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Abstract: A new algorithm for training radial basis function neural networks is presented 
in this paper. The algorithm, which is based on the subtractive clustering technique, has a 
number of advantages compared to the traditional learning algorithms, including faster 
training times and more accurate predictions. Due to these advantages the method proves 
suitable for developing discrete-time models for complex dynamical systems. Copyright 
© 2002 IFAC 
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1. INTRODUCTION 
 

The development of an efficient control scheme is 
often based on the existence of an appropriate 
dynamic model of the process. However, the 
dynamic behavior of most processes cannot be easily 
modeled by fundamental equations, due to the 
complexity, nonlinearity and/or uncertainty of the 
system. On the other hand, due to the continuously 
reducing cost of informational systems and data 
storage elements, a plethora of data is electronically 
stored in an every day basis for a number of 
processes, which in many cases remain unexploited. 
These data are often a valuable source of information 
that can be used for developing dynamic black-box 
models. Therefore, mathematical tools that can 
extract dynamic information about a process from a 
pool of data are necessary today more than ever 
before. Such a tool that has become very popular 
during the last decade is the family of Artificial 
Neural Networks (ANN) architectures.  
 
Radial Basis Function (RBF) neural networks form a 
class of ANNs, which has certain advantages over 
other types of ANNs, such as better approximation 
capabilities, simpler network structures and faster 
learning algorithms. RBF neural networks have been 
applied in many different scientific areas, including 

dynamic system identification and control (Shin and 
Goel, 2000; Bhartiya and Whiteley, 2001; Li et al., 
2001). Given the availability of an information data 
base, a training algorithm for developing RBF neural 
network models, consists of two stages: In the first 
stage the structure of the network, i.e. the number of 
hidden nodes is selected. In the second, the network 
parameters associated with the neurons and/or the 
interconnection links are determined using an 
optimization algorithm, which minimizes the errors 
between the true outputs and the network predictions 
over a set of training examples. This is the training 
procedure, during which the network learns the 
relationships between the input and output variables.  
 
Due to the popularity of RBF neural networks, 
several researchers have been working during the last 
decade to develop more efficient training algorithms, 
compared to the standard techniques (Moody and 
Darken, 1988,1989; Leonard and Kramer, 1991). 
Some of the algorithms that have been proposed use   
individual training of each hidden unit based on 
functional analysis (Houlomb and Morari, 1991), 
initial selection of a large number of hidden units 
which is reduced, as the algorithm proceeds (Musavi 
et al., 1992)  or utilization of genetic algorithms 
(Billings and Zheng, 1995). Most of these methods 
try to determine both the optimum network structure 
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and the values of the unknown parameters. However, 
a common drawback in the above algorithms is the 
long computational times. One additional problem is 
that since most of the above methods try to solve a 
nonlinear optimization problem, they may be trapped 
in local minima.  
 
Although most of the RBF training algorithms are 
much faster than the techniques used for other types 
of neural networks, they are still time consuming 
especially if a large informational database is 
available. Obviously new techniques, which can 
further reduce the necessary computations, will 
enhance the applicability and the effectiveness of the 
RBF neural network architecture. In this article, a 
new fast algorithm for training RBF networks is 
proposed, which selects the hidden node centers 
using the subtractive clustering (SC) method (Chiu, 
1994). The speed of the proposed method is due to 
the fact that only one pass of the training data is 
required, so that the solution of a nonlinear 
optimization problem is avoided.   After the selection 
of the hidden node centers, the rest of the network 
parameters are obtained using standard techniques: 
The widths of the nodes are determined by the P-
nearest neighbor heuristic (Leonard and Kramer, 
1991) and the weights between the hidden layer and 
the output layer are calculated by linear regression.   
 
The methodology is illustrated through the 
application to a simulated Continuous Stirred Tank 
Reactor (CSTR). The advantages of the proposed 
learning strategy are identified and the results are 
compared with those obtained using the standard 
MaqQueen k-means (Darken and Moody, 1990) 
training algorithm.  
 

 

2. RBF NEURAL NETWORKS: AN 
OVERVIEW 

 

2.1 RBF Network Topology 
 
An RBF neural network can be considered as a 
special three-layer network which is linear with 
respect to the output parameters after fixing all the 
radial basis function centers and nonlinearities f(·) in 
the hidden layer. Thus, the hidden layer performs a 
nonlinear transformation and maps the input space 
onto a new space. The output layer then implements 
a linear combiner on this space, where the only 
adjustable parameters are the weights of the linear 
combiner.  
 
