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Abstract: The norm optimal approach, both in its basic form and the extension
to predictive action, where the predicted errors on a number of future trials
are explicitly included in the cost function for controller design, is now a well
established area in iterative learning control in terms of the underlying theory.
By the fact that it includes the predicted errors on future trials in the cost
function, predictive iterative learning control is clearly a higher order law. Hence
it is now appropriate to ask if, in practical situations, predictive norm optimal
iterative learning control can deliver significantly improved performance over its
norm optimal alternative to merit the extra computational and hardware costs
associated with its application. This is the area addressed in this paper using a
somewhat new application area in the form of chain conveyor systems.
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1. INTRODUCTION

Since the iterative learning control (denoted ILC
in this paper) concept was proposed, a very large
number of approaches have been considered but
here we focus on so-called norm optimal ILC
and its performance against alternatives. Norm
optimal ILC schemes can be realized in terms
of current trial mechanisms combined with feed-
forward of previous trial data. The algorithm is
based on splitting the two-dimensional dynamics
into two separate one-dimensional problems. This
is done by introducing a performance criterion as
the basis of specifying the control input to be used
on each trial. This norm optimal approach has a
mature theoretical basis which can be extended
to include predictive action where in this setting
such action is included in the cost function as the
predicted errors on a number of future trials. This

leads naturally to an implementation law which is
clearly of the higher order form.

Given the existence of well defined algorithms for
this higher order ILC and its reduced version,
i.e. norm optimal ILC, there is a clear need
to investigate the relative performance of these
algorithms and in this paper we begin this task
by applying these algorithms to a chain conveyor
system for which an experimental testbed is also
available.

Chain conveyors are extremely simple in construc-
tion as they generally consist of parallel lengths
of chain that are connected at regular intervals to
form a conveying surface. The use of chain convey-
ors is of particular importance to the food man-
ufacturing industry, with the twin requirement
of high standards of hygiene and low overheads.
As chain conveyors have no sensitive components,
and most, if not all, are metal, cleaning with high-



pressure steam to ensure hygiene does not pose a
problem. The use of standard components with no
precision engineering makes them inexpensive — a
very important factor in the highly competitive
world of food manufacture.

Previous work has applied three term (or PID)
ILC schemes to this conveyor structure both in
simulation and experiment. The major conclusion
was that this is a highly relevant application area
for ILC. Despite this, achievable performance was
limited by the PID structure in certain cases.
Hence this case is ideal to compare and contrast
the norm optimal/predictive ILC against them-
selves and both of them against simpler structure
schemes. In the next section we give the necessary
background results.

2. BACKGROUND

Iterative learning control (ILC) is a technique to
control systems operating in a repetitive mode
with the additional requirement that a specified
output trajectory r(t) defined over a finite interval
[0,T] is followed to high precision. There are
numerous examples of such systems including
robot manipulators that are required to repeat
a given task to high precision, chemical batch
processes or, more generally, the class of tracking
systems. Here we will consider another application
area - chain conveyor systems.

Motivated by human learning, the basic of idea
of ILC is to use information from previous exe-
cutions of the task in order to improve perfor-
mance from trial to trial in the sense that the
tracking error is sequentially reduced ((Arimoto et
al., 1984; Moore, 1993)). Typical ILC algorithms
construct the input to the plant on a given trial
from the input used on the previous trial plus
an additive increment that is typically a function
of past values of the observed output error, i.e.
the difference between achieved and desired plant
output. The objective of constructing a sequence
of input functions {uy(¢)}x, ¢t € [0,T], such that
the performance as the task is repeated is grad-
ually improving, can be refined to a convergence
condition on the input and error:

lim |leg]| =0, lim [Jur —uw||=0 (1)
k—oo k—oo

where eg(t) is the error on trial k, i.e. the differ-
ence between r(t) and the system output yg(t),
and ug(t) is the input to the system on this trial.

