  , 
8.1:95.0

4 24.3
1111 == ss αβ . (13)

F21a: ( ) dB 5
1

1

22
≤

+ sL
; 0≥ω . (14)

F21b: ( ) ( )ssT 2121 β≤  ; 2hωω ≤ . (15)

where, ( )
{ }

( )  max 2121 jiPPj ωβωβ
∈

=  ; ( )6,1∈i  (16)

F3: ( ) ( ) dB 5
1

1

1111
≤

+ sGsP
 ; 0≥ω . (17)

In the above, ωjs = , ( )s11β  and ( )s11α  are the upper
and lower tracking bounds and ( ) ( ) ( )sQsGsL 111111  =
and ( ) ( ) ( )sQsGsL e222222  =  are the loop transmissions
for loop1 and loop2 respectively. The frequencies

1hω  and 2hω  dictate the frequency ranges that the
tracking and disturbance rejection specifications must
be satisfied. Here 351 =hω  rad/s and 502 =hω  rad/s.
The bounds ( )si21β  are the modified ( ) ( )sT R

2
21  with the

damping ratio increased to satisfies the time-domain
specification S2. An additional bound is added at a
frequency higher than the natural frequency of plant1
to account for a shift in the damped natural frequency
of plant1 due to over design of ( )sG22 .

The use of MIMO QFT design method 2 requires the
selection of the order in which the feedback loops are
designed. Loop1 is synthesised first, as the bandwidth
required for ( )sG11  is lower and there is the need to
limit over design of ( )sG22 . Designing loop1 first also
allows the modified approach for the development of
the disturbance bounds to be utilised. The design of
the controllers and prefilter was aided through the use
of the QFT Toolbox (Borghesani, et al., 1994).

Synthesis of ( )sG11 ; The design of ( )sG11  is relatively
simple due to the low levels of variation in the
frequency response of equivalent plant ( )sQ11  in the
frequency range from DC to 40  rad/s and the small
cross-coupling disturbance from loop2 due to the low
authority of the PVDF actuator. The dominating
composite bounds on the loop transmission ( )sL11  are
the stability bounds over the range of fundamental
frequencies of the plant variants. The synthesised
compensator has a bandwidth of 5 rad/s as shown in
Fig. 2(a). The controller takes the following form:

( ) ( )
( )( ) ( )8.1 17 0

0.51
11 =sG (18)

Synthesis of ( )sF11 ; The prefilter ( )sF11  is designed to
shape the closed loop frequency response to the
command input rθ  such that it is contained within the
bounds ( )s11α  and ( )s11β . The cross-coupling
disturbance ( )sD21  in loop2 is directly proportional to
the prefilter ( )sF11  as shown in Eq. (6). Subsequently,
the gain of the prefilter is minimised, whilst satisfying
the performance bounds, over the range of the plant
variants fundamental natural frequencies to reduce
the excitation of the fundamental mode of vibration
as shown in Fig. 2(a). This reduces the required gain
levels and bandwidth of ( )sG22 . The prefilter takes
the following form:

( ) [ ][ ]
( ) ( ) ( )[ ]54.2:84.0 45 44 49.0

8:34.0 71.0:37.01
11 EE

sF = (19)



Synthesis of ( )sG22 ; The composite stability and
performance bounds on the loop transmission ( )sL22

require a high gain controller due to the low authority
of the piezoelectric actuator. This makes the design of

( )sG22  difficult, with ( )sG22  likely to have a high
bandwidth and subsequent care needed to ensure the
effects of the second mode of vibration do not
destabilise the system. The trade-off between the
design of loop1 and loop2 is therefore evident and the
solution is to minimise the prefilter gain over the
frequency range of the fundamental natural
frequencies of the plant variants. Due to the
transparency of the QFT methodology this trade-off
is apparent and achievable.

In the design of ( )sG22  the performance bounds over
the frequency range of the plant variants fundamental
natural frequencies dominate the controller design.
Two lead-lag elements were added to the controller to
provide the necessary gain and phase to satisfy the
performance bounds over this frequency range. A
pole was then added to roll-off the controller gain. A
complex pole was then introduced to reduce the
phase of the system so the loop transmission passed
under the stability boundary before the 2nd mode of
vibration. An additional complex pole was then
added to roll-off the system response and reduce the
bandwidth of the controller. The resulting
compensator has a bandwidth of 765 rad/s.

