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Abstract: This paper presents the H., control problem for linear neutral systems
with unknown constant multiple delays, in delay independent case. A sufficient
condition for the existence of an H,, controller of any order is given in terms
of three linear matrix inequalities, when the coefficient D15 of the input in the

controlled output is zero.
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1. INTRODUCTION

In this paper we consider the H., control problem
for linear neutral systems with unknown constant
multiple delays in delay independent case. H,
control problem is defined as finding a controller
such that the H.,-norm of the closed-loop transfer
function is strictly less than an arbitrarily given
real v > 0. This problem is examined mainly by
two approaches: the algebraic Riccati equations
(AREs) and the linear matrix inequalities (LMISs).
In the literature, various related works for linear
systems have been reported, see (e.g. Zhou and
Khagonekar (1988); Doyle et. al. (1989), for ARE
and Iwasaki and Skelton (1994); Gahinet and
Apkarian (1994), for LMI). Hy, control problem
for systems with time-delay has rarely been con-
sidered. Recently, the state feedback H..-control
problem, for linear neutral systems is examined
in Mahmoud (2000a,b). The output feedback Hy,
controller design for linear time-delay systems by
LMI approach is also achieved in Choi and Chung
(1997). But, at the knowledge of the author no
paper treats output feedback H.-control problem
for linear neutral systems.

Consider the n'" order linear time-invariant gen-
eralized neutral systems Y described by the fol-
lowing equation:

#(t) — Bi(t — 1) = Ax(t) + (1)
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> Aga(t—di) + Biw(t) + Byu(t)
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Crz(t) + Diiw(t) + Drgu(t)  (2)
y(t) = Cox(t) + Dayw(t) + Dagu(t) (3)
‘r(tO + 9) = ¢(0)a Vo € [7 maX(T; d’L)ﬂ O]a (4)

where ¢ € {1,2,...,k}, z € R" is the plant state,
w € RY? is any exogenous input, including plant
disturbances, measurement noise, etc., u € R™ is
the control input, z € R? is the regulated output
and y € RF is the measured output, 4, Ag,, B,
By C1, Cy and Dy, for i,5 = 1,2 are known real
constant matrices of the apropriate dimensions.
7 > 0 and all d; > 0’s are unknown constant
delays. ¢ €C- p, where C; ,=C([—7,0],R™) be the
space of continuous functions taking [—7,0] into
R”. It is assumed that Dys = 0. It should be noted
that this assumption involve no loss of generality,
while considerably simplifying algebraic manipu-



lations, (Gahinet and Apkarian, 1994; Iwasaki and
Skelton 1994). We assume also that

Assumption 1.1. The triple (A4, By, C5) is stabiliz-
able and detectable.

Assumption 1.2. X | E |< 1.

We remark that ¥ is a continuous-time model for
which Assumption 1 is quite standard. However,
Assumption 2 gives a condition in the discrete-
time sense and its role will be clarified in the
subsequent analysis.

Consider the n." order linear time-invariant dy-
namic (n. > 0) and static (n, = 0) controllers

Li’,'c(t) = Kgly(t) + KQQ!L‘C(t) (5)
u(t) = Klly(t) + Klgzc(t) (6)

where x. € R™¢ is the controller state, K11, Kio,
K51 and Ksys have appropriate dimensions. We
shall denote the class of controllers by X..

Let z.(t) = [zT(t) 2T (¢)]T. Then, the closed-loop

c

system, ¥, is the following;

de(t) — EFi (t—7) = (7)
k
Az (t) + Z Ag, Fzo(t —d;) + Bw(t)
2(t) = Cz.(t) + Dw(t) (8)
where

A:A—FBAQKOQ, B:BAl—f—BAgKﬁgl, (9)
C= él + leKC'Q,D =Dy + buKﬁm

or-o] 5[] 03]

| K Ko | 2 Co0| ~ | Dxn
K = |:K21 K22:|702 |:O I:|7D21_|: 0 :|7
C’lz[Cl 0],1512=[D12 0] (10)

The closed-loop transfer matrix T, (s) from w to
z is given by

Tow(s) =D + (11)
-1

k
C|s(I—EFe*")—A— Z Ay Fe s B
i=1

Definition 1.3. Given a scalar v > 0. The con-
troller ¥, is said to be an H.-controller if the
following two conditions hold:

