

NEURAL NETWORK MODEL IDENTIFICATION BASED
ON THE SUBTRACTIVE CLUSTERING METHOD

Haralambos Sarimveis, Alex Alexandridis and George Bafas

Department of Chemical Engineering, 9, Heroon Polytechniou str.,
 Zografou Campus, Athens 15780, Greece, Tel.: +30-1-7723236, Fax: +30-1-7723155

Abstract: A new algorithm for training radial basis function neural networks is presented
in this paper. The algorithm, which is based on the subtractive clustering technique, has a
number of advantages compared to the traditional learning algorithms, including faster
training times and more accurate predictions. Due to these advantages the method proves
suitable for developing discrete-time models for complex dynamical systems. Copyright
© 2002 IFAC

Keywords: Radial base function networks, Identification algorithms, Training, Dynamic
Modeling, Discrete-time systems.

1. INTRODUCTION

The development of an efficient control scheme is
often based on the existence of an appropriate
dynamic model of the process. However, the
dynamic behavior of most processes cannot be easily
modeled by fundamental equations, due to the
complexity, nonlinearity and/or uncertainty of the
system. On the other hand, due to the continuously
reducing cost of informational systems and data
storage elements, a plethora of data is electronically
stored in an every day basis for a number of
processes, which in many cases remain unexploited.
These data are often a valuable source of information
that can be used for developing dynamic black-box
models. Therefore, mathematical tools that can
extract dynamic information about a process from a
pool of data are necessary today more than ever
before. Such a tool that has become very popular
during the last decade is the family of Artificial
Neural Networks (ANN) architectures.

Radial Basis Function (RBF) neural networks form a
class of ANNs, which has certain advantages over
other types of ANNs, such as better approximation
capabilities, simpler network structures and faster
learning algorithms. RBF neural networks have been
applied in many different scientific areas, including

dynamic system identification and control (Shin and
Goel, 2000; Bhartiya and Whiteley, 2001; Li et al.,
2001). Given the availability of an information data
base, a training algorithm for developing RBF neural
network models, consists of two stages: In the first
stage the structure of the network, i.e. the number of
hidden nodes is selected. In the second, the network
parameters associated with the neurons and/or the
interconnection links are determined using an
optimization algorithm, which minimizes the errors
between the true outputs and the network predictions
over a set of training examples. This is the training
procedure, during which the network learns the
relationships between the input and output variables.

Due to the popularity of RBF neural networks,
several researchers have been working during the last
decade to develop more efficient training algorithms,
compared to the standard techniques (Moody and
Darken, 1988,1989; Leonard and Kramer, 1991).
Some of the algorithms that have been proposed use
individual training of each hidden unit based on
functional analysis (Houlomb and Morari, 1991),
initial selection of a large number of hidden units
which is reduced, as the algorithm proceeds (Musavi
et al., 1992) or utilization of genetic algorithms
(Billings and Zheng, 1995). Most of these methods
try to determine both the optimum network structure

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

and the values of the unknown parameters. However,
a common drawback in the above algorithms is the
long computational times. One additional problem is
that since most of the above methods try to solve a
nonlinear optimization problem, they may be trapped
in local minima.

Although most of the RBF training algorithms are
much faster than the techniques used for other types
of neural networks, they are still time consuming
especially if a large informational database is
available. Obviously new techniques, which can
further reduce the necessary computations, will
enhance the applicability and the effectiveness of the
RBF neural network architecture. In this article, a
new fast algorithm for training RBF networks is
proposed, which selects the hidden node centers
using the subtractive clustering (SC) method (Chiu,
1994). The speed of the proposed method is due to
the fact that only one pass of the training data is
required, so that the solution of a nonlinear
optimization problem is avoided. After the selection
of the hidden node centers, the rest of the network
parameters are obtained using standard techniques:
The widths of the nodes are determined by the P-
nearest neighbor heuristic (Leonard and Kramer,
1991) and the weights between the hidden layer and
the output layer are calculated by linear regression.

The methodology is illustrated through the
application to a simulated Continuous Stirred Tank
Reactor (CSTR). The advantages of the proposed
learning strategy are identified and the results are
compared with those obtained using the standard
MaqQueen k-means (Darken and Moody, 1990)
training algorithm.

