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Abstract: A straightforward extension to systems over rings of the geometric approach
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1. INTRODUCTION

The geometric approach to linear systems pro-
vides solutions to many control problems, by ex-
ploiting the equivalence between (A, B)-invariance
and feedback invariance and between (A4,C)-
invariance and invariance by output injection, see
(Wonham, 1985), (Basile and Marro, 1992). A
crucial point in applying the geometric approach
to the solution of specific control problems is the
possibility to check practically the solvability con-
ditions and to construct the solution. An exten-
sion of the geometric theory to systems over ring
(which are useful models to study several inter-
esting classes of systems such as delay-differential
systems and parameter depending systems) has
been investigated by many authors, (Conte and
Perdon, 1998), (Conte and Perdon, 1995b),(Conte
and Perdon, 1995a), (Hautus, 1984), (Inaba and
Munaka, 1988), (Sename and Lafay, 1997). In
particular, since many classical geometric algo-
rithms no longer work new algorithms have been
proposed to compute key geometric objects, such
as V* and R*, for system over Principal Ideal
Domains (see (Assan and Perdon, 1998), (Assan

and Perdon, 19995)). In this paper, extending the
results of (Assan and Perdon, 19995) and (Assan
and Perdon, 1999a) we present, for systems over a
Noetherian ring, new algorithmic procedures that
allow to check if a submodule is feedback invari-
ant or injection invariant and, in case of positive
answer, to compute the corresponding feedback
or injection map. These algorithms can be practi-
cally implemented by means of symbolic computer
algebraic software, such as MapleV, Mathematica
and CoCoA (Capani and Robbiano, n.d.).

2. PRELIMINARIES

Let R denote a commutative ring with identity
and without zero divisors. Let ¥ be a system
defined by

z(t+1) = Az(t) + Bu(t) 1
{y(w — Ca(t) @)

where z(-) belongs to the free state module X =
R"™, u(-) belongs to the free input module U =
R™, y(-) belongs to the free output module Y =



RP, and A, B,C are matrices of suitable dimen-
sions with entries in R. Let us briefly recall here
a number of results and definitions that will be
used in extending classical results of the geometric
approach to systems over a ring.

Definition 1. Let ¥ be a system defined by (1)
over a ring R. A submodule V C R" is said:

i) (A,B)-invariant or controlled invariant if
AV CV+ ImB;
ii) (A+BF)-invariant or feedback invariant if

there exists an R-linear state feedback F: X —

U such that (A+ BF)V C V.

Any feedback F for which ii) holds is called a
friend of V.

Definition 2. Let ¥ be a system defined by (1)
over a ring R. A submodule § C R" is said:

i) (C,A)-invariant or conditioned invariant if
AN KerC) CS.

ii) (A+GCQC)-invariant or injection invariant if
there exists an R-linear output injection
G:Y — X such that (A+ GC)S C S.

Over a field, the notions of (A,B)-invariance and
feedback invariance are equivalent, see (Wonham,
1985), as well as those of (C,A)-invariance and
injection invariance, see (Basile and Marro, 1992).
A geometric characterization of the (A + BF)-
invariance property over a PID has been presented
in (Assan and Perdon, 19995).

Let V be a submodule of X = R"™, where R is a
PID, with dim(V) = k and let V' be a basis-matrix
of V. Denote by Sy = d“‘g(alé' )
a; divides a;y; for all ¢ = 1,2,...,k — 1, the
Smith form of the matrix V. Then, there exist
unimodular matrices P, () such that Sy = PV Q.

) , where

Definition 3. Denoting by (.); the it* column of
a matrix (.), we will say that the vectors o; =
V(Q)i, i = 1,...,k, form an ”ordered basis” for
the submodule V with respect to the invariant
factors as, as, ..., ap of any basis-matrix of V.

Proposition 1. (Assan and Perdon, 1999b) Let V
be a submodule of R™, where R is a PID, and let
{9;,i=1,...,k} be an ordered basis for V. Then
V is an (A+BF)-invariant submodule if and only
if the vectors v; for i = 1,2,...,k are such that
Av; CV + Im o;B.

