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Abstract: In this paper, we propose a blind approach to the sampled Hammerstein-
Wiener model identification. By using the blind approach, it is shown that all
internal variables can be recovered solely based on the output measurements. Then,
identification of linear and nonlinear parts can be carried out. No a priori structural
knowledge about the input nonlinearity is assumed and no white noise assumption

is imposed on the input.
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1. INTRODUCTION

The Hammerstein and Wiener models are special
kinds of nonlinear systems where the nonlinear
block is static and follows or is followed by a linear
system. These models have applications in many
engineering problems and therefore, identification
of Hammerstein and Wiener models has been an
active research area for many years. There exists
a large number of research papers in the literature
on the topics of Hammerstein and Wiener model
identifications. There exists only scattered work
reported in the literature on the Hammerstein-
Wiener model identification.

Existing methods for Hammerstein model iden-
tification can be roughly divided into four cat-
egories (Bai): the iterative method, the over-
parameterization method, the correlation method
and the separable least squares method. In most
cases, the structure of the nonlinearity is assumed
to be known. Otherwise, identification becomes a
structural estimation problem . Identification of
Wiener models is more difficult. The reason is
the lack of a good representation of the output
nonlinearity for identification purpose. Unlike in

the Hammerstein model case, the commonly used
polynomial representation for the output nonlin-
earities makes identification in terms of unknown
parameters very hard. The main technique used
for Wiener model identification is the correlation
analysis. Suppose the input is a zero mean white
noise, identification of linear part and identifica-
tion of nonlinear part are shown to be separable.
Moreover, it was shown that even the structure
of the nonlinearity may be estimated with white
noise inputs under certain conditions. The diffi-
culty with the correlation method is that it is
limited to white inputs. To overcome this diffi-
culty, inverse representation method was proposed
to model the inverse of the output nonlinearity
allowing non-white inputs.

In this paper, we continue our work on the
Hammerstein-Wiener model identification. Unlike
previous works where a very special structure is
assumed, however, the blind approach in this pa-
per allows a very general structure on the non-
linearities. In particular, the input nonlinearity
structure can be arbitrary and is not assumed
to be known. By using the blind identification
approach, all the unknown internal variables can
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Fig. 1. The sampled Hammerstein-Wiener model.

be recovered solely based on the output mea-
surements. Once all interval variables are recov-
ered, linear part and nonlinear parts including the
structure can be identified. Our scheme applies
to either white or non-white inputs. The blind
techniques adopted in this paper use our previous
results presented for blind channel equalizations
of IIR systems and are also based on blind tech-
niques developed for Hammerstein models. Al-
though the algorithm proposed in this paper is
for the Hammerstein-Wiener model, it applies di-
rectly to the identification of either Wiener models
or Hammerstein models with trivial modifications.

Because of page limit, we only list the technical
report version of this paper (Bai). Interested read-
ers can find all the references in (Bai).

2. PROBLEM STATEMENT AND
PRELIMINARIES

Consider the sampled Hammerstein-Wiener model
shown in Figure 1, which consists of a Zero-Order-
Hold, an input nonlinearity, a scalar linear stable
continuous time system and an output nonlinear-
ity. It is assumed that

Assumption 1:

e The unknown continuous time system P(s)
possesses a standard continuous and dis-
crete state space representations (A4, b, ¢) and
(®,T, c) along with its discrete transfer func-

tion
B(2)
G(z)=—= = 2.1
(2) o(z) (2.1)
,312_1 + ,622‘2 + ...+ ,an_n
l—a1z7l -z 2 — ... —apz—™
form some ;s and J3;’s at the given sampling
interval T'.
¢ The input nonlinearity is static u = g(w)

and its structure is not assumed to be known.

o The output nonlinearity is also staticy = f(z).