2. RBF NEURAL NETWORKS: AN
OVERVIEW

2.1 RBF Network Topology

An RBF neural network can be considered as a
special three-layer network which is linear with
respect to the output parameters after fixing all the
radial basis function centers and nonlinearities f(·) in
the hidden layer. Thus, the hidden layer performs a
nonlinear transformation and maps the input space
onto a new space. The output layer then implements
a linear combiner on this space, where the only
adjustable parameters are the weights of the linear
combiner.

The basic structure of a typical RBF network with N
inputs and M outputs is shown in Fig. 1. The input
nodes pass the input values to the connection arcs
and the first layer connections are not weighted.
Thus, each internal unit receives all the input values,
unaltered. The internal units form a single layer of L
receptive fields, which have localized response
functions in the input space. These internal (hidden)
nodes are the radial basis function units. The hidden
node responses are weighted and the output nodes
are simple summations of the weighted responses:

Fig. 1. The typical RBF Neural Network
Architecture.

)]()()([]ˆ,,ˆ,ˆ[ˆ 2121 xxxy MM
T ,g,,ggyyy ll == (1)

with:

∑
=

==

L

l
llmmm zwgy

1
,)(ˆ x

 () ,...,1 ,)(
1

2

*
, Mmlfw

L

l
lm =−=∑

=

xx (2)

where zl is the activation of the lth unit in the hidden
layer given the N-dimensional input vector x, f is the
radial basis function,)(* lx is the N-dimensional

center of the lth unit and T
mw =[wm,1, wm,2, …, wm,L] is

the vector of weights, which multiply the hidden
node responses in order to calculate the mth output
of the network.

The output function of the hidden nodes is a radially
symmetric function. A typical choice, which was
also used in this work, is the Gaussian function:

 exp)(
2

2









−=
σ

ν

vf (3)

where σ is the width of the node.

2.2 RBF Models of Dynamical Systems

In a dynamic RBF neural network model, at time
point i, past values of the process input and output
variables constitute the input layer to the network.
Therefore, an RBF network can be considered as a
special type of Nonlinear Auto Regressive with
eXogenous inputs (NARX) models. Given a process
with R process inputs and M process outputs, at time
point i the input vector to the network can be written
as follows:

)](),1(,),2(),1(
,),(),1(,),2(),1([

)](,),(),([)(

11

11

21

MMMM

RRRR

N
T

qiyqiyiyiy
piupiuiuiu

ixixixi

−+−−−

−+−−−=

=

l

ll

lx
(4)

where pr is the number of past values of process input
ur (r=1,….,R) and qm is the number of past values of
process output ym (m=1,…,M). The output of the
network contains the estimated values of the current
process outputs and is given by:

]))(())(())(([
)](ˆ,),(ˆ),(ˆ[)(ˆ

21

21

i,g,i,gig
iyiyiyi

M

M
T

xxx
y

l

l

=

= (5)

3. AN RBF IDENTIFICATION METHOD BASED

ON THE SUBTRACTIVE CLUSTERING
TECHNIQUE

The formulation of the training algorithm involves a
set of input-output pairs (x(i), y(i)), i=1, …, K, where
x(i) is the input vector, y(i) is the corresponding
target or desired output vector and K is the number of
training examples. The set of input-output examples
is the information base, which is used to determine
the values of the unknown parameters, i.e the hidden
node centers and the connection weights between the
hidden and the output layer. Determination of the
hidden node centers is the most crucial step in the
development of a successful RBF neural network
model. The innovation in this work is the new
algorithm which is proposed for selecting those
centers, based on the subtractive clustering method.
The rest of the network parameters are calculated
using standard methods, which will be described
briefly in the sequel.

3.1 Using the subtractive clustering method to
determine the hidden node centers

The SC method considers each data point as a
potential hidden node center. A measure of the
potential of each data point is defined as a function
of the Euclidean distances to all other input data
points:

 ()∑
=

−−=

K

j

jiaiP
1

2

2
)()(exp)(xx i=1, . . ., K (6)

where α is a design parameter. Obviously, the
potential of a data point is high when it is surrounded
by many neighboring data. Given the above
definition and provided that proper values have been
assigned to the design parameters α, β and ε, the SC
algorithm is defined as follows:

Step 1) For i=1,…,K calculate the potential values
P(i).

Step 2) Set L=1 and select the data point with the
highest potential value as the first hidden node

center. Let)1(*x be the location of that point and

)1(*P its potential value.

Step 3) Revise the potential of each data point
i=1…K by the formula:

()2

2

**)1()(exp)1()()(xx −−−= iPiPiP β (7)

Step 4) Set L=L+1 and select the data point with the
highest potential value as the next center. Let

)(* Lx be the location of the new center and)(* LP
its potential value.