The above definition of convergent learning is a
stability problem on an infinite-dimensional two-
dimensional (2D)-product space. As such it places
the analysis of ILC schemes firmly outside the
scope of traditional control theory. In particular,

ILC must be studied in the context of fixed-
point problems or, more precisely, linear repetitive
processes ((Rogers and Owens, 1992)).

As noted previously in this paper, a very large
number of approaches to ILC have been consid-
ered but here we only consider so-called norm
optimal ILC which can be realized in terms of
current trial mechanisms combined with feedfor-
ward of previous trial data. The algorithm is based
on splitting the two-dimensional dynamics into
two separate one-dimensional problems. This is
done by introducing a performance criterion as the
basis of specifying the control input to be used on
each trial.

The norm optimal approach in general has a
mature theoretical basis (Amann et al., 1996) and
in this setting the following is the formal definition
of a successful ILC algorithm.

Definition 1. Consider a dynamic system with in-
put u and output y. Let Y and U be the output
and input function spaces respectively and let
r € Y be a desired reference trajectory from the
system. Then an ILC algorithm is successful if,
and only if, it constructs a sequence of control
inputs {uj}r>o which, when applied to the sys-
tem or plant (under identical experimental condi-
tions), produces an output sequence {yj };>o with
the following properties of convergent learning;:

lim y, =7, lim up = ug (2)
k—o0 k—o00

Here convergence is interpreted in terms of the
topologies assumed in Y and U respectively.

Note: This general description includes linear and
nonlinear dynamics, continuous or discrete plants,
and time-invariant or time-varying systems.

Now let the space of output signals ) be a real
Hilbert space and U also be a real (and possibly
distinct) Hilbert space of input functions. Then
the respective inner products (denoted by (:,-))
and norms || - |[|2 = (,,-) are indexed in a way
that reflects the space if it is appropriate to the

discussion.

The dynamics of the plant considered here are
approximated by a linear model which in operator
form can be written as

y=Gu+ z (3)

where no loss of generality arises from setting
2o = 0. Also it is clear that the ILC procedure, if
convergent, solves the problem r = Guy, for uy
and, if G is invertible, the formal solution is just
Uso = G~ 1r. A basic premise of the ILC approach
is that the direct inversion of G is regarded as
an impractical solution because it requires ex-



act knowledge of G and involves derivatives of
r. This high-frequency gain characteristic would
make the approach sensitive to noise and other
disturbances. Also it can be argued that inversion
of the whole plant G is unnecessary as the solution
only requires finding the pre-image of r under G.

The above problem is easily shown to be equiv-
alent to finding the minimizing input u, for the
optimization problem

ming{|le||” : e=r—y,y=Gu}  (4)
The optimal error ||r — Guel||? is a measure
of how well the ILC algorithm has solved the
inversion problem. It also represents the best that
the system can do in tracking the signal r. The
case of interest here is when the optimal error is
Z€ro, i.€. Uy 1S a solution of 7 = Gu. Also (4) is
clearly a singular optimal control problem which
by its very nature requires an iterative solution.

There are an infinity of potential iterative pro-
cedures for solving (4) and of these the gradient
approach has the simplest form and has been
extensively investigated in the ILC literature. A
gradient based ILC algorithm has the form

Upt1 = Uk + €x+1G7eg (5)

where G* : Y — U is the adjoint operator to G,
and €41 is a step length to be chosen at each
iteration. This general approach suffers from the
need to choose this step length on each trial and
the feedforward structure of the iteration takes
no account of current trial effects - including
disturbances and plant modeling errors.

Norm optimal ILC has the following two crucial
properties relative to the gradient based algo-
rithms discussed above.

1. Automatic choice of step size.

2. Potential for improved robustness through the
use of causal feedback of current trial data and
feedforward of data from previous trials.