The characterization of feedback invariance given
in the above Proposition seems not very trans-
parent, however it can be easily checked by an
algorithm and provides directly a ”friend of V7,
as the following example shows.

In fact, let us suppose that each wv; verifies
(1). Then, there exist matrices L and K such
that for all i Av; = V(L); + B(M);a;. Tt fol-
lows that AVQ =V L+ BMdiag(ay,as,...,a).
Since PVQ = Sy, writing P = (P, P)’,
we have AVQ = VL + BMP,VQ, and F =

(-M @) <P1> is a friend of V for any G in

P,
Rm™>n—k_ Practically, the feedback invariance of V
t
can be checked solving equations [V B] §1 =
2

AV with respect to matrices X; and X, If X,
can be written as Xo = XQSV, we define L :=
XZ; and M := X,. Efficient algorithms based
on Grdbner basis theory are available for solving
equations of this kind over rings of polynomials in
several indeterminate over a field.

Ezample 1. Let us consider the system ¥ defined

over R[V], the ring of polynomials in one variable
with real coefficients, by (1) with

A=

—_ oo OO

010
010
110 and B =
000

<]ooo

1
1
1
0
Denote by V' and Sy respectively a matrix whose

columns span the submodule V and its Smith
form,

vV 0 vV 0
V2 0 0V
V=19 o | v=LVe=1| ¢
0V 00
The invariant factors of V are a; = as = V.

Denoting by 01,02 the columns of V, which are
already an ordered basis-matrix for V, one can
easily verify that ©;, for ¢ = 1,2 satisfies the
relation A9; C V + Im «; B. V is therefore
an (A + BF)-invariant submodule. All feedbacks
F € F(V) can be written as

Fo (—(1+ng> 92 g1 0)
91V g91930)°

All the computations in this example have been
performed using the software MapleV.

3. GEOMETRIC CHARACTERIZATION OF
INJECTION INVARIANCE OVER A PID

In this section, we will characterize the property
of injection invariance following the same lines of
Proposition 1. Let R be a PID, S a submodule of
R"of dimension k, S, = Ker C' (S and denote by
S its direct summand, i.e. S = S; P S.. Let S;
and S be, respectively, a basis-matrix for S and



S1. Then we have S = [S;|S.] and CS = [CS1]0].
Assume dim(S;) = ki and compute the Smith
form of C'S,

Scs = PCSQ = <diag(ﬁ1’g%“’ﬂk1) 8) (2)

where ;41 divides g; for all 4 = 1,2,... k; — 1,
Bi =0fori=ki+1,..,k, P € RP*P and Q € R***
are unimodular matrices. Remark that k; < p and
k1 < k. Let us call the columns of S@Q, denoted
by {8;, i =1,...,k}, an ordered basis for S with
respect to 5;, 1 =1,..., k. The following technical
result will be used in the sequel.

Lemma 1. Given (2), there exists a k X p ma-
trix Py such that P,CSQ = diag(p, B2, -, Bk)
and a p x k matrix P, such that [CSQ =
P1 diag(ﬂl,ﬂQ, ..,ﬂk) .

Proof Being P unimodular, there exists a P

such that PP = I,. When £ < p write
P . .

P = <P;> and P = (P1 Pg),where P €

Rkxp Py € RP=k)xp P ¢ RP*F and P, €

RP*(P—k1)_ From <P1> (P, Py) = I, we have

Py
Plch = diag(ﬂl:ﬂ%"'aﬂk) and CSQ =

Pidiag(B1, B, - - -, Bk). When k > p, write P, =
P - g
<0(k—p)xp> and Py = (P OUpx (k—p) )- Then the

result follows.
We can now characterize the injection invariance

property.

Proposition 2. Let S be a submodule of R",
where R is a PID, and let S¢g = PCSQ =
diag(B1,B2,-..,Pk), with B; = 0fori = k1 +1,..,k
be the Smith form of C'S and {3;, i = 1,...,k}
be an ordered basis for & with respect to f;,
i = 1,...,k. Then, § is an (A+GC)-invariant
submodule if and only if the vectors §; for i =
1,2,...,k are such that A5; C S + Im BiX.