 Step 5) Revise the potential of each data point
i=1…K by the formula:

()2

2

**)()(exp)()()(LiLPiPiP xx −−−= β (8)

 Step 6) If the inequality

)1()(** PLP ε< (9)

is true, stop the algorithm, else return to step 4.

Remark 1: The parameters α and β can be
considered as radiuses, using the following
equalities:

22

4,4

βα

βα
rr

== (10)

Each of the above radiuses defines a neighbourhood
in the N-dimensional space. For example in Eq. (6)
the neighborhood is an N-dimensional sphere, where
x(i) is the center and

α
r is the radius, i.e. it contains

all the points in the N-dimensional space whose
distances from x(i) are less than or equal to

α
r . The

data points that are inside this neighbourhood have a
considerable effect on the potential of x(i). On the
contrary, the data which are outside of the N-
dimensional sphere, have little influence on the
potential of x(i).

Remark 2: In order to avoid the selection of hidden
node centers that are close the one to the other, β is
chosen to be less than α. In this way after selecting a
training point as a hidden node center, the potentials
of the close training examples are greatly reduced
and so are the possibilities for selecting one of these
points as a new hidden node center.

Remark 3: The choice of ε is very important for the
produced network structure. If ε is selected to be
very small, a large number of hidden node centers
will be generated. On the contrary, a large value of ε
will lead to a small network structure.

Remark 4: The proposed methodology is an
alternative to the standard RBF training techniques.
One of these techniques is the MaqQueen k-means
algorithm, which is briefly described next:

Initially, the centers of the hidden nodes are assigned
to different, randomly chosen, data points. During an
iterative procedure, for each exemplar (training
example) x(k) the algorithm determines the closest
cluster vector closest

*x in a Euclidean sense, and
modifies it according to:

))((/1 **
closestclosestclosest kN xxx −⋅=∆ (11)

where closestN is the total number of data points that
have been assigned to closest

*x . None of the other
centers is modified by this exemplar. Several passes
of the training examples are needed until the
algorithm converges (Darken and Moody, 1990).

Remark 5: The two methods will be compared in a
later section through the application to dynamic data
from a chemical reactor. However, an important
observation can be made at this point and concerns
the speed of convergence of the two algorithms.
Since the most time consuming part in both methods
is the calculation of Euclidean distances, the two
algorithms can be compared as far as speed is
concerned, by counting the required distance
calculations. It can easily be verified that the after
initialization (Step 1), the proposed method requires
only KL distance calculations, in contrast to the k-
means method, which needs KLI calculations. In the
two expressions, K is the number of training
examples, L is the number of hidden nodes and I is
the number of iterations in the k-means algorithm.

3.2 Selection of the unit widths and the
interconnection links

After the receptive field centers have been
determined, the receptive “widths” of each hidden
node are calculated using the P-nearest neighbor
heuristic:

2/1

1

2**)()(1)(







−= ∑

=

P

j

jl
P

l xxσ (12)

where)(* jx are the P-nearest centers to)(* lx . The
goal in the selection of the unit widths is to activate
more than one units for any training example. This is
achieved by choosing the value of the scaling factor

)(lσ for each hidden unit to be greater than the
distance to the nearest unit center.

The output weights are then calculated by linear least
squares regression, since the output nodes are simple
summation units. Regression correlates the desired
network outputs with the hidden nodes responses, so
each training example is passed through the hidden
layer of the network to produce a corresponding
hidden node activation vector:

Kiizizizi L
T ,,1)](,),(),([)(21 ll ==z (13)

The objective is to find the set of weights that
minimizes the squared norm of the residuals:

)()(
2
1

)(ˆ)(
2
1)(

2

1

2

1

ii

iiE

K

i

K

i

zWy

yyW

⋅−=

−=

∑

∑

=

=

 (14)

where W is the matrix of output weights. If the
following notation is introduced:

[])()2()1(KzzzZ l= (15)
and

 [])()2()1(KyyyY l= (16)

the solution can be found by linear regression using
the pseudo-inverse of Z and is given by:

1)(−

⋅⋅=
TT ZZZYW (17)

4. RESULTS

The proposed methodology was used to model a
Multi Input – Multi Output (MIMO) non-isothermal
Continuous Stirred Tank Reactor (CSTR), where the
following exothermal irreversible reaction between
sodium thiosulfate and hydrogen peroxide is taking
place:

2Na2S2O3 + 4H20 → Na2S3O6+Na2SO4+4H2O

This process is characterized by the following
dynamic equations (Kazantzis and Kravaris, 2000):

()

())(exp)(2

exp2

2

2
,

j
p

A
p

R
in

AAinA
A

TT
cV

UAC
RT
Ek

c
HTT

V
F

dt
dT

C
RT
EkCC

V
F

dt
dC

−
ρ

−






−
ρ
∆−

+−=








−−−=

ο

ο (18)

where V is the volume of the CSTR; (∆H)R is the
heat of the reaction; and –E/R, ko, cp, ρ are constants
of the reaction and the reactants. The variables F,
CA,in, Tin and Tj are considered as inputs to the
system, while CA, and T are the outputs. F is the flow
rate into the reactor, CA,in is the inlet concentration of
the reactant Na2S2O3, CA is the concentration of
Na2S2O3 inside the reactor, Tin is the inlet
temperature, T is the temperature inside the reactor
and Tj is the temperature of the coolant. The values
of the process parameters are shown in Table 1.

Using a sampling period of 1s, a set of 2000 data
examples was created by adding Random Number
signals to the steady state values of the input
variables, which are shown in Table 2. The first 1000
points were used for training the network and the rest
of the data were used for validation. The variables
were scaled between –1 and 1 so that all the input
and output values were of the same order of

magnitude. The input vector to the RBF network
consisted of twenty past values of each process input,
a total of 80 variables. No values of the process
outputs (concentration of Na2S2O3 and temperature)
were used as additional inputs to the network.

Table 1. Process parameter values in the CSTR
example

Process Parameters Values

V 100 l
UA 20000 J/s*K
Ρ 1000 g/l
Cp 4.2 J/g*K

-(∆H)R 596619 J/mol
ko 6.85E+11 l/s*mol
E 76534.704 J/mol
R 8.314 J/mol*K

Table 2. Steady state values of the input variables in

the CSTR example

The proposed algorithm was applied to develop a
number of neural network dynamical models, using
different values for the parameter ε. The parameters
α and β were kept constant and equal to 0.8 and 0.4
respectively. The rest of the neural network
parameters were determined using the standard
techniques. The parameter P in the nearest neighbour
heuristic was set equal to one fourth of the number of
hidden nodes and rounded to the closest integer.
Each value of ε produced a different neural network
structure, which for comparison purposes was
retrained using the standard MaqQueen k-means
algorithm.

The results are summarized in Tables 3 and 4 (for the
subtractive clustering and the MacQueen k-means
algorithms respectively), where the training times,
numbers of hidden nodes and Sum of Squared Errors
(SSE) for the set of validation data are shown.

Table 3. Different runs of the proposed training
algorithm in the CSTR example

Table 4. Different runs of the ΜaqQueen k - means
training algorithm in the CSTR example

of

Hidden
Nodes

P SSE Validation

CPU Time
(sec)

 CA T
397 99 0.0067 965.8 1208
315 79 0.0068 936.8 991
204 51 0.012 1176.3 703
116 29 0.0159 2290.0 334
69 17 0.0208 3491.5 204

The networks produced by the proposed algorithm
proved to be very successful in predicting the
dynamic behavior of the concentration of Na2S2O3
and the temperature inside the reactor when the
second subset of data was used for validation. The
training algorithm not only produced very accurate
models, but also completed all the calculations in
small computational CPU time using a PC with a
1400 MHz Pentium IV processor. This result verifies
the observation made in remark 5.

The predictions of the neural network structure
consisting of 204 hidden nodes along with the actual
data for the concentration of Na2S2O3 and the
temperature inside the reactor are shown in Figs. 2
and 3 for a sample of 200 validation data points.

Fig. 2 refers to the network trained with the proposed
algorithm, while Fig. 3 shows the predictions of the
network trained with the MaqQueen k-means
method. The results show that the proposed method
can produce more accurate predictions, but most
importantly, train the network in an order of
magnitude less time than the standard technique.

Fig. 2. Actual values and neural network predictions

for concentration and temperature using the
subtractive clustering training method.

