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Abstract: Genetic Algorithms (GA’s) and others evolutionary optimization methods 
to design fuzzy models from data have received much attention in recent literature. 
This paper presents a methodology to simultaneous design of membership functions 
and rules sets for fuzzy logic models. The validity of the proposed identification 
method has been demonstrated by simulation example of inverted pendulum. 
Copyright © 2002 IFAC 
 
Keywords: Fuzzy systems, fuzzy modeling, genetic algorithms, system identification, 
intelligent control. 

 
 
 
 

1. INTRODUCTION 
 
The design of mathematical models to complex real-
world systems is essential in many fields of science 
and engineering. A common approach is the physical 
modeling, where everything is considered known a 
priori. While complete analytical knowledge is rare 
in complex technical environments, process 
measurements provide a powerful source of 
information about their dynamic behavior (Hollatz, 
1997). Also, in many situations, a lot of information 
is available in qualitative form. These aspects lead to 
a situation of uncertain and inaccuracy where the 
physical modeling is not suitable. 
 
The fuzzy logic provides an effective way to capture 
the approximate, inexact nature of real world (Lee, 
1990). Therefore, instead of to design a model by 
means mathematical modeling, the fuzzy modeling 
defines a model directly from expert knowledge. 
However, there are situation where these expert 
knowledge is unavailable. In these cases, it is 
necessary to perform the fuzzy model identification 
automatically by process behavior observation. 
 
In this paper, it is presented a fuzzy model 
identification methodology based on GA’s, when no 
a priori knowledge about the system is available. 
 
 

2. PROBLEM DESCRIPTION 
 
This methodology considers, for multi-input single-
output (MISO) systems, a linguistic fuzzy model 

consisting in a collection of m fuzzy rules in the 
form: 
 

Ri :If x1 is Ai1 and ... and xn is Ain Then y is Bi   (1) 
 
Where xj, (1 ≤ j ≤ n), are input variables and n is the 
number of input variables, y is the output variable, 
and Aij, B  (1 ≤ i ≤ m), where m is the number of rules 
in the rule base, are the linguistic values of the input 
and output variables, respectively, in the i-th fuzzy 
rule. 
 
The input and output variables take their values in a 
normalized universes of discourse [0,1]. The 
meaning (semantics) of linguistic values is 
characterized by membership functions µArj(xj) and 
µBr(y) defined on the universe of discourse [0,1]. In 
this paper, it is considered triangular membership 
functions. A computationally efficient way to 
characterize this type of membership function is the 
parametric representation achieved by means of a 
two-tuple (arj, brj) for input variables, and (ar, br) for 
the output variable, where the first parameter is the 
center of the triangle base and the second one is the 
length of the triangle base, as is showed in figure 1. 
 
 
 
 
 
 
 
 
Fig. 1- Triangular membership functions 
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The identification procedure is concerned with: 
•  The fuzzy model structure identification, which 

allows to obtain the rule base, and, 
•  The fuzzy model parameters estimation, which 

allows obtaining the database. 
 
Considering the linguistic rule given by equation (1), 
the Zadeh’s Compositional of Inference and the COA 
(center of area) defuzzification method (Lee, 1990) 
are used in the identified fuzzy model. 
 
To apply this identification strategy, it is considered 
an input-output data set Ep. This data set is composed 
of p numerical input-output data tuples el ∈  Ep, called 
examples, each example having the form (for a 
system with n inputs and a output): 
 

el = (exl
1, ..., exl

n, eyl) , l= 1, ..., p            (2) 
 
In a conventional linguistic fuzzy model, the set of 
linguistic values taken by input and output variables 
is defined in advance. Furthermore, the meaning 
(semantics) of each linguistic value Aij is determined 
by the membership function µAij(.) and a same 
linguistic value may appear in a number of fuzzy 
rules. However, in every fuzzy rule in which this 
linguistic value appears it has the same semantics, 
i.e., the same membership function. This type of 
linguistic fuzzy model is called a descriptive 
linguistic fuzzy model. This paper does not take 
restrictions with regard to location and format of 
membership function. Thereby, it is considered a 
linguistic unconstrained free semantics fuzzy model 
(Cordón and Herrera, 1997). 
 
 
3. STRUTUCTURE OF THE GENETIC FUZZY 

IDENTIFICATION 
 
Two parts compose the genetic fuzzy identification 
method proposed herein: 
•  A module to fuzzy rules construction based on a 

real coded AG, and a covering method for the 
input-output example set. This part results in an 
initial fuzzy model structure and parameters; 

•  A module to fuzzy rule base reduction and 
simplification, where is verified the 
completeness of the fuzzy system. 