In particular, the class of ILC algorithms consid-
ered here compute, at the completion of trial k,
the input on trial £ + 1 as the solution of the
minimum norm optimization problem

Ug41 = arg minuk+1{Jk+1(uk+1)} (6)
subject to
€1 =T — Yps1s Ykt1 = Gupyqr (7)

where the performance index (or optimality crite-
rion) used is

Tt (urr1) = [lexsall3 + lunsr — uellf (8)

The initial control ug € U can be arbitrary but, in
practice, will be a good first guess at the solution

of the problem. Also the relative weighting of
reducing the current trial error against minimizing
the deviation in the control input signals used
on successive passes can be absorbed into the
definitions of the norms in ) and U.

The benefits of this approach are immediate from
the simple interlacing result

ller1l® < Tia (ur+1) < llexll*, ¥k >0 (9)

which follows from optimality and the fact that
the (non-optimal) choice of uyy; = uy would lead
to the relation Jyy1(ug) = ||ex||>. This result
states that the algorithm is a descent algorithm
as the norm of the error is monotonically non-
increasing in k£ and also equality holds if, and
only if, ugy1 = wug, i.e. when the algorithm
has converged and no more input-updating takes
place.

The controller on trial k + 1 is given by

Upy1 = uk + Grepy1, Vo >0 (10)

This relationship, together with the error update
relation

err1 =T +GG*) ter, Vk>0 (11)

and the recursive input update relation

Upp1 = (I + G*G) Hup + G*r), VE > 0(12)

can be used to undertake a detailed analysis of
the (theoretical) properties of this class of ILC
laws (Amann et al., 1996).

In this paper, we will only consider the special
case of Ji11(ugs1) defined as follows applied to a
linear time invariant differential plant model with
state space matrices (4, B,C) (state, input and
output respectively)

T
Tea(unin) = 5 [{eF1(0Qers (0
0

+ HTRH}dt
1
+ §ef+1(T)F€k+1(T) (13)
where

H = upsr () — up(t) (14)

and the symmetric matrices @), R, and F satisfy
the normal linear quadratic optimal control as-
sumptions. Standard optimal control theory now
gives the solution as

Prr1(t) = —ATY41(t) — CT Qerpr ()
up1(t) = ur(t) + R BT rqa(t)



Vi1 (T)=CT Fep 1 (T), t €[0,T] (15)

This representation is non-causal (in the standard
sense) but it can be transformed into a causal
implementation as detailed next for the case of
a relaxation factor a.

Transform the costate vector 141 () using

Py (t) = —K () [z141(t) — azp(?)]
+ Qe (B) (16)

where the feedback gain matrix K (¢) satisfies the
well known Riccati (matrix) differential equation

K(t)=—-ATK(t) - K(t)A
+ K(t)BTR'BTK(t) - CTQC
K(T)=C*FcC (17)
Note that this last equation is independent of
the inputs, states and outputs of the system and

hence only needs to be computed once before the
sequence of trials begin.

The predictive or ‘feedforward’ term (11 () must
be computed on each trial using

a1 (t) =—(A— BR 'BTK) (11 (t)

— aCT Qex(t)
+ (1 — a) K Buy(t)
—(1-a)CTQr(t) (18)

with terminal boundary condition

Cr+1(T) = CTF [aer(T) + (1 — a)r(T)] (19)

The algorithm is now causal since (18) and (19)
can be solved off-line by reverse time simulation
using available previous trial data.

Predictive optimal ILC (Amann et al., 1998) ex-
tends the cost function to the form

N
Jer1,N(Uni1) = Z X (lerill3
i=1

+ [|wkti — urgioillz)  (20)

This criterion includes the error of the next N
trials as well as the corresponding changes in the
control input signals The weighting parameter
A > 0 determines the importance of more distant
(future) errors and incremental inputs compared
with the current ones. By including more future
signals into the performance criterion, the algo-
rithm becomes less ‘short sighted’.

The theory given above extends in a natural
manner to this case and an obvious question to
ask is: when does the extra (computational) cost
become worthwhile?

