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Abstract: This paper presents the H∞ control problem for linear neutral systems
with unknown constant multiple delays, in delay independent case. A sufficient
condition for the existence of an H∞ controller of any order is given in terms
of three linear matrix inequalities, when the coefficient D12 of the input in the
controlled output is zero.
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1. INTRODUCTION

In this paper we consider the H∞ control problem
for linear neutral systems with unknown constant
multiple delays in delay independent case. H∞
control problem is defined as finding a controller
such that the H∞-norm of the closed-loop transfer
function is strictly less than an arbitrarily given
real γ > 0. This problem is examined mainly by
two approaches: the algebraic Riccati equations
(AREs) and the linear matrix inequalities (LMIs).
In the literature, various related works for linear
systems have been reported, see (e.g. Zhou and
Khagonekar (1988); Doyle et. al. (1989), for ARE
and Iwasaki and Skelton (1994); Gahinet and
Apkarian (1994), for LMI). H∞ control problem
for systems with time-delay has rarely been con-
sidered. Recently, the state feedback H∞-control
problem, for linear neutral systems is examined
in Mahmoud (2000a,b). The output feedback H∞
controller design for linear time-delay systems by
LMI approach is also achieved in Choi and Chung
(1997). But, at the knowledge of the author no
paper treats output feedback H∞-control problem
for linear neutral systems.

Consider the nth order linear time-invariant gen-
eralized neutral systems Σ described by the fol-
lowing equation:

ẋ(t)− Eẋ(t− τ) = Ax(t) + (1)

k∑
i=1

Adi
x(t− di) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t) (2)

y(t) = C2x(t) + D21w(t) + D22u(t) (3)

x(t0 + θ) = φ(θ), ∀θ ∈ [−max(τ, di), 0], (4)

where i ∈ {1, 2, ..., k}, x ∈ Rn is the plant state,
w ∈ Rq is any exogenous input, including plant
disturbances, measurement noise, etc., u ∈ Rm is
the control input, z ∈ Rp is the regulated output
and y ∈ Rk is the measured output, A, Adi , B1,
B2 C1, C2 and Dij , for i, j = 1, 2 are known real
constant matrices of the apropriate dimensions.
τ > 0 and all di > 0’s are unknown constant
delays. φ ∈Cτ,n, where Cτ,n=C([−τ, 0],Rn) be the
space of continuous functions taking [−τ, 0] into
Rn. It is assumed that D22 = 0. It should be noted
that this assumption involve no loss of generality,
while considerably simplifying algebraic manipu-
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lations, (Gahinet and Apkarian, 1994; Iwasaki and
Skelton 1994). We assume also that

Assumption 1.1. The triple (A,B2, C2) is stabiliz-
able and detectable.

Assumption 1.2. λ | E |< 1.

We remark that Σ is a continuous-time model for
which Assumption 1 is quite standard. However,
Assumption 2 gives a condition in the discrete-
time sense and its role will be clarified in the
subsequent analysis.

Consider the nc
th order linear time-invariant dy-

namic (nc > 0) and static (nc = 0) controllers

ẋc(t) = K21y(t) + K22xc(t) (5)

u(t) = K11y(t) + K12xc(t) (6)

where xc ∈ Rnc is the controller state, K11, K12,
K21 and K22 have appropriate dimensions. We
shall denote the class of controllers by Σc.

Let xe(t) = [xT (t) xT
c (t)]T . Then, the closed-loop

system, Σcl is the following;

ẋe(t)− ĒF ẋe(t− τ) = (7)

Āxe(t) +
k∑

i=1

Ādi
Fxe(t− di) + B̄w(t)

z(t) = C̄xe(t) + D̄w(t) (8)

where

Ā = Â + B̂2KĈ2, B̄ = B̂1 + B̂2KD̂21, (9)

C̄ = Ĉ1 + D̂12KĈ2, D̄ = D11 + D̂12KD̂21

FT =
[

I
0

]
, Ē =

[
E
0

]
, Â =

[
A 0
0 0

]
,

Ādi
=

[
Adi

0

]
, B̂1 =

[
B1

0

]
, B̂2 =

[
B2 0
0 I

]
,

K =
[

K11 K12

K21 K22

]
, Ĉ2 =

[
C2 0
0 I

]
, D̂21 =

[
D21

0

]
,

Ĉ1 =
[
C1 0

]
, D̂12 =

[
D12 0

]
(10)

The closed-loop transfer matrix Tzw(s) from w to
z is given by

Tzw(s) = D̄ + (11)

C̄

[
s(I − ĒFe−sτ )− Ā−

k∑
i=1

ĀdiFe−sdi

]−1

B̄

Definition 1.3. Given a scalar γ > 0. The con-
troller Σc is said to be an H∞-controller if the
following two conditions hold:

(i) Ā is asymptotically stable,
(ii) ‖ Tzw ‖∞< γ.

Lemma 1.4. (Schur complement). Given constant
matrices Ω1, Ω2 and Ω3 where 0 < Ω1 = ΩT

1 and
0 < Ω2 = ΩT

2 then Ω1 +ΩT
3 Ω−1

2 Ω3 < 0 if and only
if [

Ω1 ΩT
3

Ω3 −Ω2

]
< 0.

