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Abstract: The semiglobal stabilization of null-controllable linear systems with delayed
inputs which are bounded is achieved and the robustness of the closed loop scheme
with respect to uncertainty in the parameters, in the delay and input bounded
disturbances is proved. A delayed oscillator is stabilized with a bounded control law.
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1. INTRODUCTION

Many processes present delay in their input or
output variables due to transport phenomena,
time consuming information processing and sen-
sors design among others. In many cases we can
model their behavior with a linear multivariable
system with delay h∗ described by

úx(t) = A∗x(t) +B∗u(t− h∗) (1)

where the parameters are A∗ ∈ Rn×n, B∗ ∈
Rn×m, and the initial condition is x(t) = f(t), t ∈
[−h∗, 0].
Many approaches for the control of systems with
delay in the input include in an explicit or implicit
manner a predictor of the state at time t+h. Some
of the more widely used are the Smith predic-
tor (Smith, 1959; Palmor, 1996), Process-Model
Control schemes (Watanabe and Ito, 1981), and
Þnite spectrum assignment techniques (Manitius
and Olbrot, 1979; Artstein, 1982). A common
drawback, linked to the internal instability of the
prediction, is that they fail to stabilize unstable
systems. As shown in Mondié et al. (2001a), it is
possible to overcome this problem by introducing
a periodic resetting of the predictor.

Another long lasting concern for control engineers
is the use of bounded control laws. It is well known
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that for systems with poles in the open right
half plane, only locally stabilyzing control laws
can be obtained and that global or semiglobal
stabilizability can be achieved only for systems
with poles in the closed left half plane, named
null-controllable (Sussmann et al., 1994). The
works of Teel (1992), Sussmann et al. (1994),
Mazenc and Praly (1996), gave answers to this
query in the framework of systems with no delay.
The approach of Teel (1992), based on saturated
control laws, was successfully generalized to input
delay chains of integrators (Mazenc et al., 2001).
In the present paper, we focus our attention on
the semiglobal stabilization for null-controllable
linear systems based on a simple periodic linear
controller proposed in Lozano et al. (1999). This
approach is particularly well suited because a
refreshing of the control law occurs naturally due
to the periodicity of the control law.

The paper is organized as follows. The control
scheme is presented in Section 2, and the closed
loop system when there is no uncertainty is ob-
tained in Section 3. The robustness of the closed
loop system with respect to delay and parameter
uncertainty is analyzed in Section 4. Conditions
focusing on the uncertainty in the delay are given
in Section 5. A delayed oscillator is stabilized in
Section 6 and some concluding remarks end the
paper. Previous results concerning the approach
introduced in Lozano et al. (1999) are summarized
in Appendix 7.
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2. CONTROL SCHEME

The systems considered here are those described
by (1) such that the pair (A∗, B∗) is null-
controllable (Sussmann et al., 1994), and with
no loss of generality, A∗ is assumed to be in the
Jordan real canonical form. The system response
is

x(t) = eA
∗(t−t0)x(t0) +

tZ
t0

eA
∗(t−σ)B∗u(σ − h∗)dσ.(2)

In a robust analysis framework, the delay and the
parameters used in the design, h, A and B can be
different from h∗, A∗ and B∗. A prediction xp(t)
for the variable x(t+ h), is then given by

xp(t) = e
Ahx(t) +

t+hZ
t

eA(t+h−σ)Bu(σ − h)dσ (3)

DeÞning τ := σ − h, xp(t) can be rewritten as

xp(t) = e
Ahx(t) +

tZ
t−h

eA(t−τ)Bu(τ)dτ . (4)

The above depends only on past and present
values of x(t) and u(t). Thus, xp(t) is available
at time t, and we introduce a predictor that is
periodically reinitialized at time kT .

xp(kT ) = e
Ahx(kT ) +

kTZ
kT−h

eA(kT−τ)Bu(τ)dτ ,

xp(kT + σ) = e
Aσxp(kT ) +

kT+σZ
kT

eA(kT+σ−τ)Bu(τ)dτ ,

σ ∈ [0, T ), k = 1, 2, ...