However, it is assumed that f(-) is one-to-

one so that the inverse z = f~1(y) ex-
ists and admits a polynomial representation
z = Yo, iyt

In identification, we will first estimate the inverse
coeflicients 7;’s and then, find the best forward
function

q .
y = E a;z’
i=1

of z = Y 7y in the least squares sense
using the observed data. Finally, we represent the
output nonlinearity y = f(z) byy = S1_, aiz’.
We remark that if y = f(z) is one-to-one and
continuous, its inverse x = f~!(y) exists and is
also continuous. With a bounded input and a
stable system, £ and y are always bounded and
this implies that the inverse £ = f~(y) can be
approximated to any accuracy by a polynomial
r = Y™ ry' In particular, as the order
m goes to infinite, z = fl(y) = Lo, riy'
This shows that the inverse representation of (?7?)
is theoretically justified. Practically, of course, a
high order m usually means a high sensitivity to
noise and model uncertainty in the identification
setting. Therefore, there is a limitation to the
inverse approach. A discussion on this topic will
be provided later.

For a given sampling interval T, the goal of the
Hammerstein- Wiener model identification is to
estimate the transfer function G(z) in terms of its
parameters o;’s and [3;’s, the output nonlinearity
z = Y0yt and its inversey = YL air?,
and the input nonlinearity u = g{w) solely based
on the measurements of w and y. No internal
variables x and u are assumed available. Moreover,
the structure of the input nonlinearity v = g{w)
is unknown.

Our idea of identification is the blind approach,
i.e., to sample the output at a higher rate. Given
the sampling interval T, let the output sampling
interval be

h=T/1, 121

for some positive integer [, referred to as the over-
sampling ratio.

Minimality is important in identification. Without
minimality assumption, the transfer function G(z)
has pole-zero cancellations and this makes the
parameterization non-unique. In other words, the
identifiability is lost. To this end, we make the
following assumption.

Assumption 2: The sampled system at sampling
interval T is assumed to be minimal at the sam-
pling interval T.

Before closing this section, we observe that the pa-
rameterization of the Hammerstein-Wiener model
is actually not unique. Suppose the system is rep-
resented by three blocks v = g(w), G{(z) and y =
f(z). Then, any triple ag(w), bG(z) and cf(x),
for some constants a, b, ¢, would produce the iden-
tical input-output measurements, provided that
a-b-c = 1. In other words, any identification
setting can not distinguish between (g, G, f) and
(ag,bG, cf). To obtain a unique parameterization,



two blocks need to be normalized. Since the struc-
ture of the input nonlinearity is not assumed to
be known, we normalize the linear block and the
output nonlinearity.

Assumption 3: For the Hammerstein-Wiener
model, it is assumed that 8 =1 and r;, = 1.

With this normalization assumption and persis-
tent exciting (PE) input, we will show that g, G
and f can be uniquely identified. Note that there
are other ways to normalize the system, Assump-
tion 3.1 is the simpliest one. The purpose is to
avoid unnecessary complications so that our ideas
can be presented clearly.

3. IDENTIFICATION OF THE
HAMMERSTEIN-WIENER MODEL

If the structure of the input nonlinearity u = g{w)
is unknown, identification of the Hammerstein-
Wiener model is no longer a parameter estimation
problem. Obviously, the identification involves
structural estimation. It is clear, however, that if
u were available, we would be able to estimate
the input nonlinearity structure. At least, the
complete picture of © = g(w) can be graphed by
using the pairs of (w,u) and this graphical picture
provides us accuracy information on the unknown
input nonlinearity u = g(w). Therefore, the key is
to estimate G(z), £ = 3. r;%*, and then to recover
u solely based on the output measurements. We
accomplish this goal in several steps, estimating
the output nonlinearity, finding the linear part
and then recovering .