Lemma 1.5. Given a symmetric matrix Ω and two
matrices Γ and Σ with appropriate dimensions.
The inequality

Ω + ΣKΓ + (ΣKΓ)T < 0 (12)

is solvable for K if and only if

Γ̄T ΩΓ̄ < 0, Σ̄ΩΣ̄T < 0 (13)

where Γ̃ and Σ̃ denote the orthogonal comple-
ments of Γ and Σ, respectively.

Proof 1.6. See Gahinet and Apkarian (1994) and
Iwasaki and Skelton (1994).

2. THE MAIN RESULTS

Define

W : = ĀT P + PĀ + Q̄ +
k∑

i=1

S̄i + C̄T C̄ (14)

+ (PB̄ + C̄T D̄)Φ−1(PB̄ + C̄T D̄)T

+ ΨĒR−1ĒT ΨT +
k∑

i=1

PĀdi
Si
−1ĀT

di
P

Φ : = γ2I − D̄T D̄ (15)

R : = Q− ĒT (C̄T C̄ + Q̄ +
k∑

i=1

S̄i + (16)

C̄T D̄Φ−1D̄T C̄)Ē,

Ψ : = PĀ + Q̄ +
k∑

i=1

S̄i + C̄T C̄ (17)

+ (PB̄ + C̄T D̄)Φ−1D̄T C̄

where S̄i = FT SiF and Q̄ = FT QF .

Theorem 2.1. Subject to Assumptions 1 and 2
the closed-loop neutral systems Σcl with multi-
ple delay is asymptotically stable independent of
delay and the H∞ performance bound constraint
‖ Tzw ‖∞< γ holds for a given γ > 0, if there
exist matrices 0 < PT = P ,0 < QT = Q and
0 < Si

T = Si , for i = 1, 2, ..., k satisfying

W < 0

while
Φ > 0, R > 0



Proof 2.2. Let a Lyapunov- Krasovskii functional
V (xt) of the form

V (xt) = [xe(t)− ĒFxe(t− τ)]T P (18)

[xe(t)− ĒFxe(t− τ)]

+

0∫
−τ

xT
e (t + θ)Q̄xe(t + θ)dθ

+
k∑

i=1

0∫
−di

xT
e (t + θ)S̄ixe(t + θ)dθ

Observe that V (xt) satisfies

λm(P )r2 ≤ V (r) ≤ [λM (P )+τ?λM (Q̄, S̄1, , , S̄k)]r2

for some r, where τ? = max(τ, d1, ..., dk). In order
to show that the closed-loop system (7) is as-
symptotically stable with disturbance attenuation
γ, it is required that the associated Hamiltonian
H(xt, w, t) satisfies

H(xt, w, t) = V̇ (xt)+zT (t)z(t)−γ2wT (t)w(t) < 0,

where V (xt) is given by (18), Zhou (1998). By
differentiating (18) along the trajectories xt and
using the difference operator M(xt) := xe(t) −
ĒFxe(t− τ) the result follows.

Remark 2.3. The Lyapunov- Krasovskii functional
V (xt) in (18) is of the form given in Verri-
est and Niculescu (1997), except that the term
with Q̄. If we removed this term we would de-
rive the condition R := −ĒT (C̄T C̄ +

∑k
i=1 S̄i +

C̄T D̄Φ−1D̄T C̄)Ē > 0. It is clear that this inequal-
ity is not solvable.

Now, let

V := ĀT P + PĀ + Q̄ +
k∑

i=1

S̄i +
1
γ

C̄T C̄ (19)

+ γ(PB̄ +
1
γ

C̄T D̄)Φ−1(B̄T P +
1
γ

D̄T C̄)

+
k∑

i=1

PĀdiS
−1
i ĀT

di
P + ΨĒR−1ĒT ΨT < 0

W is equivalent to V , where γ = 1, i = 1 and
d1 = τ .

Theorem 2.4. Subject to Assumptions 1 and 2
the closed-loop neutral systems Σcl with multi-
ple delay is asymptotically stable independent of
delay and the H∞ performance bound constraint
‖ Tzw ‖∞< γ holds for a given γ > 0, if there
exist matrices 0 < PT = P ,0 < QT = Q and
0 < Si

T = Si , for i = 1, 2, ..., k satisfying

V < 0

while
Φ > 0, R > 0

Proof 2.5. The proof is omitted.

3. H∞-CONTROLLER DESIGN

Now, we will concentrate on the H∞-controller
design. For this aim, first consider the following
LMI: 

Θ̄ PB̄ C̄T ΨĒ P Ād

B̄T P −γI D̄T 0 0
C̄ D̄ −γI 0 0

ĒT ΨT 0 0 −R 0
ĀT

d P 0 0 0 −∆s

 < 0, (20)

where Θ̄ := ĀT P + PĀ + Q̄ +
∑k

i=1 S̄i, Ād :=
[ Ād1 Ād2 ....Ādk

] and ∆s := diag {S1 , S2, . . ., Sk}.