Input variable Steady State
F 20 l/s
Ti 275 K
Tj 250 K

CA,in 1 mol/l

ε # of
Hidden
Nodes

P SSE Validation CPU
Time
(sec)

 CA T
0.05 397 99 0.0059 541.0 93
0.1 315 79 0.0064 590.3 77
0.2 204 51 0.0073 680.8 60
0.3 116 29 0.0089 1045.2 48
0.4 69 17 0.0191 2320.4 42

355

360

365

370

375

380

385

390

395

1 26 51 76 101 126 151 176

Time (sec)

Te
m

pe
ra

tu
re

Actual Values
Predictions

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

1 26 51 76 101 126 151 176

Time (sec)

Co
nc

en
tra

tio
n

Actual Values
Predictions

Fig 3. Actual values and neural network predictions

for concentration and temperature using the
MacQueen k – means algorithm.

5. CONCLUSION

In this work a new algorithm was proposed for
training RBF neural networks. The algorithm first
determines the centers of the nonlinear internal units
in a very fast manner using the subtractive clustering
technique. In a second stage the algorithm calculates
the widths of the Gaussian functions and the
connection weights between the hidden and the
output layers. The proposed methodology has a
number of advantages compared to other learning
techniques:

• It is characterized by very fast
computational times, since it requires only
one pass of the training examples.

• It does not depend on an initial random

selection of the hidden nodes, so for the
same neural network structure, the same
network parameters are always obtained.

• Due to the high speed of convergence, it

gives the opportunity to try a number of
design parameters α, β, ε, which will lead to
the selection of a proper network structure,
i.e. a proper number of hidden layer nodes.

The ability of the proposed algorithm to approximate
the dynamics of nonlinear processes was tested,
using simulated data generated from a MIMO CSTR
model. The results show that the methodology can be
very successful when it is applied to system
identification problems. The methodology was
compared to a standard learning technique, which is

based on the MaqQueen k-means clustering. In both
examples, the proposed technique surpassed the
standard learning algorithm in speed and accuracy of
predictions.

REFERENCES

Bhartiya, S. and J. R. Whiteley (2001). Factorized
Approach to Nonlinear MPC Using a Radial
Basis Function Model. AIChE Journal, 47, 358-
368.

Billings, S.A. and G. L. Zheng (1995). Radial Basis

Function Network Configuration Using Genetic
Algorithms. Neural Networks, 8, 877-890.

Chiu, S.L. (1994). Fuzzy Model Identification Based

on Cluster Estimation. Journal of Intelligent and
Fuzzy Systems, 2, 267-278.

Darken, C. and J. Moody (1990). Fast Adaptive K-

Means Clustering: Some Empirical Results. IEEE
INNS Int. J. Conf. On Neural Networks;
Proceedings, 2, 233-238.

Houlcomb, T. and M. Morari (1991). Local Training

for Radial Basis Function Networks: Towards
Solving the Hidden Unit Problem. Amer. Control
Conf.; Proceedings, 2331-2336.

Kazantzis, N. and C. Kravaris (2000). Synthesis of

state feedback regulators for nonlinear processes.
Chemical Engineering Science, 55, 3437-3449.

Leonard, J.A. and M.A. Kramer (1991). Radial Basis

Function Networks for Classifying Process
Faults. IEEE Control Systems, 11, 31-38.

Li, Y., N. Sundararajan and P. Saratchandran (2001).

Neuro-controller design for nonlinear fighter
aircraft maneuver using fully tuned RBF
networks. Automatica, 37, 1293-1301.

Moody, J. and C. Darken (1988). Learning with

Localized Receptive Fields. In: Proceedings of
the 1988 Connectionist Models Summer School
(Touretzky, Hinton and Sejnowski (Eds.)), 133-
143. Morgan-Kaufmann, San Mateo, CA.

Moody, J. and C. Darken (1989). Fast Learning in

Networks of Locally-Tuned Processing Units.
Neural Computation, 1, 281-294 .

Musavi, M. T., W. Ahmed, K. H. Chan, K. B. Faris

and D. M. Hummels (1992). On the training of
Radial Basis Function Classifiers. Neural
Networks, 5, 595-603.

Shin, Miyoung and Amrit L. Goel (2000). Empirical

data modeling in software engineering using
radial basis functions. IEEE Transactions on
Software Engineering, 26, 567-576.

0.04

0.05

0.06

0.07

0.08
0.09

0.1

0.11

0.12

0.13

1 26 51 76 101 126 151 176

Time(sec)

Co
nc

en
tra

tio
n

Actual Values
Predictions

355

360

365

370

375

380

385

390

395

1 26 51 76 101 126 151 176

Time (sec)

Te
m

pe
ra

tu
re

Actual Values
Predictions