3.1 Output nonlinearity estimation

Given the input sampling interval T', let the out-
put sampling interval be h = T/(n+1) where n is
the order of G(2). We remark that h = T/(n+1) is
not necessary but does make analysis and notation
simple. In fact, h = T(f + 1) for any i > n
will work, see remarks in Discussion section for
details. Now, consider the sampled system at the
sampling interval A = T/(n + 1). It is clear that
the transfer function of the sampled system at the
sampling interval A is also an nth order strictly
proper rational function

G(z) = B) _ (3.1)

é(z)
Brz™t + Bz + ... + Pz
1-@127 1 —@g2 2 — ...~ @nz™™

for some unknown @&;’s and Bj ’s. Its time domain
equation is accordingly given by

= zn: &ixkh — ih] + zn: Biulkh — ih].

i=1 =1

z[kh]

Substituting the value z[kh] = 3", 747 [kh] into

equation, it follows that

ery kR =" ,f:r]y I[kh — ih]+ (3.2)

n
=1 =1

S Buulkh - ib] + vi[kh], i=1,..,N
i=1

where v;[kh] denotes any discrepance not counted

by the model, e.g., the contribution of noise,

model uncertainty and approximation errors.

By observing that r; = 1 from the normalization
assumption, the above equation can be re-written
as

n
ylkh] = ¢ [kh161 + D _ Biu[kh — ih] + vi[khA].
i=1
This is the basic equation for the estimation of
the output nonlinearity z = ) r;y* in terms of
its coefficients r;’s. Now, consider two consecutive
equations at k=Il{n+ 1) and k=Il(n+1) -1,

=¢ [l(n+1)h]91+zn: Biull(n+1)h—ih]
=1

+v1[l(n + 1)A],
yll{n + 1)k — b} = ¢1[l(n + 1)h — h]8:+(3.3)

yli(n+1)h]

n
> Bull(n + 1)h — ih — B] + vy [I(n + 1)k — A).
i=1
Since the input sampling interval is fixed at T =
{n + 1)h where h is the output sampling interval,
we have

w[(I-1)T) = w[(-1)T+h] = ... = w[(—1)T+nh],

and this implies

u[(1-1)T] = u[(I=1)T+h] = ... = u[(I-1)T+nh],

Ay[l] = Agy (1161 + Av[l] (3.4)
with
Ay[l] = y[IT)-y{IT-h], Av{l] = v, {IT]—v( [IT—h],
A¢1[l} = g1[IT) — 1 {IT — Al.

In equation (3.4), Ay[l] and A¢|l] consist of
output measurements y[kh] only and thus are
available. Moreover, this equation is linear in
the unknown parameter vector §; which can be
estimated by many standard methods, e.g., the
least squares method or the (normalized) LMS
algorithm.

Note that the estimates fg,...,7m,31,...;Gn Of
72y ooy Tmy &1, ..., O are the first (m—14n) entries
of 0;. Also note that r; is normalized to be



1. Therefore, once 91 is obtained, we have the
estimate of the inverse output nonlinearity

FH ) =Y fay'lkh) (3.5)
=1
with #; = 1, as well as the estimate of the

denominator &(z) of G(z).

The forward output nonlinearity Y 7_, é;z'{kh]
can be constructed by minimizing

q

a=argmin Y {y[kh] - > _ a:#*[kh]}?
k =1
where y[kh]’s are observed outputs and i[kh] =
S, #iyi[kh]’s are generated from (3.5). We cor-
ment that direct readings of #; and &y, from 6, may
not be a good policy in a noisy situation because
it ignores a large number of identified parameters
&rr; without taking into account of their contri-
bution. A more robust way should consider their
contribution.