(i) A is asymptotically stable,
(i) || Tow loo< -

Lemma 1.4. (Schur complement). Given constant
matrices 1, Qs and Q3 where 0 < Q; = QF and
0 < Qy = QF then Oy +Q7Q; Q3 < 0if and only
if

0, of
Q5 Oy

| <o

Lemma 1.5. Given a symmetric matrix 2 and two
matrices I' and ¥ with appropriate dimensions.
The inequality

Q+SKT + (SKD)T <0 (12)
is solvable for K if and only if
r'ar <o, =z’ <o (13)

where I' and ¥ denote the orthogonal comple-
ments of I" and X, respectively.

Proof 1.6. See Gahinet and Apkarian (1994) and
Iwasaki and Skelton (1994).

2. THE MAIN RESULTS

Define
x
W:=ATP+PA+Q+> S;+C"C (14)
=1
+(PB+CTD)® Y (PB+CT"D)"
+UER'ETUT + Xk: PAy S, AL P
=1
®:=~1-D'D (15)

k
R:=Q-E"(C"C+Q+> Si+ (16)
=1

CTDo-'DTCO)E,
k
V:=PA+Q+>» S +C"C (17)
i=1
+(PB+CTD)y® 'DTC
where S; = FTS,;F and Q = FTQF.

Theorem 2.1. Subject to Assumptions 1 and 2
the closed-loop neutral systems X, with multi-
ple delay is asymptotically stable independent of
delay and the H,, performance bound constraint
| Tow |loo< 7 holds for a given v > 0, if there
exist matrices 0 < PT = P,0 < QT = Q and
0< ST =8;,fori=1,2, ..,k satisfying

W <0

while
>0, R>0



Proof 2.2. Let a Lyapunov- Krasovskii functional
V() of the form

V(z¢) = [2.(t) — EFz.(t — 7)]* P (18)

[xe(t) - Eer(t - T)]

+ [ 2T (t 4 0)Qu.(t + 0)do

> “\\o

0
+Z/$Z(t+9)gi$e(t+0)d9
i=1_"y.

Observe that V(x;) satisfies
)\m(P)T2 S V(’I") S [AM(P>+T*AM(Qa 5’17 IR) Sk)]TQ

for some r, where 7* = max (7, dy, ..., di). In order
to show that the closed-loop system (7) is as-
symptotically stable with disturbance attenuation
v, it is required that the associated Hamiltonian
H(zy,w,t) satisfies

H(zy,w,t) = V(z)+2T () 2(t)—y?wT (H)w(t) <0,

where V(x;) is given by (18), Zhou (1998). By
differentiating (18) along the trajectories x; and
using the difference operator M(x;) := z.(t) —
EFz.(t —7) the result follows.

Remark 2.3. The Lyapunov- Krasovskii functional
V(z;) in (18) is of the form given in Verri-
est and Niculescu (1997), except that the term
with Q. If we removed this term we would de-
rive the condition R := —ET(CTC + Zle S +
CTD® 1DTC)E > 0.1t is clear that this inequal-
ity is not solvable.

Now, let

k
_ _ _ 1 o
Vi=ATP+PA+Q+) Si+-C"C (19)
i=1 7
N R _ 1
+ ~v(PB + ;CTD)tlfl(BTP + ;DTC)
k
+ > PA,S'ALP+YERTETUT < 0
=1
W is equivalent to V, where v = 1, ¢ = 1 and
dl =T.

Theorem 2.4. Subject to Assumptions 1 and 2
the closed-loop neutral systems ¥, with multi-
ple delay is asymptotically stable independent of
delay and the H,, performance bound constraint
| Tow |loo< v holds for a given > 0, if there
exist matrices 0 < PT = P,0 < QT = Q and
0< 8T =8;, fori=1,2, ..,k satisfying

V<0

while
>0, R>0

Proof 2.5. The proof is omitted.

