Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

DESIGN OF CONTROLLERS FOR PARAMETRIC
UNCERTAIN SYSTEMS. A TWO-STEP APPROACH
USING GENETIC ALGORITHMS

Alberto Herreros* Enrique Baeyens * José R. Peran *

* Instituto de las Tecnologias Avanzadas de la Produccion
ETSII. University of Valladolid
Paseo del Cauce, s/n
Valladolid, SPAIN 47011
{ albher,enrbae,peran} Qeis.uva.es

Abstract: Most industrial processes are modeled as linear time invariant systems with
parametric uncertainties. The design of a robust controller for these plants is formu-
lated as a multiobjective min-max problem where certain performance objectives are
minimized with respect to the controller and maximized with respect to the uncer-
tainties. The solution of such a problem is extremely difficult. An approximated two-
step approach is proposed in this paper. In the first step, an auxiliary multiobjective
minimization problem is solved. The solution to this problem is the set of Pareto
optimal controllers. In the second step, these controllers are checked for the worst
case of parametric uncertainty by solving a multiobjective maximization problem. The
MRCD genetic algorithm is used to solve both multiobjective optimization problems.
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1. INTRODUCTION

Most industrial processes are modeled as linear
time invariant systems of first or second order with
a delay. The parameters of these models are not
exactly known and are subject to large uncertain-
ties motivated by different operating conditions,
neglected nonlinearities, or errors in the identifi-
cation process. In addition, high order unmodeled
dynamics should be taken into account in the con-
troller design procedure, because they can affect
the behavior of the closed-loop system.

Consequently, the design of controllers for indus-
trial processes is not a trivial issue. The recent
methods of robust control use a family of plants
instead of a single nominal plant. The plant fam-
ily involves both parametric and dynamic uncer-
tainty and the design problem consists of comput-

ing a controller that satisfies a set of specifications
for all the plants in the family.

The robust control design problem is formulated
as a multiobjective min-max optimization prob-
lem where several performance objectives are min-
imized with respect to the controller in the worst
uncertainty case. The optimization objectives are
norms of certain closed-loop transfer functions,
see (Zhou et al., 1996; Barmish, 1994; Acker-
mann, 1993). This problem is extremely difficult
in the general case and can only be approximated
by numerical methods.

Here, a two-step approximation to the multiob-
jective min-max is proposed. In the first step,
an auxiliary multiobjective minimization problem
of several performance measures for the nominal
closed-loop system is proposed. The solution to
this multiobjective problem is the set of all Pareto



optimal controllers. In the second step, these con-
trollers are checked with respect to the worst
uncertainty by solving a multiobjective maximiza-
tion problem.

The multiobjective optimization problems of both
steps are difficult to solve by using conven-
tional methods. A multiobjective genetic algo-
rithm, MRCD (Herreros et al., 1999) has been
used as a tool for solving both multiobjective
problems.

Genetic algorithms (GAs) are stochastic algo-
rithms based on the Darwinian evolution and nat-
ural selection rules. A set of candidate solutions
is evolved in several steps to bring it close to the
optimal solution, see (Goldberg, 1989; Mitchell,
1999). The multiobjective GA has been designed
to obtain the solution of a mutiobjective prob-
lem, that is, the Pareto optimal set, see (Van
Veldhuizen, 1999; Horn, 1997; Deb, 1999; Coello,
1999). The MRCD algorithm is a multiobjective
GA with specific operators for robust control de-
sign problems, see (Herreros, 2000; Herreros et
al., 1999), and will be used to solve the two mul-
tiobjective optimization problems of the design
procedure explained here.

The rest of the paper is organized as follows.
In Section 2, the two-step multiobjective control
design procedure is explained. In Section 3, sev-
eral performance measures for the design of SISO
controllers are studied. They will be used as ob-
jectives for the multiobjective optimization prob-
lems. In section 4, the MRCD genetic algorithm is
briefly described. In Section 5, an example based
on a real-world industrial control application is
solved. Finally, in Section 6 some conclusions are
given.

2. THE TWO-STEP ROBUST CONTROL
DESIGN PROCEDURE

The block diagram of Figure 1 represents the
feedback interconnection of an uncertain plant
and a controller, where G, (s) is the nominal plant,
Ag is the parametric uncertainty and K is the
controller to be designed.