The basic structure of a typical RBF network with N 
inputs and M outputs is shown in Fig. 1. The input 
nodes pass the input values to the connection arcs 
and the first layer connections are not weighted. 
Thus, each internal unit receives all the input values, 
unaltered. The internal units form a single layer of L 
receptive   fields,  which   have   localized   response  
functions in the input space. These internal (hidden) 
nodes are the radial basis function units. The hidden 
node  responses  are weighted  and the  output nodes 
are simple summations of the weighted responses: 

 
Fig. 1. The typical RBF Neural Network 
Architecture. 
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where zl is the activation of the lth unit in the hidden 
layer given the N-dimensional input vector x, f is the 
radial basis function, )(* lx is the N-dimensional 

center of the lth unit and T
mw =[wm,1, wm,2, …, wm,L] is 

the vector of weights, which multiply the hidden 
node responses in order to calculate the mth output 
of the network.  
 
The output function of the hidden nodes is a radially 
symmetric function. A typical choice, which was 
also used in this work, is the Gaussian function: 
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where σ is the width of the node. 
 
 
2.2 RBF Models of Dynamical Systems  
 
In a dynamic RBF neural network model, at time 
point i, past values of the process input and output 
variables constitute the input layer to the network. 
Therefore, an RBF network can be considered as a 
special type of Nonlinear Auto Regressive with 
eXogenous inputs (NARX) models. Given a process 
with R process inputs and M process outputs, at time 
point i the input vector to the network can be written 
as follows: 
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where pr is the number of past values of process input 
ur (r=1,….,R) and qm is the number of past values of 
process output ym (m=1,…,M). The output of the 
network contains the estimated values of the current 
process outputs and is given by: 
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3. AN RBF IDENTIFICATION METHOD BASED 

ON THE SUBTRACTIVE CLUSTERING 
TECHNIQUE 

 
The formulation of the training algorithm involves a 
set of input-output pairs (x(i), y(i)), i=1, …, K, where 
x(i) is the input vector, y(i) is the corresponding 
target or desired output vector and K is the number of 
training examples. The set of input-output examples 
is the information base, which is used to determine 
the values of the unknown parameters, i.e the hidden 
node centers and the connection weights between the 
hidden and the output layer. Determination of the 
hidden node centers is the most crucial step in the 
development of a successful RBF neural network 
model. The innovation in this work is the new 
algorithm which is proposed for selecting those 
centers, based on the subtractive clustering method. 
The rest of the network parameters are calculated 
using standard methods, which will be described 
briefly in the sequel. 
 
 
3.1 Using the subtractive clustering method to 
determine the hidden node centers  
 
The SC method considers each data point as a 
potential hidden node center. A measure of the 
potential of each data point is defined as a function 
of the Euclidean distances to all other input data 
points: 
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where α is a design parameter. Obviously, the 
potential of a data point is high when it is surrounded 
by many neighboring data. Given the above 
definition and provided that proper values have been 
assigned to the design parameters α, β and ε, the SC 
algorithm is defined as follows: 
 
Step 1) For i=1,…,K calculate the potential values 
P(i). 
 
Step 2) Set L=1 and select the data point with the 
highest potential value as the first hidden node 

center.  Let )1(*x  be the location of that point and 

)1(*P  its potential value. 
 
Step 3) Revise the potential of each data point 
i=1…K by the formula: 
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Step 4) Set L=L+1 and select the data point with the 
highest potential value as the next center. Let 

)(* Lx be the location of the new center and )(* LP  
its potential value. 
 
 Step 5) Revise the potential of each data point 
i=1…K by the formula: 
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 Step 6)  If the inequality 
 

            )1()( ** PLP ε<                             (9) 
 
is true, stop the algorithm, else return to step 4.  
 
Remark 1: The parameters α and β can be 
considered as radiuses, using the following 
equalities: 
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Each of the above radiuses defines a neighbourhood 
in the N-dimensional space. For example in Eq. (6) 
the neighborhood is an N-dimensional sphere, where 
x(i) is the center and 

α
r  is the radius, i.e. it contains 

all the points in the N-dimensional space whose 
distances from x(i) are less than or equal to 

α
r .   The 

data points that are inside this neighbourhood have a 
considerable effect on the potential of x(i). On the 
contrary, the data which are outside of the N-
dimensional sphere, have little influence on the 
potential of x(i). 
 
Remark 2: In order to avoid the selection of hidden 
node centers that are close the one to the other, β is 
chosen to be less than α. In this way after selecting a 
training point as a hidden node center, the potentials 
of the close training examples are greatly reduced 
and so are the possibilities for selecting one of these 
points as a new hidden node center. 
 