( ) ( )( )
( ) ( )( )[ ][ ]42:0.2 20:0.81121.590.74 40

2.2812.1063577
22 =sG (20)

4.1 Frequency Response

The frequency response of the closed-loop transfer
functions 11T  and 21T  are shown with their respective
bounds in Fig. 2. The frequency domain bounds are
satisfied by both closed-loop transfer functions over
their respective performance bandwidths 1hω  and

2hω . The disturbance bound 21β  is the composite of
six bounds, as evident from the six peaks in the
bound in Fig. 2(b). The response of plant5, with the
highest tip mass and resulting lowest fundamental
natural frequency, is exactly that of the bound ( )s21β
up to and around the fundamental natural frequency
of plant5. This shows that the higher tip mass case
dominates the design and subsequently the other plant
cases are slightly over designed, with plant 1 the most
over designed. This is the reason for the choice of the
sixth disturbance bound in the formation of ( )s21β .

Notably, the frequency response of all the five
closed-loop transfer functions essentially satisfy both
the gain and phase bounds imposed by ( )s21β  as
shown in Fig. 2(c). This is despite only the magnitude
bounds being enforced through the QFT design.
Hence the designer can be confident of a good time-
to-frequency domain mapping and acceptable time
domain responses.

Fig. 2. Simulated Frequency Response (a) Bounds on
( )sT11 , Magnitude Response of ( )sT11  and ( )sG11 ,

(b) Bound on ( )sT21 , Magnitude Response of ( )sT21 ,
(c) Bounds on ( )sT21∠ , Phase Response of ( )sT21 .

Fig. 3: Time domain response to a command step
input: (a) Hub Angle Step Response, (b) Tip
Displacement
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5. RESULTS AND DISCUSSION

The simulated time domain responses are shown in
Fig. 3. The robustness of the QFT designed control
system is evident, with the time-domain performance
specifications S1 and S2 satisfied for all plants in the
plant set. It should be noted that no tuning of the
controllers was performed to demonstrate the efficacy
of the QFT methodology. However, experience with
the system aided in the choice of sensible time-
domain specifications S1 and S2.

The tracking response is acceptable with

( ) 02.0
5max ≤

≥ steθ  rad. The disturbance rejection is

acceptable with ( ) 001.0
5max =

≥ stTy  m, which is the

design specification. Notably there is no conservatism
in the response of plant5, showing the advantage of
choosing a bound that accurately matches both the
structure and frequency response of the dominant
system dynamics over frequency range of the
performance specifications. Through the use of the
modified approach for the development of the
disturbance bound, the time and frequency domain
specifications are satisfied. But more importantly, the
time and frequency domain specifications are barely
satisfied, thus implying that the translation to the
frequency domain is not conservative. The
conservatism in the satisfaction of the bounds for the
lower tip mass plants, and thus the controller
bandwidth, can be reduced by designing a controller
of higher order so that the loop transmission is closer
to the bounds. Clearly the designer can see the trade-
off between controller complexity, over design and
controller bandwidth. Evidently, the use of the
modified method to develop the disturbance bound
for this high-low authority system is effective and
provides a good mapping between the time and
frequency domain.

The simulated control voltages for the DC motor are
below the saturation level of 24V. The voltage levels
for the PVDF actuator are above the saturation level
of 200V with a maximum level of 300V. The
response of the system with the saturation constraint
imposed is not shown, as this would invalidate the
QFT design. The controller ( )sG22  was designed to
be unconditionally stable and therefore the effects of
saturation will not destabilise the system response but
will result in a small increase in the settling time.

6. CONCLUSION

The QFT methodology was employed to synthesise a
control system to satisfy quantitative time domain
specifications on the tip position of a hybrid actuated
single-link manipulator. Specific difficulties in the
development of performance bounds for the
regulation of cross-coupling disturbances were found
to dominate the design. These difficulties were
addressed using a proposed modification to the
classical method of disturbance bound development

utilising QFT MIMO methods 1 and 2. This identifies
issues in the bounding of closed-loop transfer
functions that are relevant to MIMO designs
employing frequency domain bounds.

Simulation of the step response demonstrated the
achievement of quantitative time domain
specifications on the position of the manipulator over
the range of plant uncertainty. The quantitative
aspects of the QFT methodology resulted in a control
system that satisfied the performance specifications
with low bandwidth and relatively low order
compensators. The transparency of the QFT synthesis
method highlighted the design limitations imposed by
the system uncertainties and the fundamental trade-
off between fast rotational motion and low levels of
tip deflection. This naturally led to the design of the
prefilter to minimise the effect of fast rotation on the
manipulator whilst satisfying the QFT design
constraints. Current research aims to overcome
difficulties in the QFT design arising from the
inclusion of additional modes of vibration and
experimentally verify the controller performance.
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