Proof (ii) = (i) Let us suppose that As; C S +
Im (;X holds for all i = 1,...,k. Then, there
exist As; = S(L); + (K)ifi. As a consequence
ASQ = SL+ Kdiag(p1, B2, -, 08k). By Lemma 1
there exists a k x p matrix P; such that P,CSQ =
diag(B1,.-.,Bk), then ASQ = SL + KP,CSQ.
Therefore (A + GC)S C S for G = —KP; and S
is an injection-invariant submodule.

(i) = (ii) Assume that S is (A + GC)-invariant
and that 31,3>,..., 35 is an ordered basis of S
with respect to the invariant factors of the matrix
CS. Then, by Lemma 1 there exists a matrix L
such that for alli=1,...,k,

A5; = S(L); — GC3;. (3)

As a consequence, ASQ = SL — GCSQ and, by
Lemma, 1, for a suitable p x k matrix f’l we have
ASQ = SL — GPydiag(B1, B, ..., Bk). Therefore
As; C S+ Imp;X foralli=1,... k.

Ezample 2. Let X be the system defined over the
ring R[V] by (1) with

A:<$8>,C’:(10).

The submodule § = span{(Z)} is (C,A)-

invariant, since Ker C NS = 0. Moreover, CS =
[V], hence P = 1, @ = 1 and 5y = V is the

invariant factor associated to s; = <Z>, the

vector that generates S. As a consequence As; =

0 \Y% -
<v> - <O>(gl)+ < i‘”)(V) C S+,
for every g1 € R[V], therefore S is (A + GC)-

invariant for all matrices G = (91 -1 ) In fact,

(A+GC) = (‘é’l 8) and (A +GC)S C .

Ezample 3. Consider now the system X; defined
over the ring R[V] by (1) with

A:(‘l)g) and C = (V 1).

The submodule § = span{(Z)} is still an

(C, A)-invariant submodule for ¥; but now £ =
V2, and the conditions of Proposition 2 are no
longer verified for s;. In this case S is not an
(A + GC)-invariant submodule .

4. GEOMETRIC CHARACTERIZATION OF
FEEDBACK INVARIANT SUBMODULES
OVER A RING

Let us now introduce a more general characteriza-
tion of feedback invariant submodules that holds
also when the Smith form is no longer available.
Such characterization may appear very technical,
but it is practically computable, for instance, over
Rlz1,22, ..., zk], the ring of polynomial in several
indeterminates over the reals, a very important
case in applications.

Definition 4. Let ¥ a system defined by (1) over
a commutative ring R, let V be a submodule of
R™ and v an element of V. We will denote by
Fv(v) the set of all matrix F' € R™*" such that
(A+ BF)v € V.



The following technical results will be used in the
following. The proof, which is straightforward will
be omitted.

Lemma 2. Let {v;, i € Z} a set of generators for a
submodule V of R". Then V is (A+BF)-invariant
if and only if (;c7 Fv (vs) # 0.

Lemma 3. Let ¥ a system defined by (1) over a
commutative ring R and V be a submodule of R™.
Denoting by wvi,vs,..,v, the n components of v
we have that Fy(v) # (0 if and only if Adv € V +
Z?:l I’ITLUjB.

4.1 The Noetherian case

Noetherian rings, in particular rings of polyno-
mials in a finite number of unknown over a field
are used to model, for instance, systems whose
defining matrices depend polynomially on a vector
of parameters or delay differential systems with
a finite number of incommensurable delays. A
crucial property of a Noetherian ring R is that
any submodule of R" is finitely generated. As a
consequence, the following result holds true.

Proposition 3. Let V be a submodule of R™, where
R is a Noetherian ring, and let {v;, i = 1..s} be
a set of generators for V. Then, V is an (A+BF)-
invariant submodule if and only if (;_, Fv (v;) #

0.

The intersection of a finite number of submodules
can be practically computed, using the theory
of Groebner bases over rings of the form R =
K[z1,...,2y,], where K is a field ( or an integral
domain, or a Unique Factorization Domain (UFD)
or a Principal Ideal Domain (PID)). Roughly
speaking, given any suitable notion of division in
the ring, a Groebner basis for an ideal I of R is a
set of generators for I with the property that an
element f € R, a polynomial, belongs to [ if and
only if the remainder of f divided by each element
of the Groebner basis is zero. The important fact
is that Gréebner bases can be computed by an
algorithm.