Remark 3: The choice of ε is very important for the 
produced network structure. If ε is selected to be 
very small, a large number of hidden node centers 
will be generated. On the contrary, a large value of ε 
will lead to a small network structure.  
 
Remark 4: The proposed methodology is an 
alternative to the standard RBF training techniques. 
One of these techniques is the MaqQueen k-means 
algorithm, which is briefly described next:  



     

Initially, the centers of the hidden nodes are assigned 
to different, randomly chosen, data points. During an 
iterative procedure, for each exemplar (training 
example) x(k) the algorithm determines the closest 
cluster vector closest

*x in a Euclidean sense, and 
modifies it according to: 
 

  ))((/1 **
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where closestN is the total number of data points that 
have been assigned to closest

*x . None of the other 
centers is modified by this exemplar. Several passes 
of the training examples are needed until the 
algorithm converges (Darken and Moody, 1990). 
 
Remark 5: The two methods will be compared in a 
later section through the application to dynamic data 
from a chemical reactor. However, an important 
observation can be made at this point and concerns 
the speed of convergence of the two algorithms. 
Since the most time consuming part in both methods 
is the calculation of Euclidean distances, the two 
algorithms can be compared as far as speed is 
concerned, by counting the required distance 
calculations. It can easily be verified that the after 
initialization (Step 1), the proposed method requires 
only KL distance calculations, in contrast to the k-
means method, which needs KLI calculations. In the 
two expressions, K is the number of training 
examples, L is the number of hidden nodes and I is 
the number of iterations in the k-means algorithm.  
 
 
3.2 Selection of the unit widths and the 
interconnection links 
 
After the receptive field centers have been 
determined, the receptive “widths” of each hidden 
node are calculated using the P-nearest neighbor 
heuristic: 
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where )(* jx are the P-nearest centers to )(* lx . The 
goal in the selection of the unit widths is to activate 
more than one units for any training example. This is 
achieved by choosing the value of the scaling factor 

)(lσ  for each hidden unit to be greater than the 
distance to the nearest unit center. 
   
The output weights are then calculated by linear least 
squares regression, since the output nodes are simple 
summation units. Regression correlates the desired 
network outputs with the hidden nodes responses, so 
each training example is passed through the hidden 
layer of the network to produce a corresponding 
hidden node activation vector: 
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The objective is to find the set of weights that 
minimizes the squared norm of the residuals:  
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where W is the matrix of output weights. If the 
following notation is introduced: 
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     [ ])()2()1( KyyyY l=              (16)
           

the solution can be found by linear regression using 
the pseudo-inverse of Z and is given by: 
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4. RESULTS 
 

The proposed methodology was used to model a 
Multi Input – Multi Output (MIMO) non-isothermal 
Continuous Stirred Tank Reactor (CSTR), where the 
following exothermal irreversible reaction between 
sodium thiosulfate and hydrogen peroxide is taking 
place: 
 

2Na2S2O3 + 4H20 → Na2S3O6+Na2SO4+4H2O 
 
This process is characterized by the following 
dynamic equations (Kazantzis and Kravaris, 2000): 
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where V is the volume of the CSTR;  (∆H)R is the 
heat of the reaction; and –E/R, ko, cp, ρ are constants 
of the reaction and the reactants. The variables F, 
CA,in, Tin and Tj are considered as inputs to the 
system, while CA, and T are the outputs. F is the flow 
rate into the reactor, CA,in is the inlet concentration of 
the reactant Na2S2O3, CA is the concentration of 
Na2S2O3 inside the reactor, Tin is the inlet 
temperature, T is the temperature inside the reactor 
and Tj is the temperature of the coolant. The values 
of the process parameters are shown in Table 1. 
 
Using a sampling period of 1s, a set of 2000 data 
examples was created by adding Random Number 
signals to the steady state values of the input 
variables, which are shown in Table 2. The first 1000 
points were used for training the network and the rest 
of the data were used for validation. The variables 
were scaled between –1 and 1 so that all the input 
and output values were of the same order of 



     

magnitude. The input vector to the RBF network 
consisted of twenty past values of each process input, 
a total of 80 variables. No values of the process 
outputs (concentration of Na2S2O3 and temperature) 
were used as additional inputs to the network.  
 