Equivalently, xp(t) is given by

xp(kT + σ) = e
A(h+σ)x(kT )

+

kT+σZ
kT−h

eA(kT+σ−τ)Bu(τ)dτ , σ ∈ [0, T ), (5)

Combining the ideas on the use of a resetted pre-
dictor for delayed systems and those on semiglobal
stabilization, let us propose the control law

u(σ + kT ) =B>e−A
>σW−1(Γ− I)xp(kT ),

σ ∈ [0, T ), k = 1, 2, ... (6)

where W is the controllability grammian

W :=W (T ) =

TZ
0

e−AτBB>e−A
>τdτ , (7)

which is invertible for all T > 0 because the
system is controllable, and where Γ is deÞned
according to the the design of the control law for
null-controllable systems with no delay proposed
in Lozano et al. (1999), recalled in Appendix 7.

3. STABILIZING CONTROL SCHEME:
IDEAL CASE

In the ideal case, when the parameters and the
delay size are known with certainty ( A = A∗,
B = B∗, h = h∗), and the integrals are performed
with exactitude, one can write the response of the
system at time kT + T + h as

x(kT + T + h) = eATx(kT + h)

+

kT+T+hZ
kT+h

eA(kT+T+h−τ)Bu(τ − h),

DeÞning the variable σ = τ − kT − h we obtain
x(kT + T + h) = eAT{x(kT + h)

+

TZ
0

e−AσBu(kT + σ)dσ},

Substituting the control law (6) in this expression,
it follows that for k = 1, 2, ...

x(kT + T + h) = eAT{x(kT + h) + (Γ− I)xp(kT )}.(8)
By comparing the expressions (2) for the system
response and (3) for the predictor, one can see that
under ideal conditions, namely known parameters
and exact computation of integrals, we have that

xp(t) = x(t+ h), t ≥ 0.
Hence, substituting the above into (8) leads to

xp(kT + T ) = e
ATΓxp(kT ).

x(kT + T + h) = eATΓx(kT + h).

Now, for a given bounded prespeciÞed set Ω and
for any given bound ∆, according to the results in
Lozano et al. (1999), it is possible to design Γ so
that, for all initial condition xp(0) = eAhx(0) ∈ Ω,
the closed loop system is such that the state x(kT )
converges to zero exponentially as k →∞, and the
control law is bounded by ∆. Furthermore, kx(t)k
and the control law are bounded by exponentially
decreasing functions.

4. ROBUSTNESS ANALYSIS

Now, we turn our attention to more realistic
situations. First, discrepancies in the values of
the real and design parameters are very common
in practice. In particular, it is very difficult to
measure accurately the delay value.
As we shall see below, the exact cancellations of
the ideal case do not occur anymore. Here we
show that as long as the parameters and delay
mismatch is within a certain range, the stability
of the closed loop is preserved. The result is proved
in two steps. First, we show that the control
stabilizes the predictor. Then, we show that the
state of the system is stabilized as well.



4.1 Stabilization of the predictor

Proposition 1. At time instants kT, k = 1, 2, ...
the resetted predictor (5) in closed loop with
the control law (6) is governed by the difference
equation

xp(kT + T )− α1xp(kT )− α2xp(kT − T ) = 0 (9)

where the matrices α1,α2 are given by

α1 = e
AheA

∗T e−Ah + eAT (Γ− I)

+{eAheA∗(T−h∗)
T−h∗Z
0

eA
∗σB∗B>e−A

>σdσ

−eAT
T−hZ
0

e−AσBB>e−A
>σdσ}W−1(Γ− I), (10)

α2 = e
Ah{−eA∗T eA(T−h)

TZ
T−h

e−AσBB>e−A
>σdσ

+eA
∗(2T−h∗)

TZ
T−h∗

e−A
∗σB∗B>e−A

>σdσ}W−1(Γ− I).(11)

Proof. According to (5) the predictor at time kT
and kT + T is respectively

xp(kT ) = e
Ahx(kT ) +

kTZ
kT−h

eA(kT−τ)Bu(τ)dτ , (12)

and

xp(kT + T ) = e
Ahx(kT + T )

+

kT+TZ
kT+T−h

eA(kT+T−τ)Bu(τ)dτ . (13)

From the system response we have that

x(kT + T ) = eA
∗Tx(kT )

+

kT+TZ
kT

eA
∗(kT+T−σ)B∗u(σ − h∗)dσ, (14)

or, if we let τ = σ − h∗,
x(kT + T ) = eA

∗T x(kT )