Suppose now that we use a quadratic cost function
which is just the natural generalization of (13)
to the predictive setting. Then the following is
the final form (with no relaxation factor) of the
implementation algorithm for predictive optimal
ILC (for complete details see (Amann et al,
1998))

U1 [ u
Uk+2 U
=1 . | - RN'BRE(Q)
Uk4+N | Uk
Tk41 Tk
Th+2 Tk
X . =1 . -
Tk+N Tk
Sk, (1)) (21)

K=-ATK-KAyx+
KBNRy'BRLK — CHQCl,
K(T) = CL(T)FCx(T) (22)

. T
1, (t) =— (AN - BNRleB?\}K) Ert1,n(t) —

€L (t)
ctow | " (23)

ex(t)

with final condition

&N (T)=CRFN
x  [eI@)... @] (29)

where Ay is a block diagonal matrix with each
diagonal entry equal to the state matrix A4, and
the matrices By and Cp are constructed in an
identical manner using the matrices B and C
respectively. For the precise form of the weighting
matrices Qn, Ry and Fy, see again (Amann et
al., 1998).

Next we detail the application area studied in this
paper.

3. CHAIN CONVEYOR SYSTEMS

Previous work [6] has applied three term (or PID)
ILC schemes to this conveyor structure both in
simulation and experiment. The major conclusion
was that this is a highly relevant application area
for ILC. Despite this, achievable performance was
limited by the PID structure in certain cases.
Hence the decision was made to apply norm op-
timal based ILC schemes outlined in the previous
section to chain conveyor systems. The eventual
goal is to assess the performance of such schemes
in ‘real world’ operation - both stand alone and



comparatively. In the remainder of this paper, we
describe the chain conveyor system to be used, its
mathematical modeling and configuration for the
actual implementation of control action, and the
design of the candidate ILC schemes.

The System

The chain conveyor systems considered in this
work have two possible operational modes - in-
dexing and synchronization. When operating in
an indexing mode the conveyor moves one item
at a time under a dispenser. The dispenser re-
mains stationary and product is dispensed when
the conveyor comes to rest. This motion is then
repeated for the next item. In synchronization
mode the conveyor moves at constant velocity
and the dispenser moves back and forth. Product
is dispensed when the position and velocity of
the dispenser are synchronized to that of item
on the conveyor. The system is measured by its
accuracy combined with rate of throughput and
reliability. Each requirement introduces difficul-
ties and accuracy will degrade with time due to
component wear. Commonly this is overcome by
regular manual re-calibration of the system.

High rates of throughput imply large accelera-
tions. These produce large electrical and mechan-
ical stresses in the system components that in-
crease wear and reduces accuracy. Ultimately high
stresses will cause the premature failure of com-
ponents, reducing reliability and overall through-
put. It is therefore necessary to ensure that the
controller demand does not require the actuator
to perform outside of the manufacturers specifi-
cations. As described in (Barton et al., 2000) the
system has many problems that a PID controller
cannot deal with at high enough accuracy to meet
typical performance requirements.

Sprockets Trays
v v
r— — L— L— L— L —
Jwr
T—Chains—lr
Chain Guide
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Fig. 1. Schematic of Conveyor Construction.

The conveyor, see Figure 1, is constructed from
a 3m long framework of right angle steel section
and consists of two parallel strings of 0.5 pitch
steel roller chain. At 300 mm intervals there is an
aluminum plate supported on a rod that is pinned
through a bushing on each chain. A standard
squirrel cage induction motor supplied by a vari-
able voltage variable frequency (VVVF) inverter,
that is delta connected to a 3 phase pulse width
modulated (PWM) inverter, drives the conveyor

through a timing belt drive with a 5:2 reduction
ratio. The induction motor is oversized for the
mechanical load to ensure that the actuator will
not limit system performance. A 500 pulse per
revolution optical encoder, measured on the motor
shaft with differential outputs, provides position
feedback. Processing using a DEVA 004 motion
control card increases the resolution to the equiv-
alent of 2000 pulses per revolution.