In terms of lemma 1.4, it can be shown that the
LMI in (20) is equivalent to the inequality V < 0.

Now, let D12 = 0. By using the expressions (9),
(10) we can rewrite (20) as follows:

Ω + ΣKΓ + (ΣKΓ)T < 0 (21)

where

Ω : =


Θ̂ PB̂1 ĈT

1 Ψ̂Ē P Ād

B̂T
1 P −γI DT

11 0 0
Ĉ1 D11 −γI 0 0

ĒT Ψ̂T 0 0 −R 0
ĀT

d P 0 0 0 −∆s

 (22)

Θ̂ := ÂT P + PÂ + Q̄ +
k∑

i=1

S̄i

ΣT :=
[
B̂T

2 P 0 0 0 0
]

Γ :=
[
Ĉ2 D̂21 0 (Ĉ2 + D̂21Φ−1DT

11Ĉ
T
1 )Ē 0

]
and
Ψ̂ := PÂ+Q̄+

∑k
i=1 S̄i +ĈT

1 Ĉ1+(PB̂1+ĈT
1 D11)

Φ−1DT
11Ĉ1

By lemma (1.5), the inequality (21) is equivalent
to (13).

Now, let us partition P and P−1 as

P =:
[

Y M

MT ∗

]
, P−1 =:

[
X N

NT ∗

]
(23)

where Y and X are the n × n positive matrices.
Define ΩY and ΩX as follows:

ΩY =


ΘY Y B1 CT

1 ΨY E Y Ad

BT
1 Y −γI DT

11 0 0
C1 D11 −γI 0 0

ET ΨT
Y 0 0 −R 0

AT
d Y 0 0 0 −∆s

 (24)

ΩX = (25)





ΘX B1 XCT
1 ΨXE Ad Xsq

BT
1 −γI DT

11 0 0 0
C1X D11 −γI 0 0 0

ET ΨX 0 0 −R 0
AT

d 0 0 0 −∆s 0
XT

sq 0 0 0 0 ∆−1
sq


where ΘY := AT Y + Y A + Q +

∑k
i=1 Si, ΘX :=

XAT + AX, ΨY := Y A + Q +
∑k

i=1 Si +
C1

T C1 + (Y B1 + CT
1 D11)Φ−1DT

11C1, ΨX := A +
B1Φ−1DT

11C1 +X(Q+
∑k

i=1 Si +C1
T C1 +CT

1 D11

Φ−1DT
11C1), Ad := [ Ad1 Ad2 , ., Adk

], Xsq :=
[ X, .,X ] and ∆−1

sq := diag (Q−1, S−1
1 , ., S−1

k ).

Along similar lines to Gahinet and Apkarian
(1994), The inequality (21) is equivalent to

Γ̃ΩY Γ̃T < 0, Σ̃T ΩXΣ̃ < 0 (26)

and [
X I
I Y

]
≥ 0. (27)

where Γ̃ :=

 V T
1 V T

2 0 V T
3 0

0 0 I 0 0
0 0 0 0 I

 , Σ̃ :=
[

W 0
0 I

]
.

[
V T

1 V T
2 V T

3

]T
and W denote any basis of the

null spaces of[
C2 D21 (C2 + D21Φ−1DT

11C1)E
]

and BT
2 , re-

spectively.

Remark 3.1. In summary, we can say that there
exist a positive definite matrix P and a control
gain matrix K, satisfying (20) if and only if there
exist symmetric matrices X and Y satisfying (26)
and (27). So, the solution depends on the existence
of X and Y . Moreover, if rank (I −XY ) = k < n
for solution matrices X and Y then there exist a
reduced order H∞-controller of order k.

In order to construct an H∞- controller, we first
compute some solution (X, Y ) of the LMI’s (26)
and (27) by using a convex optimization algorithm
for some γ and the positive matrices Q, R, Si’s.
As it is noted in Choi and Chung (1997) that
If k = rank (I − XY ) = 0 then we set P = Y .
Otherwise, using the matrices M and N wich are
of full column rank such that MNT = I − XY ,
we obtain the unique solution P to the equation[

Y I

NT 0

]
= P

[
I X

0 MT

]
. (28)

An explicit description of all solutions of LMI in
(21) can be given as follows in state space:

K = −ρΣT ΞΓT (ΓΞΓT )−1 + U
1
2 L(ΓΞΓT )−

1
2

where ρ and L are free parameters subject to

Ξ := (ΣΣT − 1
ρ
Ω)−1 > 0, ‖L‖ ≤ ρ

and the matrix U is defined by

U := I − ΣT [Ξ− ΞΓT (ΓΞΓT )−1ΓΞ]Σ.

4. CONCLUSIONS

The problem of designing output feedback H∞
controllers for linear neutral systems with mul-
tiple time-delay has ben considered in delay inde-
pendent case based on the linear matrix inequality
(LMI) approach. A necessary and sufficient con-
dition for the existence of H∞ controllers of any
order is given in terms of three LMIs , when the
coefficient D12 of the input in the controlled out-
put is zero. Output feedback H∞-control problem
for the same systems in delay dependent case is
the subject of further research.
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