3.2 Linear transfer function estimation

In this section, we propose a blind method to
estimate G(z) without requiring u[kT]. Recall
that the denominator 1 — &1z~ — ... — G2~ of
G(z) was obtained as a result of the estimation
of 6, in the previous section. Note G(z) is the
transfer function of the sampled system at the
sampling interval h = T'/(n + 1). Write

1

1-&127 =i —Gnz " = (1=5127 ). (1= 827 Y)

where §; denotes the poles of G(z). The sampled
system is assumed to be minimal at the sampling
interval T and is minimal at any sampling interval
h = T/l,1 > 1. Clearly, s is a pole of the
continuous time system if and only if e =
e*PMn+1) is a pole of G(z) if and only if e** is a
pole of G(z). In other words, if 3;'s are the poles
of G(z), then 37*!’s are the poles of G(z). This
implies that an estimate of a(z), the denominator
of G(z) is given by

a(z) = (1 -8 -5 (3.6)

1 n

=1 —&12_ — . —dnz_ .
Hence, an estimate of a(z) is already contained
in §; and what we have to estimate is only the
numerator §(z) of G(z). To this end, consider two
sequences

{z[kT)} &= X(2) = f:w[kT]z‘k (3.7

k=0

= G(2)U(z)

(2[kT + T/2)} <= X(2) = im[lsT +T/2)27%
k=0

= G(2)U(z)

where
o0

U(z) = Z ulkT)z~*
k=0

is the Z-transform of the sequence u[kT] at the
sampling interval T', and G(z) and G(z) represent
the transfer functions from U(z) to X (2) and X (z)
respectively. The transfer function G(z) is derived
in (2.1) and is strictly proper. G(z) needs a special
attention. From the continuous time state space
equation, we have

Bo+ Bzl + ..t Buz "
1- &12_1 — (122"2 — .= dnz—"'

G(2) =

It is interesting to note that G(z) and G(z)
share the same denominator but with different
numerators and unlike G(z), G(z) is proper but
not strictly proper.

Now, consider again two sequences {z[kT]}, {=[kT+
T/2]} and their Z-transforms

X(2) =G()U(2), X(2)=G()U(z).
Clearly,
G(2)X(2)-G(2)X(2) = 0, B(2)X(2)~B(2)X () =0
and this results in
(Bo+ Bz + ... + Brz ™) X (2)—
(Biz™' + .o+ Brz ™)X (2) = 0.
Its time domain equation is

,B].'L‘[kT + T/Z] = (Elz[k]GQ
By noting that 8; = 1, it follows that
2[kT + T/2]) = $4[k)s.

In this equation, @2 is a function of z[kT] and
z[kT + T/2] which are not available. However,
their estimates Z[kT"] and £[kT + T'/2] are readily
available by using the estimated output nonlinear-
ity 2 = Y1, #iy* and the observed outputs y[kT
and y[kT+T/2]. Let & and ¢, denote the estimates
of z and ¢, using % instead of x respectively, we
have

j[k‘T + T/2] = ¢l2[k]92 + Vg [k] (38)

where vy[k] indicates the contribution due to
the error between z and Z. This equation is
again linear in the unknown parameter vector 8
and many standard estimation algorithms apply.
6, consists of the estimates (81, ..., BnsBos s Bn)
with Bl = 1. Therefore, combining equation (3.6},
we obtain the estimates G(z2) and G(z) of G(z)
and G(z) respectively.



3.8 Input nonlinearity estimation

Since the structure of the input nonlinearity is un-
known, estimation of the input nonlinearity relies
completely on the graph information determined
by the pairs of (w[kT),u[kT]). The input w[kT]
is known, but not u[kT]. Therefore, estimation
of u[kT] becomes a key in determining the input
nonlinearity.

Recall that the input sampling interval is T and
thus u[kT) = u[kT + T'/2]. Also recall

X(2) = G(2)U(2), X(2) = G(x)U(z).