The input/output relation between the exogenous
input w and the output z is given by

z=F(Gpn,Ag, K)w (1)

Let A(G,,) denote the set of controllers that inter-
nally stabilize the nominal plant G,,. A control de-
sign problem can be formulated as follows: Given
an uncertain plant (G,,Ag) where Ag € A,
compute a controller K € A(Gy) such that the
feedback interconnection F(G,,Ag, K) satisfy a
set of specifications
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Figure 1. Control Design Framework

Ji(F(Gn,Ag,K) < a;,for any Ag € A. (2)

The performance objectives J;(-) are usually
norms of certain weighted closed-loop operators.
This design problem can be transformed in the
following min-max multiobjective problem:

Jl (f(Gna AG;-K))

min  max
KCA(Gr) AgeA

: ’ (3)
Jo(F(Gn, A, K))

This is an infinite-dimensional multiobjective non-
convex min-max problem that is extremely diffi-
cult to solve. In the industry practice the con-
trollers have a fixed structure, and they can be
parametrized as K = K (). Now, the problem
(3) is a parametric min-max problem, however its
solution is still very complicated and only some
approximations for very simple cases are found
in the literature (Herreros et al., 1999; Hirata
et al., 1999). See also (Barmish, 1994; Acker-
mann, 1993) for a revision of classic methods for
analysis and design of control systems for para-
metric uncertain systems.

An alternative to the min-max problem (3) is
proposed in this paper. The approach consists
of two steps. In the first step the controller is
parametrized K = K(#) and an auxiliary mul-
tiobjective optimization problem is solved

ml(j:(GnaoaK))

min
K(6)

: (4)
M (F (G, 0, K))

where m;(F(G,, K,0)) is a performance or ro-
bustness measure for the nominal closed-loop sys-
tem. In this auxiliary problem, parametric uncer-
tainty is not directly addressed, however, certain
robustness properties can still be taken into ac-
count by a proper election of the objectives m;(-).
For example, robust stability against bounded un-
modeled dynamics is obtained by using the H
norm of certain weighted transfer function of the
closed-loop system.

The solution of the multiobjective problem (4) is
a set of controllers, i.e. the Pareto optimal set.



This set contains a large number of candidate con-
trollers. If the auxiliary objectives m; have been
correctly chosen, the set of candidate solutions
could contain controllers that solve the control
problem (2). However, the selection of one of these
controllers from the Pareto set is not a trivial task.

The second step of the design procedure is a search
over the Pareto optimal set in order to obtain a
controller that satisfies the design specifications

(2).

Let PX denote the Pareto optimal set obtained
after solving the multiobjective problem (4) of the
first step. Choose K; € PX and solve
T
AH;%XA [Jlj . Jgj ]

; (5)

where J;; = J;(F(Grn, Ag, Kj;)). Let PjAG denote
the Pareto optimal set of the multiobjective prob-
lem (5). If any Ag € PJ-AG is such that J;; < oy
for any i € {1,...,£} then K; is a valid controller.
Otherwise, K is eliminated from P¥ and a new
controller has to be checked.

Apparently, this second step seems to be very time
consuming because a multiobjective maximiza-
tion problem has to be solved for any candidate
controller in the Pareto set PX. However, the
use of multiobjective genetic algorithms permits
a very efficient implementation of this step. The
controllers in P¥ are ordered by some perfor-
mance measure J; and are checked successively
starting from the controller with smaller J; value.
Two successive controllers K; and K;,, are very
similar and so are their Pareto sets ’PjAG and ’PjAfl.
Therefore, the computation of PjAfl is very fast if

P]-A ¢ has been previously computed.

3. PERFORMANCE OBJECTIVES

Consider the block diagram of Figure 2. The pro-
cess to be controlled is modeled as a linear SISO
system with transfer function P,. The process
input and output are denoted by u(t) and y(t), re-
spectively, and the signal r(t) is the setpoint. The
control system is subject to disturbances. Two
types of disturbance are usually considered on
a control loop: load disturbance I(t), entering at
the input of the process, and measurement noise
d(t), entering at the output of the process. Load
disturbances will be modeled as step functions
and measurement noise as a stochastic process
(e.g. filtered gaussian white noise). The filtered
measured output signal is denoted by §(t). The
controller K (s) has two degrees of freedom.