 
 
3.1 Module to Genetic Construction of Fuzzy Rules  
 
An important requirement to identify a fuzzy rule set 
R describing the structure of a linguistic fuzzy model 
is the completeness property. This property ensures 
that for any input in the input domain (universe of 
discourse), this system must be able to infer a 
suitable output, in other words, the system will cover 
all possible states in the input and output domains to 
fuzzy systems (Lee, 1990). 
 

To ensure the completeness property of system it is 
necessary to define the cover value of a example el ∈  
Ep and the compatibility degree between a rule and 
an example, according to the following: Let the 
nonempty union of the membership functions µAij(xj) 
and µBi(y), then: 
 

( ) ( ) ( )( )l
nAin

l
Ai

l
Ai exexex µµµ ,...,min 11=            (3) 

 
( ) ( ) ( )( )l

B
l

Ali eyexeR
ii

µµ ,min=       (4) 
 
Where: Ri(el) is the compatibility degree between the 
rule Ri and the example el; l=1,...,p; µAij(.) is the 
membership function to the j-th antecedent in i-th 
rule; µBi(.) is the membership function of the i-th rule 
consequent. 
 
Given a fuzzy rules set R, the covering value to an 
example el is defined as: 

( ) ( )t
m

i
lilR eReCV

1

,
=

=                        (5) 

And it is required that: 
( ) τ≥lR eCV ,                      (6) 

 
Where: m is the size of the rule base; τ  is the 
minimum cover value; CVR(el) is the cover value of 
the example el ∈  Ep  in relation to the rule set R. 
 
The fuzzy rules set must satisfy both of the 
conditions presented above, i.e., it has to ensure the 
completeness property and to have an adequate 
covering value. 
 
The genetic construction of the fuzzy rules consists 
of a building method and a covering method, both 
working on a given set of examples. The building 
method is realized by means a GA encoding of a 
single fuzzy rule in each chromosome. The GA finds 
the best fuzzy rule in every run over the set of 
examples according the GA fitness function. The 
covering method is realized as an iterative process. It 
allows the construction of a fuzzy rules set such that 
they cover the set of examples. In each iteration, the 
construction method chooses the best chromosome 
(fuzzy rule), considers the relative covering value 
this fuzzy rule with respect to the example set, and 
removes all examples with a covering value greater 
than τ (equation (6)). 
 
To verify the rule quality, it is used a variant of the 
well-known confidence factor (CF) measure. Let 
A→B denotes a rule, where A is the rule antecedent 
(a conjunction of conditions) and B is the rule 
consequent. The CF measure is simply |A^B|/|A|, 
where |x| denotes the cardinality of set x. In other 
words, CF is the ratio of the number of examples that 
both satisfy the conditions in the rule antecedent and 
consequent over the number of examples satisfying 
the conditions in the rule antecedent (Quinlan, 1987). 



 

A variant of this measure used in this paper is 
defined as: 

( ) δ≥−∧ ABA 21              (7) 
 
Where the operator ∧  is defined as a t-norm min 
withδ =0.4. The subtraction of ½ factor from the 
numerator is to favor the discovery of more general 
rules, by avoiding the overfitting of the rules to data. 
(Arruda et al, 1999). 
 
Generation of initial population. As mentioned 
before, a fuzzy rule will be a chromosome vector 
coded as a vector of real numbers. In the 
chromosome pool, each chromosome Cr, r=1,...,Q, 
Q= population size, represents a fuzzy rule as: 
 

If x1 is Ar1 and ... and xn is Arn Then y is Br   (8) 
 
Where the real vectors (arj  brj,), (ar  br,), shown in 
figure 1, are the parameter vectors of the membership 
functions µArj(xj) and µBr(y), respectively; Cr codifies 
these vectors as: 
 

(ar1  br1 ... arj brj... arn  brn  ar   br,)           (9) 
 
The initial chromosome pool is created partially, 
considering the example set Ep as follows: 
 
•  t chromosomes are created in this phase, where 

( )( )2,min QEt p= , Q = size of the population; 

•  It is randomly selected t examples el ∈  Ep, 
composing the set Et and for each example of Et 
is determined a chromosome belonging to the 
initial chromosome pool; 