3. H-CONTROLLER DESIGN

Now, we will concentrate on the H.,-controller
design. For this aim, first consider the following
LMI:

© PB CT UE PA,
B'P —1 D" 0 0

C D —I 0 0 |<0, (20
ET™T 0 0 -R 0
ATP 0 0 0 -A,

Wlﬁlerei(:) = 7/_1TP +PA+Q+ Ele S, Ag =
[Adl Ad2 Adk] and AS = diag{51 3 SQ, ey Sk}
In terms of lemma 1.4, it can be shown that the
LMI in (20) is equivalent to the inequality V' < 0.
Now, let D12 = 0. By using the expressions (9),
(10) we can rewrite (20) as follows:

Q+SKT + (EKT) <0 (21)
where
6 PB, CT VE PA,
BI'p —y1 DI, 0 0
Q:=| ¢ Dy - 0 0 (22)

ET9T 0 0 —-R 0
ATP 0 0 0 —A,

k
0:=A"P+PA+Q+)> S
=1

sT=[BfP0000]
I':=[Cy Dy 0 (Cy+ Doy @ *DECHE 0]

and = o
U= PA+Q+Y1 85+ CTCi+(PB,+CTDyy)
®,1DT101
By lemma (1.5), the inequality (21) is equivalent
to (13).
Now, let us partition P and P! as

e[ ] - [ e

where Y and X are the n X n positive matrices.
Define Qy and Qx as follows:

Oy YB, C{ UyE YA,
By .~ D, 0 o0

Qy = Cl D11 —’)/I 0 0 (24)
E'vE 0 0o —-R o0
ATy 0 0 0 A,

Qx = (25)



Ox By XC{ UxE A; X,
Bf —v1 DI, 0o o0 o0
ClX D11 *’)/I 0 0 0
ETwvy 0 0 —-R 0

AT 0 0 0 -A, 0
X, 0 0 0 0 A}

where Oy := ATY + YA+ Q + Zle S;, Ox =
XAT 4+ AX, Uy = YA+ Q+ XF 5 +
C,7Cy 4+ (YB, + CEDy)® ' DECy, Uy == A+
Bl(I)_lD,ﬂCl +X(Q—|—Zf:1 SZ‘—I—ClTCl —‘rC,lTDH
‘I)_lDﬂCl), Ad = [ Ad1 Adz,.,Adk], qu =
[ X, X Jand AL :=diag (Q',57",.. 5, 1).
Along similar lines to Gahinet and Apkarian
(1994), The inequality (21) is equivalent to

roy I’ <0, 2TQx2 <0 (26)
and
X I
I -
) vivEoveo ) W o
where I' := 0010072:201.
0 000 1[I
(vit vih vl ]T and W denote any basis of the

null spaces of
[Cy Doy (Cy + Doy ® 'DY,C1)E] and BI, re-
spectively.

Remark 3.1. In summary, we can say that there
exist a positive definite matrix P and a control
gain matrix K, satisfying (20) if and only if there
exist symmetric matrices X and Y satisfying (26)
and (27). So, the solution depends on the existence
of X and Y. Moreover, if rank (I — XY) =k <n
for solution matrices X and Y then there exist a
reduced order H,-controller of order k.

In order to construct an H,.- controller, we first
compute some solution (X,Y") of the LMI's (26)
and (27) by using a convex optimization algorithm
for some v and the positive matrices @), R, 5;’s.
As it is noted in Choi and Chung (1997) that
If £k = rank (I — XY) = 0 then we set P =Y.
Otherwise, using the matrices M and N wich are
of full column rank such that MNT =T — XY,
we obtain the unique solution P to the equation

e -rhn] e

An explicit description of all solutions of LMI in
(21) can be given as follows in state space:

K = —pxTar’(rar’)-! + vz L(rer’)-z
where p and L are free parameters subject to

1
2= (22T - ;Q)‘1 >0, L[ <p

and the matrix U is defined by
U:=1-x"=-zr’(rer’)-'rex.

4. CONCLUSIONS

The problem of designing output feedback H.
controllers for linear neutral systems with mul-
tiple time-delay has ben considered in delay inde-
pendent case based on the linear matrix inequality
(LMI) approach. A necessary and sufficient con-
dition for the existence of H., controllers of any
order is given in terms of three LMIs , when the
coefficient D15 of the input in the controlled out-
put is zero. Output feedback H.-control problem
for the same systems in delay dependent case is
the subject of further research.
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