Any sensible formulation for a K (s) controller de-
sign problem should at least consider the following

K(s) —“»(gl—» Pa(s) —»cgd—»y

F(s)

<

Figure 2. Block diagram of a feedback system with
a controller

specifications, see (Herreros et al., 2000; Astrom
et al., 1998):

Setpoint Tracking. Some suitable integral perfor-
mance indexes for setpoint following are:

7 "4 1
= [ ewyrar| =% (1,2
J /le()| HdS( 8)
0

where e(t) is the output to a unit step in the input

r(t).

(6)

p

Robustness to Modeling Uncertainties This can
be expressed in terms of the closed loop sensi-
tivity function S(s) = Hlm’ where L(s) is the
loop transfer function. In order to obtain robust-
ness against unmodeled uncertainties, the value of
Jya = |1S(s)||cc must be small.

Load Disturbance Rejection This will be ex-
pressed in terms of an integral performance mea-
surement of the output to a unit step load distur-
bance input

Ty = / y(t)Pdt = (
0

There are different possibilities depending on the
value of p. Normally p is chosen as 1 or 2.

1 P
p

Measurement Noise Reduction The measurement
noise is modeled as a stochastic process with a
given spectrum power density ®,(w). The objec-
tive is to attenuate the effect of this disturbance at
the output y(¢). This objective can be formulated
using a weighted s norm

ITya(s)W (s)ll2 (8)

where the filter W (s) weights the band of frequen-
cies where the noise should be attenuated.

Actuator limits Every physical control signal al-
ways has a limited range. The following condition
can be introduced to avoid saturation for unit
setpoint changes:



1

Jur = TuTg <a (9)

Loo

where « is the saturation level.

Unit Step Time Response Specifications on set-
point following may also include requirements on
rise time, settling time, decay ratio, overshoot and
steady-state offset for step changes in setpoint or
in the load disturbance.

In the industrial practice, the specifications are
usually established by using the unit step time
response and quantities as rise time, settling time
or overshoot. However, other performace measures
are more appropriate for setting the auxiliary mul-
tiobjective problem (4) of the first step. Note that
this optimization problem is crucial in the two-
step procedure, because it is important that the
Pareto optimal set should contain a great variety
of controllers to be checked later in the second
step. If the filter F'(s) has a fixed value and the
measured noise is not relevant, the multiobjective
optimization problem (4) can be formulated as
follows: “Find a set of internally stabilizing con-
trollers K (s) that minimize the following vector
valued performance index:

Tor Hd% <T"(S)%> ;
Jya | = 1Tya(s)| (10)

J, 1
v Ty(s) - H
Slip

where p,q,7 € {1,2,00}, and which also satisfy
the non saturation condition ||Turtllz. < .
Normally p = 1, ¢ = 2, iand r = oo, but other
selections are possible depending on each par-
ticular problem. This multiobjective optimization
problem is very versatile, as has been shown in
(Herreros et al., 2000). Therefore, it is a good
choice for the first step, independently of the
specific performance objectives J; of the control
design problem (2).

4. MULTIOBJECTIVE OPTIMIZATION AND
GENETIC ALGORITHMS

Genetic algorithms (GAs) are random heuristic
search methods where an initial set of possible
solutions (the so-called population) is modified in
successive steps to converge towards the optimal
solution, see (Goldberg, 1989; Mitchell, 1999).

The main GA operators are selection, crossover
and mutation. Selection is used to choose the best
individuals in a population, crossover produces
new individuals by mixing couples of selected

individuals and mutation induces random changes
in the individuals.

A genetic algorithm for multiobjective optimiza-
tion must address two important issues: diversity
and Pareto optimality. Diversity is accomplished
by maintaining a set of candidate solutions in
order to cover the entire extension of the Pareto
front. In addition, the algorithm must incorporate
strategies for directing the population towards the
Pareto-optimal solutions.