+

kT+T−h∗Z
kT−h∗

eA
∗(kT+T−h∗−τ)B∗u(τ)dτ . (15)

Substituting (15) into (13) we obtain

xp(kT + T ) = e
AheA

∗T x(kT )

+eAh

kT+T−h∗Z
kT−h∗

eA
∗(kT+T−h∗−τ)B∗u(τ)dτ

+

kT+TZ
kT+T−h

eA(kT+T−τ)Bu(τ)dτ . (16)

Next, because of the invertibility of eAh, it follows
from (12) that

x(kT ) = e−Ah[xp(kT )−
kTZ

kT−h

eA(kT−τ)Bu(τ)dτ ]

Substituting x(kT ) into (16) leads to

xp(kT + T ) = e
AheA

∗T e−Ahxp(kT )

−eAheA∗T e−Ah
kTZ

kT−h
eA(kT−τ)Bu(τ)dτ

+eAh
kT+T−h∗Z
kT−h∗

eA
∗(kT+T−h∗−τ)B∗u(τ)dτ

+

kT+TZ
kT+T−h

eA(kT+T−τ)Bu(τ)dτ ,

or equivalently,
xp(kT + T ) = e

AheA
∗T e−Ahxp(kT )

−eAheA∗T e−Ah
kTZ

kT−h
eA(kT−τ)Bu(τ)dτ

+eAh
kTZ

kT−h∗
eA

∗(kT+T−h∗−τ)B∗u(τ)dτ

+eAh
kT+T−h∗Z
kT

eA
∗(kT+T−h∗−τ)B∗u(τ)dτ

+

kT+TZ
kT+T−h

eA(kT+T−τ)Bu(τ)dτ .

DeÞning the variables σ = τ − (kT − T ) and σ =
τ −kT in the second and third rows respectively,

xp(kT + T ) = e
AheA

∗T e−Ahxp(kT )

−eAheA∗T e−Ah
TZ

T−h
eA(T−σ)Bu(σ + kT − T )dσ

+eAh
TZ

T−h∗
eA

∗(2T−h∗−σ)B∗u(σ + kT − T )dσ

+eAh
T−h∗Z
0

eA
∗(T−h∗−σ)B∗u(σ + kT )dσ

+

TZ
T−h

eA(T−σ)Bu(σ + kT )dσ.



Now, assuming that h < T, h∗ < T, substituting

u(σ + kT ) =B>e−A
>σW−1(Γ− I)xp(kT ),

0≤ σ ≤ T, k = 1, 2, ...
and performing simple algebraic manipulations
lead to the result.

Remark 1. When there is no uncertainty,B = B∗,
A = A∗ and h = h∗, one can see that α1 =
−eATΓ,α2 = 0, and (9) reduces to the ideal case.

Lemma 2. The predictor (4) in closed loop with
the control law (6), is exponentially stable if the
roots of

det(z2I − α1z − α2) = 0, (17)

for α1 and α2 respectively deÞned in (10) and (11),
belong strictly inside the unit disk. Moreover the
control law is exponentially stable and bounded.

Proof. If the roots of (17) are strictly inside the
unit disk, the difference equation (9) is exponen-
tially stable, and the predictor at time kT tends
exponentially to zero. The expression (6) implies
that the control law is exponentially stable. This
implies that the intersampling behavior of the
predictor described by (5) is also exponentially
stable. The boundedness of the control law is due
to the design of Γ as in Lozano et al. (1999). The
result is semiglobal because the design procedure
for Γ depends on initial conditions.

4.2 Stabilization of the system

We are now ready to establish the stability of the
state of the system.

Theorem 3. The state x(t) of system (1) in closed
loop with control law (6), (5) is bounded if the sys-
tem delay h∗and parameters A∗,B∗, and design
parameters h,A,B, l,G are such that the roots of
(17), for α1 and α2 respectively deÞned in (10)
and (11), are strictly inside the unit disk.