Table 1. Process parameter values in the CSTR 
example 

 

 
Process Parameters Values 

V 100 l 
UA 20000 J/s*K 
Ρ 1000 g/l 
Cp 4.2 J/g*K 

-(∆H)R 596619 J/mol 
ko 6.85E+11 l/s*mol 
E 76534.704 J/mol 
R 8.314 J/mol*K 

 
 
Table 2. Steady state values of the input variables in 

the CSTR example 
 

 
The proposed algorithm was applied to develop a 
number of neural network dynamical models, using 
different values for the parameter ε. The parameters 
α and β were kept constant and equal to 0.8 and 0.4 
respectively. The rest of the neural network 
parameters were determined using the standard 
techniques. The parameter P in the nearest neighbour 
heuristic was set equal to one fourth of the number of 
hidden nodes and rounded to the closest integer. 
Each value of ε produced a different neural network 
structure, which for comparison purposes was 
retrained using the standard MaqQueen k-means 
algorithm.  
 
The results are summarized in Tables 3 and 4 (for the 
subtractive clustering and the MacQueen k-means 
algorithms respectively), where the training times, 
numbers of hidden nodes and Sum of Squared Errors 
(SSE) for the set of validation data are shown.  
 
 

Table 3. Different runs of the proposed training 
algorithm in the CSTR example 

 

 

Table 4. Different runs of the ΜaqQueen k - means 
training algorithm in the CSTR example 

 
# of 

Hidden 
Nodes 

P SSE Validation 
 

CPU Time 
(sec) 

  CA T  
397 99 0.0067 965.8 1208 
315 79 0.0068 936.8 991 
204 51 0.012 1176.3 703 
116 29 0.0159 2290.0 334 
69 17 0.0208 3491.5 204 

 
The networks produced by the proposed algorithm 
proved to be very successful in predicting the 
dynamic behavior of the concentration of Na2S2O3 
and   the  temperature  inside   the  reactor  when  the 
second subset of data was used for validation. The 
training algorithm not only produced very accurate 
models, but also completed all the calculations in 
small computational CPU time using a PC with a 
1400 MHz Pentium IV processor. This result verifies 
the observation made in remark 5. 
 
The predictions of the neural network structure 
consisting of 204 hidden nodes along with the actual 
data for the concentration of Na2S2O3 and the 
temperature inside the reactor are shown in Figs. 2 
and 3 for a sample of 200 validation data points. 
 
Fig. 2 refers to the network trained with the proposed 
algorithm, while Fig. 3 shows  the  predictions of the 
network trained with the MaqQueen k-means 
method. The results show that the proposed method 
can produce more accurate predictions, but most 
importantly, train the network in an order of 
magnitude less time than the standard technique. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Actual values and neural network predictions 

for concentration and temperature using the 
subtractive clustering training method. 

 

Input variable Steady State 
F 20 l/s 
Ti 275 K 
Tj 250 K 

CA,in 1 mol/l 

ε # of 
Hidden 
Nodes 

P SSE Validation CPU 
Time 
(sec) 

   CA T  
0.05 397 99 0.0059 541.0 93 
0.1 315 79 0.0064 590.3 77 
0.2 204 51 0.0073 680.8 60 
0.3 116 29 0.0089 1045.2 48 
0.4 69 17 0.0191 2320.4 42 

355

360

365

370

375

380

385

390

395

1 26 51 76 101 126 151 176

Time (sec)

Te
m

pe
ra

tu
re

Actual Values
Predictions

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

1 26 51 76 101 126 151 176

Time (sec)

Co
nc

en
tra

tio
n

Actual Values
Predictions



     

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. Actual values and neural network predictions 

for concentration and temperature using the 
MacQueen k – means algorithm. 

 
 

5. CONCLUSION 
 
In this work a new algorithm was proposed for 
training RBF neural networks.  The algorithm first 
determines the centers of the nonlinear internal units 
in a very fast manner using the subtractive clustering 
technique. In a second stage the algorithm calculates 
the widths of the Gaussian functions and the 
connection weights between the hidden and the 
output layers. The proposed methodology has a 
number of advantages compared to other learning 
techniques: 
 

• It is characterized by very fast 
computational times, since it requires only 
one pass of the training examples.  

 
• It does not depend on an initial random 

selection of the hidden nodes, so for the 
same neural network structure, the same 
network parameters are always obtained.  

 
• Due to the high speed of convergence, it 

gives the opportunity to try a number of 
design parameters α, β, ε, which will lead to 
the selection of a proper network structure, 
i.e. a proper number of hidden layer nodes.   

 
The ability of the proposed algorithm to approximate 
the dynamics of nonlinear processes was tested, 
using simulated data generated from a MIMO CSTR 
model. The results show that the methodology can be 
very successful when it is applied to system 
identification problems. The methodology was 
compared to a standard learning technique, which is 

based on the MaqQueen k-means clustering. In both 
examples, the proposed technique surpassed the 
standard learning algorithm in speed and accuracy of 
predictions.  
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