If either G(z) or G(z) is minimum phase, U(z)
and consequently, u[kT] can be recovered easily

U(z) = G71(2) X (2) or U(z) = G~ 1(2) X (2).
In time domain, these equations are

ulkT] = —BoulkT — T] — ... (3.9)

—BrulkT — (n — 1)T] + z[kT + T
—oqz[kT] — ... — anz[kT — (n — 1)T]

or

u[kT] = %(-—Blu[kT ~T]—..  (310)

—BnulkT ~ (n — 1)T)
+2[kT + T/2) — anz[kT + T/2 - T)
—o — @nz[kT + T/2 — nT)).
In these equations, both the estimates B(z) and
B(2) have been obtained and so are the estimates

of £[kT] and £[kT + T/2]. Thus, 4[kT] can be
calculated.

In the case that both G(z) and G(z) are non-
minimum phase, recovery of 4[k7T] becomes prob-
lematic. To overcome this difficulty, assume that
G(z) and G(z) do not share any common zeros.
Then, from the Bezout identity, there exist two
stable transfer functions F(z) and F(z) such that

F(2)G(2) + F(2)G(z) = 1. (3.11)
This implies that
F()X(2)+ F(2)X (2) = (3.12)

[F(2)G(2) + F(2)G(2)]U(2) = U(2)

and recovery of U(z) or equivalently u[kT'] can be
easily implemented by using £[kT] and £[kT +
T/2]. Once the estimate 4[kT] of u[kT] is ob-
tained, the input nonlinearity u[kT] = g(w[kT?))
can be graphed using the pairs (w[kT],4[kT])
that provides complete information about the un-
known input nonlinearity.

3.4 Algorithm and simulations

We are now in a position to summarize the iden-
tification algorithm for the Hammerstein-Wiener
model with unknown structure of the input non-
linearity.

Identification algorithm:

Step 1: Consider the sampled Hammerstein-
Wiener model in Figure 1. For a given sampling
interval T, collect input and output measurements
w[kT}, y{kh], y[kT] and y[kT + T/2], where h =
T/(n+1).

Step 2: Construct Ay[l] and A¢y[l] asin (3.4) and
estimate 6, using, e.g., the LMS algorithm. From
8., determine the inverse output nonlinearity ¢ =
;7. The estimate y = Y7, a:z* of the
forward output nonlinearity y = f(z) is the best
inverse of z = Yo, #iy*. Denote by £[kT] =
So, Fy[kT) and E[kT +T/2] = S0, 7y kT +
T/2], the estimates of z[kT] and z[kT + T/2]
respectively.

Step 3: From 6, calculate the estimate &(z) of
a(z) using (3.6). Construct ¢o[k] as in (3.8) and
the estiAmate 92. From éz, determine the estimates
G(2), G(2) of G(z), G(z) respectively.

Step 4: If either G(z) or é(z) is minimum phase,
calculate 4[kT) using either (3.9) or (3.10). If both
G(#) and G(z) are non-minimum phase, calculate
F(z2) and F(z) as in (3.11) and calculate the
estimate 4[kT)] using (3.12).

Step 5: Graph the input nonlinearity « = g(w)
by using the pairs (w[kT),4[kT]). Estimate the
nonlinearity based the information provided by
the graph. If necessary, parameterize the input
nonlinearity using some base functions.

3.5 Discussions

To avoid unnecessary complications so that the
idea can be clearly conveyed, our attention was
focused on presenting the basic algorithm. The
algorithm can be in fact improved in several
ways. Because of page limit, we noly provide
brief discussions here. Interested readers may find
detail discussions in the full length paper.

(1) Parameterization of the input nonlin-
earity u = g(w).

In the previous discussion, the structure
of the input nonlinearity is assumed to be
unknown and thus estimation relies on the
graph given by the pairs (w[kT), 4[kT]). Once
the picture of 4 = g(w) is obtained, the struc-
ture of u = g(w) can be determined. The
next step is to parameterize this nonlinearity
by using appropriate base functions, e.g.,



2

®3)

(4)

u=g(w) =" gi(w,b)

for some known nonlinear functions g;’s and
unknown coefficients b;’s. The choice of g;’s
of course depends on the structure shown in
the graph.

Output nonlinearity order estimation.