Proof. If the roots of (17) are strictly inside
the unit disk, it follows from Lemma 2 that the
predictor is exponentially stable. By substituting
(6) into (12), we obtain that

xp(kT ) = e
Ahx(kT )

+{
kTZ

kT−h

eA(kT−τ)BB>e−A
>τdτ}W−1(Γ− I)xp(kT − T ),

hence the state x(kT ) is exponentially stable
as well. Finally, the intersampling behavior is
described by (2), and the stability of the state
for all t ≥ 0 follows from the exponential stability

of the state at time kT and from the exponential
stability of the control law.

Remark 2. If the system delay h∗and parameters
A∗, B∗ are known, one can elaluate α1 and α2
in (10) and (11) and verify if the roots of (17)
are strictly inside the unit disk. However, a more
usefull result would be to determine a bound on
the deviation from the nominal parameters for
which (17) remain stable. A bound on the delay
deviation, when the parameters of the system are
known is given in the next section. Future research
include the obtention of sufficient conditions de-
pending on kA∗ −Ak and kB∗ −Bk.
Remark 3. Even when the exact values of the pa-
rameters and of the delay are known, inaccuracies
in the computation of the integral of the predictor
are always present. When dealing with unstable
null-controllable systems (chains of integrators,
oscillators of order greater or equal to two), this is
critical because the prediction error explodes and
the system is internally unstable. The periodical
resetting of the predictor introduced in Mondié
et al. ( 2001a) permits to overcome this problem.
One can consider roughly that the inaccuracies in
the integration process can be modeled as para-
metric uncertainty, hence we can infer that the
above results guarantee robustness with respect
to computational errors.

Remark 4. When a bounded disturbance is present
at the input of system (1), we have that

úx(t) = A∗x(t) +B∗u(t− h∗) + d(t)
and the term

R kT+T
kT eA

∗(kT+T−τ)d(τ)dτ is added
to the response described by (15). It is present in
all the steps of the proof of Proposition 1 and the
behavior of the predictor is now decribed by

xp(kT + T )− α1xp(kT )− α2xp(kT − T )

=

kT+TZ
kT

eA
∗(kT+T−τ)d(τ)dτ , k = 1, 2, ...

where α1 and α2 are as in Proposition 1. If the
conditions of Lemma 2 hold, the stability of the
predictor in closed loop is guaranteed, but it is not
exponential. As in Theorem 3, we can conclude
that the closed loop system is stable.

Remark 5. The above robustness analysis is based
on the assumption that the period of the controller
is greater than the delay. For large delays, this
may be a problem because it implies that the
system is in open loop during a long time. In this
case a period substancially smaller than the delay
is required, and as many predictors as the number
of periods in the delay must run simultaneously. A
simpler approach in this case is to use a discrete
predictor because the value of the state at time



kT is all the state information required for the
computation of the control law in the time interval
(kT, kT + T ). This approach is studied in detail
in the framework of the Continuous and Discrete
Ressetted Smith Predictor (Mondié et al., 2001b)
and can be extended with no difficulty to the
control strategy presented here.

5. UNCERTAINTY IN THE DELAY

In this section we focus our attention on the
case where there is only uncertainty in the delay,
namely, A = A∗, B = B∗ and h∗ = h+ δ.

Lemma 4. The linear system with delay in the
input described by (1) in closed loop with the
control law (6), (5), when the system parameters
are known (A = A∗, B = B∗) and the uncertain
delay is such that h∗ = h + δ, is exponentially
stable if the roots of

z2 − αδ1z − αδ2 = 0, (18)

where αδ1 and α
δ
2 are given by

αδ1 =
°°eATΓ°°

+{δ
°°e−Aδ°°°°eAT°° sup

T−h−δ≤σ≤T−h

°°°e−AσBB>e−A>σ°°°
+
°°e−Aδ − I°°°°eAT°° kWk}

°°W−1°° k(Γ− I)k
αδ2 = {δ

°°e−Aδ°° sup
T−h−δ≤σ≤T−h

°°°e−AσBB>e−A>σ°°°
+
°°e−Aδ − I°°°°eA(2T )°° kWk}

°°W−1°° k(Γ− I)k ,
are located inside the unit disk.