The dispenser, see Figure 2, consists of a trolley
that moves linearly above the conveyor. The trol-
ley is an open frame, as this allows dispensing
systems and instruments to be exchanged when
required. A long belt supplies the linear motion,
rotary motion being provided by an identical in-
duction motor/belt drive system as for the con-
veyor.

O = O
Dispenser
I Conveyor | B

Fig. 2. Schematic of Conveyor Construction.

Frequency-Domain Model

The models of the conveyor and the dispenser used
are linear approximations, which were developed
for simulation purposes. These were obtained by
driving the conveyor and the dispenser with a vari-
able frequency sinusoid, provided by a dc motor
drive and recording the frequency response. The
motor velocity was measured by using a tachome-
ter, and then scaled to give a response relating in-
put voltage to output velocity in counts/seconds.
From the resulting Bode plots linear approxima-
tions were derived for the conveyor and dispenser
respectively as

Geomy () = 615.06 x 10°
COMVESI ™ (52 + 495 + 35%)(s2 + 54s + 1802)
(25)
6.47 x 106
Caisp(*) = (53735) (s + 995  1109)
(26)

Control Implementation

A PC controls the system that includes the DEVA
interface card. The card has two 14-bit Digital
to Analogue Converters (D\A) for speed demand
output and two optional-isolated digital outputs



for axes enabling. A programmable interrupt con-
troller is provided to produce regularly timed
processor interrupts suitable for running discrete
controllers. As the inverters are unable to accept a
-10V to +10V speed demand, a positive analogue
speed signal is provided, with a single line of the
parallel port linked to the direction setting pin
of the inverter to provide direction control. A
program, written in C, provides a user interface to
the hardware and also implements the controller.

System Simulation

In order to begin the evaluation of the perfor-
mance of norm optimal ILC designs in this area,
including the relative advantages/disadvantages
of predictive action, a simulation of the system
operating in synchronous mode has been con-
structed in MATLAB/SIMULINK. Also a range
of controllers have been designed. For example,
Figure 3 shows a sample design (for the dispenser
transfer function) where the reference signal used
is the same as that used in the previous work on
the use of PID ILC for this application (Barton et
al., 2000).

G(s) for the dispenser

Reference signal ( *)

0.8

0.6

Iterations # 1,2,4,5
0.4

0.2

Fig. 3. Illustrative Design.

4. CONCLUSIONS

The goal of the research programme on which
this paper is based is to evaluate the performance
(both stand alone and comparative terms) of norm
optimal based ILC schemes in the ‘real world’
operating domain. The testbed chosen for this is a
chain conveyor system. To date, the experimental
testbed has been constructed and the relevant
parts of its dynamics approximated by linear mod-
els, in the form of transfer functions constructed
from measured frequency domain data, obtained.
Also arange of controllers based on both the norm
optimal and predictive norm optimal ILC designs
have been completed (a sample norm optimal de-
sign has been included here).

This paper has described the necessary back-
ground development to undertake an extensive
range of experimental tests which will be used to
address the following key questions (and others).

(1) How do normal optimal and predictive norm
optimal ILC compare against alternatives
(from, in the main, (Barton et al., 2000) and
the relevant cited references).

(2) Are there any benefits to be obtained by
using predictive norm optimal ILC, ie. a
higher order learning law, against just norm
optimal ILC.

(3) If norm optimal ILC does indeed give im-
proved (relative) performance, how can this
be quantified in terms of the key extra pa-
rameters in these control laws, i.e. the pre-
diction horizon N and the weighting factor
A?

(4) What are the general messages from this
study in terms of the theme of this special
session, i.e. the relative merits of higher order
ILC.

Early results from the experimental programme
can be found in (Al-Towaim et al., 2002).
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