•  Consider the example el ∈  Et, and its component 
[ ]1,0∈l

jex , ( ) ( )( )l
j

l
j

l
j exexex −−=∆ 1,0min . Let ( )l

jexγ  

be a random value in the range [ ]l
jex∆,0 . The 

membership function will be: 
( )( ) ( )l

j
l
j

l
j

l
j baexex ,2, =γ , l

ja  = mean, and l
jb  = 

standard deviation. The procedure is the same for 
the remaining components of el; 

•  The remaining Q-t chromosomes of the initial 
population are chosen at random, each 
chromosome in its respective interval; 

 
Fitness function. The fitness function used in this GA 
is composed by three different criteria: 
 
High frequency value: the frequency of a fuzzy rule, 
Ri, on the set of examples Ep, is defined as: 
 

( ) ( )∑
=

=Ψ
p

l
liiE eR

p
R

p
1

1                       (10) 

 
Where: Ri(el) is the compatibility degree between Ri  
and el; p is the size of Ep. 
 

High average covering degree on positive examples: 
the set of positive examples for Ri with compatibility 
degree greater than or equal to w is defined as: 
 

( ) ( ){ }weREeRE lipliw ≥∈=+ /                (11) 
 
The average covering degree on ( )iw RE +  is defined as: 
 

( ) ( ) ( )( )
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Where: ( ) ( )iwiw RERn ++ =  and w ∈  [0, 1]               (13) 

 
Small negative example set: the set of the negative 
examples for iR  is defined as: 
 

( ) ( ) ( ){ }00/ >=∈=− l
ilipliw exAandeREeRE   (14) 

 
Where: ( ) ( ) ( )( )l

nAin
l

Ai
l

Ai exexex µµµ ,...,min 11= ;  
 
An example is considered negative for a fuzzy rule 
when it better matches some other fuzzy rule with the 
same antecedent (if-part), but a different consequent. 
The negatives examples are always considered on the 
complete training set of examples (in this case, the 
set 

pE ). Let ( )iR REn
i

−− = , the penalty function on the 

negative examples set is: 
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A number of negative examples per fuzzy rule 
without any penalty is tolerated, if this number isn’t 
up to a percentage of the number of positive 
examples, ( )iw Rkn+ . This percentage is determined by 
the parameter k ∈  [0, 1]. 
 
Thereby, the fitness function is defined in the 
equation (16) and the goal is to maximize the fitness 
function. 
 

( ) ( ) ( ) ( )−⋅⋅Ψ= iniwiEi RgRGRRZ
p

           (16) 

 
With this criterion, the AG looks for a fuzzy rule 
having a high frequency value, a high covering 
degree, and a small negative example set. 
 
 
3.2 Genetic Algorithm Specification 
 
The genetic algorithm toolbox (gaot) of Matlab  
was used to implement this work.  
 
Each chromosome represents a rule (like in the 
equation (8)), and each membership function is 
represented by a two-tuple. If the goal model’s is the 



 

fitting of a function with two inputs and an output, 
then six genes compose each chromosome, as is 
demonstrated in the equation (17): 
 

Ci =(ai1  bi1  ai2  bi2  ai  bi)                 (17) 
 
The genetic operators are used to create new 
solutions based on existed solutions in the 
population. There are two basic kinds of genetic 
operators: crossover and mutation. The crossover 
operator combines the features of two parent 
chromosomes to form two similar offspring. It is 
applied at a random position with a probability Pc. 
The mutation operator arbitrarily alters one or more 
components of a selected chromosome in order to 
increase the population structural variability. Each 
position of each chromosome vector in the 
population undergoes a random change according to 
a probability defined by a mutation rate, the so-called 
mutation probability Pm. The genetic operators used 
were: non-uniform mutation with Pm = 0,07 (7% of 
population), and arithmetic crossover with Pc = 0,6 
(60% of population). The selection procedure used 
was the ranking method with size equal (Q)1/2.  
 
 
3.3 Module of Fuzzy Rule Base Reduction and 
Simplification  
 
The complexity of a rule base is determined by the 
number of rules, and the number of different fuzzy 
sets belonging to each systems variable (Roubos and 
Setnes, 2001).  
 