A crucial technical point in improving the effi-
ciency of the algorithm giving the Gréebner basis
of an ideal consists in the computation of the
syzygy module of a set of polynomials.

Definition 5. (Adams and Loustaunau, 1996) Let
R be the Noetherian ring R = KJz,...,2,] and
let fi,...,fs be polynomials in R. The syzygy
module of the matrix [f; ... fs], denoted by
Syz(f1,-..,[s) is the set of all the solutions of the
single linear equation with polynomial coefficients
(the fi’s) fiXi + foXo 4+ ...+ fsXs = 0, where
the solutions X; are also polynomials in R.

The syzygy module of a matrix V' whose columns
V4, - .. Vs belongs to R™, Syz(V) = Syz(v1, ..., vs),
is the set of all polynomial solutions X € R"
of the system of homogeneous linear equations
VX = 0, i.e. the set of all polynomial elements
in the nullspace of V.

The computation of the syzygy module of a poly-
nomial matrix requires the solution of a number
of diophantine equations over polynomial rings.
We can now introduce an algorithm to check if a
submodule V is (A + BF)-invariant, based on the
following technical characterization of the state
feedbacks which are friends of V.

Proposition 4. Let ¥ be a system defined by (1)
over a Noetherian ring R = K[z1,...,2,]. Let
V be an (A,B)-invariant submodule of R", V' €
R™*S a basis matrix for V and v1,..,v, the coordi-
Zo
Yo
nates of a vector v € V. Denote by Y , with
Yo
g € R™ Yy € >t Y; € R™*t for i = 1,..,n,
the (1 4+ s + nm) X ¢t matrix whose columns span
the syzygy module of [Av| — V|vi B|...|v,B], i.e.
such that

]
Yo

[Av| = VIuB|...jo,B] | Y1 | =o0.
Yy
Then,

o if Fiy(v) # 0, there exists a row vector
ko € R'*! such that zpky = 1 and the
matrix [Y1ko|Yako| . . .Y, ko], shortly denoted
by Yko, belongs to Fy (v).

e Moreover, Fy (v) consists of Yky and of
all the matrices that can be written as
[Y1k|Y2k|...|Y,k], where & € R'*! is such
that k& — kg is a syzygy for xo.

Proof 1. Suppose Fy(v) # 0 then, Av € V +
Z?Zl Imv; B and there exist column vectors [ and
F;,i=1,.,n such that Av = VI+ 3% | v;BF;.

Hence the vector w = (1 | Fy ... Fn)t is a
syzygy for [Av|—V|v1 B]...|v,B] and there exists
ko € R*™>*1 guch that zoko = 1, and Yk =
[Yikg|Y2k0| N |Ynk0] S .7:\/(’[)).

Now, let F' € Fy(v) and write F' = [Fi]..|F}]
for an F' € Fy(v). Then, there exists a column
vector I, such that Av = VI — 377 v; BF; and
the vector w := ( 11 F ... F, )t being a syzygy
for [Av|—V|v1B|...|v,B] is contained in the sub-

module spanned by (:UO YooY ... Y, )t . Hence



there exists k such that zgk = 1 = zgky and
xzo(k — ko) = 0. So, for all i = 1,..,n we have
F; =Yk and k — kg is a syzygy for zo.

Conversely, if & — ko is a syzygy for zo, we
have that zok = 1 and (1 Yok Yik ... YVok)' is
a syzygy for [Av| — V]v1B|...|vp,B], ie. Av =
VYky — (uBY1k + ... + v, BY,k). Therefore
Av € (V = BY 7, Yikv;), which proves that
Av + v BYik+ ... +v,BY"k = VYgk € V and
[Y1k|..|Y,. k] € Fv(v).

An analogous procedure, concerning the injection
invariance property over Noetherian rings, based
on Proposition 2 is actually being developed.
The procedure described in the above Proposition
can be practically implemented using software
which performs formal computations, for instance
MapleV and CoCoa (Capani and Robbiano, n.d.).

Let us summarize the different steps required to
compute Fy (v) by means of Proposition 4.