The multiobjective GA used in this article is the
MRCD algorithm (Herreros et al., 1999). It is
an algorithm specially developed for multicriteria
design control problems and some of its main
features are:

e Adaptive Search Space. The initial search
space is modified as a function of the indi-
vidual values.

o Selection method of (Horn et al, 1994)
with ranking function (Fonseca and Flem-
ing, 1995) and fitness sharing.

o Coarse Grained Parallel GA, see (Mitchell,
1999).

e External Migration. Random individuals are
added to the population in every generation.

e Crossover, Mutation and Mate Restriction.

e Constraints treated as Objectives.

e Elite filter. The best individuals of a gener-
ation are filtered by the phenotype or geno-
type criterium and are added to the rest.

A more detailed explanation of the algorithm and
its features is given in (Herreros et al., 1999).

5. AN EXAMPLE

In this section an example of control design using
the two-step procedure is presented. The plant to
be controlled is a pelleting machine at a factory
of animal food. The input of the pelleting ma-
chine is the feeding rate of raw material that is
manipulated by the voltage of the feeding motor
u(t). The output is the current intensity ¢(t) of
the main motor. The objective is to drive the
main motor to its nominal current because the
production process is energetically optimized at
this operating condition.

The process has been modeled as a first order
system with a delay and its parameters have been
obtained by system identification under different
operation conditions

~

(s) Ke Ls
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=51, 29< K <90 (11)
=4, 3<T<6
=18, 13< L < 21.
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The nominal plant is G,(s) = 5%12:18 " and the

parametric uncertainty Ag is parametrized in
terms of Ag, A7 and Ayp.

The controller to be designed is a PID digital
controller with the following structure

U(z)
E(2)

_h
Ti(1—271)
TD(]. - Z_l)
+—7—ﬁ.

=mb+
(12)

where E(z) is the z-transform of the output error
signal e(t) = r(t) — i(t), r(t) is the setpoint and
h is the sampling time that has been chosen to 1
second.

The control problem is formulated as follows: De-
sign an internally stabilizing PID digital controller
(12) such that the overshoot is less than 1.3 and
the rise time less than 160 seconds for any operat-
ing condition. In addition, for the nominal plant
and a unit step setpoint change, the absolute value
of the control input cannot be greater than 0.08
volts. and the control input rate of change must
be less than 0.01 volts.

The multiobjective problem for the first step is

JCT‘

min Jyd
I{C,T},TH) LT

yl

subject to sup, |u(t)| < 0.08 and sup, |u(t + 1) —
u(t)| < 0.01 for a setpoint change of 1 volt. The
auxiliary performace objectives Jer, Jyq and Jy
are the discrete version of the objectives given in
(10), ice. Jor = Y2 lte(®)l, Jya = [|Tyall, and

— 4

Ju = |Tuz=]
The parameter values of all the controllers in the
Pareto optimal set found by the MRCD algorithm
are shown in Figure 3. and the Pareto Front for
the objectives [Jc, Jy4, Jyi] is depicted in Figure
4. The Pareto optimal set contains 490 controllers
that will be checked for the overshoot and rise
time specifications in the second step.

The second step multiobjective problem is

max Dos (Gna K, AG’)
Ac | Dy, (Gn, K, Ag)

where D,s(Gr, K,Ag) and Dy (G, K,Ag) are
the overshoot and the rise time for the uncertain
plant family.

A controller that satisfies the design specifications
has been computed by solving the second step
multiobjective problem. Their parameters are:

K. = 0.00163,T; = 4.203, Tpp = 0.3147. (13)
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Figure 3. Values of the Pareto Optimal Controller
Set

The Pareto optimal uncertainty set for this con-
troller is shown in Figure 5 and the attained
Pareto Front is depicted in Figure 6. The worst
case parametric uncertainties are located at the
extreme sides of the Pareto front. They have been
represented by solid lines in Figure 5. Finally, Fig-
ure 7 shows the time response y(t) for a unit step
input r(¢) in the nominal and worst uncertainty
cases.
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Figure 5. Values of the Pareto Optimal Uncer-
tainty Set
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6. CONCLUSION

The design of robust controllers for systems with
parametric uncertainty is a very difficult prob-
lem. In this paper a two-step procedure based
on multiobjective optimization problems has been
proposed. The first step computes a set of Pareto
optimal controllers for an auxiliary multiobjective
minimization problem without uncertainty. In the
second step the Pareto set of controllers is checked
for the parametric uncertainty. The two-step pro-
cedure has turned out to be very efficient in the
design of fixed structure industrial controllers.
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