The number of membership functions belonging to 
each variable is not determined a priori. It may result 
in concentric membership functions generating a 
high sized rule base. This implementation uses the 
similarity driven rule base simplification method, 
proposed in (Babuska et al., 1998) to reduce this rule 
base. A similarity measure is used to quantify the 
redundancy among fuzzy sets in the rule base. 
Similar fuzzy sets, representing compatible concepts, 
are merged in order to obtain a generalized concept. 
The new fuzzy set replaces the similar ones in the 
rule base. This reduces the number of different fuzzy 
sets (linguistic terms) used in the model. The 
similarity measure is calculated as: 
 

( )
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( ) ( )( )( )
( ) ( )( )( )∑
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kBkA

d

k kBkA

xx

xx
BA
BA

BAS
µµ

µµ

,max

,min
,max
,min

),( 1   (18) 

 
Where |.| denotes cardinality of a set. The 
membership functions µA(xk) and µB(xk) are defined 
on a discretized universe of discourse 

{ }dkxD k ,,2,1| �== , where d is number of discrete 
values. 
 
The simplification algorithm merges similar fuzzy 
sets by use of a threshold: η∈ (0,1). For each variable, 
it is calculated the membership functions similarity 

measure, s, and the membership functions with s≥η 
are merged. The rule base is updated by replacing the 
new membership function for the ones merged. The 
new membership function parameters are the similar 
membership functions parameters mean. Then, the 
new membership parameters are adjusted to cover all 
the universe of discourse. 
 
This merging process needs a modification in the 
fuzzy rule representation. Now, a membership 
function is represented by a vector with three 
elements: (a  b  c), as in figure 2. 
 
 
 
 
 
 
 
Fig. 2 – The new membership function representation 
 
Similarity driven rule base simplification differs from 
other reduction methods in that its main objective is 
to reduce the number of fuzzy sets used in the model. 
It does not necessarily alter the number of rules. 
Reduction of the number of rules might follow from 
rule base simplification if the rules become equal as a 
result of the merging process. If no rules are 
combined, simplification is still achieved by reducing 
the number of fuzzy sets (Babuska et. al., 1998). 
 
The number of generated rules is high due to the size 
of the examples set Ep, and it may exist redundant 
fuzzy rules, i.e., fuzzy rules with the same antecedent 
part and different consequent. To solve this conflict, 
it is defined a true degree to each one of these 
conflicting rules. The rule with highest degree is kept 
and the others are eliminated. The result is a more 
compact rule base with the completeness property 
kept. The true degree of a rule is defined as follows 
(Babuska et. al., 1997): 
 

∏
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=
p

l
lii eRRTrueDegree

1

)()(                 (19) 

 
Where: Ri(el) is the compatibility degree between Ri 
and el; p is the size of Ep. 
 
 

4. IDENTIFICATION ALGORITHM 
 
Let Ep the training example set, the genetic fuzzy 
identification method is composed by the following 
steps: 
 
Step 1: Establish the training data set and the test 
data set, where these sets are disjunct. It is used 1/3 
of available example data to training and 2/3 to the 
testing; 
Step 2: Run the module to fuzzy rules construction; 
Step 2.1: While |Ep|≠0 do the steps 2.2 to 2.6: 

  a              b              c 

      Variable 



 

Step 2.2: Run the GA. The resulting individual will 
be a candidate rule to belong the rule base; 
Step 2.3: Calculate the CF (see the equation (7)) of 
the candidate rule; 
Step 2.4: If the CF of this rule is greater than δ, then 
this rule is inserted into the rule base; 
Step 2.5: Calculate the covering value CVR(.) (see 
the equation (5) and equation (6)), of this new rule; 
Step 2.6: Remove all examples el ∈  Ep with covering 
value greater than a priori defined constant τ ; 
Step 3: Run the module of fuzzy rule base reduction 
and simplification (steps 3.1 to 3.4): 
Step 3.1: Modify the rule representation; 
Step 3.2: Apply the similarity driven rule base 
simplification (see the equation (18)); 
Step 3.3: Line the membership functions to ensure 
the completeness property in each universe of 
discourse; 
Step 3.4: Calculate the true degree (equation (19)) of 
conflicting rules and remove the inconsistent ones; 
Step 4: Verify the error rate in the use of obtained 
fuzzy model. It is made with the testing data set; 
Step 5: If the error rate is lower than the acceptable, 
then is shut up, and the rule base and database are 
kept. 
 
 

5. EXPERIMENTAL RESULTS 
 
This section describes the obtained results with the 
developed algorithm applying to inverted pendulum 
example, described by Hui et al. (1993).  
 
