MATCHING OF EULER-LAGRANGE AND HAMILTONIAN SYSTEMS
G. Blankenstein* R. Ortega** A.J. van der Schaft***
* Département de Mathématiques, EPFL, MA-Ecublens, 1015 Lausanne, Switzerland, e-mail: Guido.Blankenstein@epfl.ch
** Laboratoire des Signaux et Systèmes, CNRS-SUPELEC, Gif-sur-Yvette 91192, France, e-mail: Romeo.Ortega@lss.supelec.fr
*** Department of Systems, Signals and Control, Faculty of Mathematical Sciences, University of Twente, P.O.Box 217, 7500 AE Enschede, The Netherlands, e-mail: a.j.vanderschaft@math.utwente.nl
This paper discusses the matching conditions as introduced in two recently developed methods for stabilization of underactuated mechanical systems. It is shown that the controlled Lagrangians method is naturally embedded in the IDA-PBC method. The integrability of the latter method is studied in general.
Keywords: underactuated mechanical systems, Euler-Lagrange systems, Hamiltonian systems, stabilization
Session slot T-Th-A14: Control Design for Mechanical Systems/Area code 2a : Control Design

|