In the proposed algorithm, the order m
of the inverse output nonlinearity z =
S, iyt is assumed to be known. In prac-
tice, m is unknown and needs to estimated
using the on-line data. A number of stan-
dard methods of order estimation for linear
systems, e.g, rank test and the output error
test, find their applications here. Interested
readers can find details in (Bai).

Inverse parameterization of the output
nonlinearity.

The actual output nonlinearity y = f(z)
is unknown and we use the inverse pa-
rameterization z = ) 7' This inverse
approach has been used in the literature
to model Wiener systems. Here, we adopt
this approach to model Hammerstein-Wiener
systems with unknown input nonlinearity
structure. Because of the blind method,
this inverse approach makes identification of
the Hammerstein-Wiener model feasible even
with the unknown structure of the input
nonlinearity and non-white inputs. Clearly,
the success of the proposed algorithm hinges
on the accuracy between the approximation
z = Y r;y' and the true z = f~1(y). Theo-
retically, as long as y = f(z) is one-to-one
and continuous, * = 5. r;y' approximates
z = f~l{y) to any accuracy as the order
increases. Practically, however, a high order
m introduces errors due to noise and model
uncertainty and slows down the convergence
rate. There is balance between the errors
introduced by the approximation z = ¥ r;y*
and the errors due to noise and model uncer-
tainty.

Persistent excitation conditions.

To have a robust identification algorithm
in the presence of noise and model uncer-
tainty, the regressors A¢; and ¢» need to
be persistently exciting(PE). The conditions
that ¢, is PE are derived (Bai), which basi-
cally say that ¢, is PE if the spectral lines
of u[kT] is not concentrated on less than
2n points, a richness condition. This richness
condition can also be translated into condi-
tions in terms of the input w[kT). Suppose
that w[kT] is i.i.d. zero mean random vari-
able and u[kT] = g(w[kT]) assumes at least
two distinctive values with nonzero probabil-
ity. Then, u[kT)] is also i.i.d. and has infinitely
many spectral lines which implies that ¢, is
PE. The second scenario is the polynomial

(5)

(6)

(7)

Bai,

input nonlinearity u = ¥~ b;w* and sinusoidal
input wlkT] = 3 ¢;sin(Qik). This is cer-
tainly the case if the input is periodic by
the Fourier series representation. Then, u[kT)
has more than 2n spectral lines if w[kT] has
2n spectral lines unless in a pathological case
where either coefficients are zero or frequen-
cies are the same module 27.

Choice of the over-sampling ratio .

In the algorithm, the over-sampling ratio
1 = (n + 1) is assumed, where 7 is the order
of G(z). This seems to imply that the order
of G(z) has to be known a priori. In fact, !
does not have to be (n+1) and any [ > (n+1)
suffices (Bai).

Relation with the step response identi-
fication.

In a way, the blind technique presented in
this paper may be considered as repeatedly
applying piece-wise constant inputs. Concep-
tually, a number of step responses could be
used to give information first on the out-
put nonlinearity and the linear part, and
then on the input nonlinearity. However, the
blind technique works fundamentally differ-
ent from the traditional step response iden-
tification method (Bai). The traditional step
response method relies heavily on the steady-
state value y(t), t — oo, of the step response
and would suffer from large noises at the
end of transient. This is specially true in
the setting of parametric identification and
therefore, it is suggested to apply the step
response identification method several times
to average out the effect of noises.
Identifiability

With the PE inputs and assumptions 1, 2
and 3, the identifiability of the Hammerstein-
Wiener model shown in Figure 1 can be easily
established. Identifiability here means that
the representation of the system is unique
in the absence of noise and model uncertain-
ties. This can be seen easily. With the PE
regressors, the solutions of (3.4) and (3.8)
are unique. Moreover, the true but unknown
system parameters are solutions in the ab-
sence of noises and model uncertainties. This
establishes the identifiability.
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