Let consider a fuzzy model with three inputs (y(t-1), 
u(t-1), u(t-2)) and an output (y(t)). Then, the goal is 
to identify the membership functions describing these 
four variables, and the rules that describe the system 
behavior. For this, 201 samples from the system were 
collected, and 1/3 of these samples was used to 
training and 2/3 to testing. The performance index 
used to result validation are: 
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Where: MSE is the mean-square error between the 
expected and obtained (fuzzy) output, NRMSE is the 
normalized root mean-square error between the 
expected and fuzzy outputs, p is the number of data, 
y(l) is the expected output and yf(l) is the fuzzy 
output. 
 
 
5.1 Obtained Fuzzy Model 
 
The obtained results are shown in the tables 1, 2, and 
3. The table 1 contains the error description (MSE 
and NRMSE), the number of rules in the rule base (r), 
and the number of membership functions, to each 

system variable (nmi1), (nmi2), (nmi3) and (nmo), for 
the input 1, input 2, input 3 and the output, 
respectively. 
 

Table 1 – Obtained Results 
 

mse nrmse r nmi1 nmi2 nmi3 nmo 
0.0011 5.23% 8 4 2 2 4 

 
Table 2 presents a numerical description of the 
universe of discourse partition for each variable in 
the model. The first column contains the fuzzy set 
linguistic identification, the second one assigns each 
variable to a membership, and the third one presents 
the parameters of these sets. 
 

Table 2 –Universes of Discourse Partition 
 

fuzzy set variable belonging set parameters 
E11 ( )1−ty - input 1 [-0.0900, 0.010, 0.1129]
E12 ( )1−ty  - input 1 [0.0108, 0.1600, 0.6450]
E13 ( )1−ty  - input 1 [0.1600, 0.6450,0.9100]
E14 ( )1−ty  - input 1 [0.8737, 0.9100, 1.2000]
E21 ( )1−tu  - input 2 [-0.2222, 0, 1.0000] 
E22 ( )1−tu - input 2 [0, 1.0000, 1.2634] 
E31 ( )2−tu  - input 3 [-0.2518, 0, 1.0000] 
E32 ( )2−tu  - input 3 [0, 1.0000, 1.2093] 
S1 ( )ty  - output [-0.0343,0.0200,0.2800]
S2 ( )ty - output [0.0200, 0.2800, 0.4695]
S3 ( )ty - output [0.4164, 0.6400, 0.8500]
S4 ( )ty - output [0.6400, 0.8500, 1.200] 

 
The obtained rule base is showed in table 3. Each line 
corresponds to a rule with three antecedents 
( ( )1−ty , ( )1−tu , ( )2−tu ) and a consequent ( ( )ty ). 
 

Table 3 – Obtained Rule Base 
 

E11 E22 E31 S1 
E11 E22 E32 S1 
E12 E22 E32 S2 
E13 E21 E31 S3 
E13 E21 E32 S3 
E13 E22 E31 S3 
E13 E22 E32 S3 
E14 E22 E32 S4 

 
Figures 3, 4, 5, and 6 present the universe of 
discourse partition of each model variable. 
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Fig. 3 – Membership functions to input variable 1 
(y(t-1)) before(a) and after (b) the reduction and 
simplification phase 
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Fig. 4 – Membership functions to input variable 2 

(u(t-1)) before(a) and after (b) the reduction and 
simplification phase 
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Fig. 5 – Membership functions to input variable 3 
(u(t-2)) before(a) and after (b) the reduction and 
simplification phase 
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Fig. 6 – Membership functions to output variable  

(y(t)) before(a) and after (b) the reduction and 
simplification phase 

 
The figure 7 shows the obtained fuzzy model output 
by the identification algorithm (continuous line) and 
the expected output (doted line). 
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Fig. 7 – Obtained fuzzy output by the simplified rule 

base 
 
 

6. CONCLUSIONS 
 
Model identification is very difficult and nontrivial in 
high-dimensional nonlinear problems. So a tool that 
make possible the use of both expert knowledge and 
input-output data is a good solution for a lot of 
complex problems. 

This paper has presented a fuzzy model identification 
methodology with this characteristic. Two parts 
compose the proposed method: a module based on 
GA, that generates the fuzzy model rule base, and a 
rule base reduction and simplification module that 
ensures the obtained fuzzy model completeness 
property. This is an advantage of the method: it 
allows to manage the trade-off between fuzzy model 
accuracy and complexity in accordance with the user 
choices. 
 
The method validity was verified by inverted 
pendulum simulated identification. The obtained 
model reproduces adequately the system behavior. 
However, it is still necessary to realize comparatives 
studies with another fuzzy identification methods to 
verify the method validity. 
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