Proof. When there is no uncertainty in the pa-
rameters, (A = A∗, B = B∗), the difference equa-
tion (9) that describes the predictor dynamics,
after some simple manipulations, reduces to

xp(kT + T ) = e
ATΓxp(kT )

+{−e−AδeAT
T−hZ

T−h−δ

e−AσBB>e−A
>σdσ

+(e−Aδ − I)eAT
T−hZ
0

e−AσBB>e−A
>σdσ}W−1(Γ− I)xp(kT )

+{(e−Aδ − I)e2AT
TZ

T−h

e−AσBB>e−A
>σdσ

+e−Aδe2AT
T−hZ

T−h−δ

e−AσBB>e−A
>σdσ}W−1(Γ− I)xp(kT − T ).

Now observe that for 0 ≤ a ≤ σ ≤ b ≤ T,°°°°°°
bZ

a

e−AσBB>e−A
>σdσ

°°°°°° .

is bounded by (b−a) supa≤σ≤b
°°°e−AσBB>e−A>σ°°°

and by kWk . Substituting at our convenience
leads to

kxp(kT + T )k ≤ αδ1 kxp(kT )k+ αδ2 kxp(kT − T )k
Now, if we consider the difference equation asso-
ciated to this inequality, we can proceed as in the
general case, and the result follows.

Remark 6. The above lemma provides indeed a
conservative bound for the maximal allowed delay
deviation δ∗. When δ is zero, the roots of (18)
are all located inside the unit circle. By a conti-
nuity argument, the system reaches an instability
region, when for the Þrst time, as δ increases, a
root of (18) is on the unit circle. Therefore, one
can determine δ∗ by substituting z = ejω into
(18), and by solving numerically the two nonlinear
equations in two unknowns δ and ω obtained by
setting to zero the real and imaginary part.

6. BOUNDED INPUT STABILIZATION OF A
SIMPLE OSCILLATOR

The control strategy developped in this paper is
illustrated with the stabilization, by a bounded
input, of the delayed oscillator with transfer func-
tion e−

π
4 s/s2 + 1. The design parameters are the

delay h = π
4 and the frequency ω = 1; The real

parameters are h∗ = 1.15(π4 ) and ω
∗ = 1.15.

The parameters of the control law are chosen so
that the input is bounded by 10 for all initial
conditions kx(0)k ≤ 5. The behavior of the state
variables and input, when the real parameters are
equal to those used in the design, and when there
is a mismatch are shown in Fig. 1 and Fig. 2,
respectively. One can verify that for the design
and real parameters given above, the roots of (17)
are inside the unit disk, hence the stability of the
response in Fig. 2 is expected.

Fig1 : States and input, known parameters

Fig2 : States and input, uncertain parameters



7. CONCLUDING REMARKS

The control scheme presented in this paper allows
the semiglobal stabilization of linear systems with
delayed input which are bounded. The control
law is basically a combination of the predictor
based techniques used frequently for systems with
delayed input (Smith, 1959), (Manitius and Ol-
brot, 1979), (Artstein, 1982), (Watanabe and Ito,
1981), and of the periodic controllers methods
developed for the stabilization of linear systems
with bounded inputs (Lozano et al., 1999). A basic
feature is that the periodic controller introduces
naturally the resetting of the predictor, which was
shown to be crucial to have robust predictor based
control laws (Mondié et al., 2001a).

The robustness of the scheme with respect to
uncertainty in the parameters, in the size of the
delay and input disturbances is established.

Current research include the analysis of use of
a resetting predictor in control schemes for null-
controllable systems that insure global stabiliza-
tion (Sussmann et al., 1994).

8. APPENDIX

We recall here the result on the semiglobal sta-
bilization of null-controllable systems obtained in
Lozano et al.(1999), which is the starting point for
the present work.

Lemma 5. Consider the null-controllable single
input system

úx(t) = Ax(t) +Bu(t)

and the control law with period T

u(σ + kT ) =B>e−A
>σW−1(Γ− I)x(kT ),

σ ∈ [0, T ), k = 1, 2, ... (19)

where W is the controllability grammian. Let
a bound ∆ and a bounded prespeciÞed set Ω
be given. Then, there exists a Γ (see Lozano et
al.(1999) for the design procedure) such that, for
all initial condition x(0) ∈ Ω, the closed loop
system is such that the state x(kT ) converges to
zero exponentially as k → ∞, and the control
law (19) is bounded by ∆. Furthermore, kx(t)k
and the control law are bounded by exponentially
decreasing functions.
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