(1) Compute zo and Y from the matrix whose
columns generate the syzygy module of the
matrix [Av| — V|n B|...|v,B];

(2) A vector kg such that zoko = 1 exists if and
only if the reduced Gréebner basis for the
ideal generated by its components {zg;, i =
1,2,...,t},is {1} (see (Adams and Loustau-
nau, 1996));

(3) Compute Fy (v) as kernel of zg.

We shall now apply the above procedure to two
systems over R = R[z,y], the ring of polynomials
in two variables with real coefficients.

Ezample 4. Let us consider the system ¥ defined
by (1) over R[z,y] with

000 1
A=1000),B=|=
001 0
The submodule
10
V=Im| 0z | =Im(v|va).
0y

is (A,B)-invariant. To check if it is also feedback
invariant, using Propositions 2 and Proposition 4
let us first compute the syzygy module

0-10 100
Syz[Avy| = VIB[0j0]=10 0 —z 200
00 —y000O

We obtain Syz[Av,| — V|B|0]|0] =

. 100
0 it
Yo 000
000
column span of | Y1 | = | =+
000
Y, —_—
V- 010
’ 001
so that xy = (1 0 0) and we can choose, for
1
instance, kg = | 0
0
The kernel of zy is spanned by the columns of
00
the matrix | 1 0 | and the set of vectors K =
01
{k such that k — ko € Ker(zo)} can be described
1
as K = span | k1 |, where ki, ks are arbitrary
ko

elements of the ring R. We then deduce that the
feedbacks ”friends” of the vetor v; are of the
following type.

fV(’l)l):(O k] k2)

Let us now compute Fy (v2) . To this aim we
must compute the syzygy module of the matrix
[Avs| = V|0]zBlyB]. Syz([Ava| — V|0|zB|yB]) =

column span of . In this case xg =

00 -1

0-10
(O —y —ac) and there does not exist a kg in R?
such that zgko = 1. Hence Fy (v2) = 0 and we can
conclude that the submodule V is not (A+BF)-
invariant.

Ezample 5. Let us now slightly modify the dy-
namic matrix of the previous example and con-
sider the system X; defined by (1) over R[z,y]
with

000 1
A={000]| B=|{=z
00y 0

Computations analogous to those described in
more details in the previous example give

Fv(v1) = column span of (0 ky k)

as before. However now we have
Syz[Ave| — V|0|zB|yB] =

0-1 —=z
0 —y —zy
column span of (1) _Oy —Sfy
00 —y
0-1 0



where zg = (O -1 —ac). We can chose, for in-
stance.
0
ko= -1
0
Any element in the kernel of zg is of the form
k1
k= | —1—xky |, with k; and ks in R. Then,
)

any feedback F' of the form
F = (kl —yk'g 1+.’Ek2),
belongs to Fy (vs) for all pair (ki, ks) in RZ.
Finally we have that
fv(’vl) n .7:\/(1)2) =
= (0 —yk‘g 1+.’Ek2), Vky, € R

Therefore, V is an (A+ BF)-invariant submodule.
In fact we have tha, Vky € R

0 —ka 1+.’Ek2
A+ BF = | 0 —ayks x4+ 2°ky
0 O Y
and
0y
(A+BF)V=[0zy | CV.
Oy2

Remark 1. In order to compute [, Fv(v;) we
have only to solve a set of linear equations, since
the parametrization of Fy (v;) is linear. Conse-
quently, it is always possible and relatively simple
to compute it.

Since conditions for the solvability of many control
problems are formulated in terms of set theo-
retic relations concerning controlled invariant sub-
spaces which are feedbasck invariant (see, for in-
stance (Assan and Perdon, 1999a), (Conte and
Perdon, 1998)), the above results widen the prac-
tical applications of these results.

If R is a Noetherian ring, condition (4) can
be checked following the procedure described in
Proposition 4.1, which, in case of positive answer,
allows to compute the friends of V.

5. CONCLUSIONS

In this paper new characterizations have been
proposed for the invariant feedback property and
the injection invariant property for systems over
rings. Their use allows to develop practical design
methodologies based on the geometric approach
for systems over Noetherian rings, in particular
for delay differential systems.
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