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Abstract : In this paper, the design of interval observers for the estimation of
biomass concentrations in complex biotechnological systems (interconnected
biological systems) is described. In particular, the design of such observers for
tanks in cascade (including a recirculation) is considered. The design procedure as
well as a sufficient condition for the stability of the observer are established. The
proposed approach is robust with respect to unknown kinetics and bounded
disturbances on the inputs. Copyright © 2002 IFAC.
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1. INTRODUCTION
 
 Today, biological systems are used in a large number
of production systems. If a number of sensors are
available in high added value industries such as
pharmaceutical or food, biological processes suffer of
a systematic lack of sensors when used as Treatment
Processes. In such processes, due to the natural
biodiversity, the number of present species can be
extremely large and it is not possible to closely
monitor the depleting ecosystem at the opposite of
what happens in pharmaceutical industries where
usually only one well known species is used.
 
 When the inputs of biological processes are known
or can be monitored, classical observation and
control tools can be used to estimate unmeasured
variable and to optimize the process (see (Bastin and
Dochain, 1990)). However, treatment processes are
subject to external disturbances such as variations of
both the quantity and the quality of the liquid or solid
wastes to be treated and these disturbances are
actually not measurable on-line. As a consequence,
since it is not possible to measure all inputs of the
process, classical observation and control methods
cannot be applied. Of course, a number of
hypotheses can be posed in order to simplify the

problem but results can then be quite conservative.
To rigorously solve this problem, an alternative
approach has been proposed (See (Gouzé et al.,
2000)). From known lower and upper bounds in
between which the inputs are assumed to lie, this
approach allows the user to on-line estimate
guaranteed lower and upper bounds on the
unmeasured variables. Since the actual value is not
uniquely reconstructed, this approach is called the
"interval based observer". Recently, the method has
been experimentally validated on a 1m3 fixed bed
reactor ((Alcaraz-Gonzalez et al. 1999)). Its use for the
design of robust control laws has also been
investigated (see (Rapaport and Harmand, 2001)).
However, all the previously cited studies were related
to single biological units and none were devoted to
the interaction of systems. Yet, in reality - and in
particular when used as treatment processes -
biological tanks are interconnected. In this case, the
above mentioned theory are not systematically and
directly applicable and further investigation is
necessary (the reader can refer to (Chen, 1992) for
studies about interconnected biological systems).
 
 This paper presents the use of interval observers
approach for complex biological systems composed
of several interconnected biological reactors. The
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paper is organized as follows. We first present the
system under consideration. Then, we propose an
asymptotic observer for unknown kinetics but with
known exogenous inputs. In the next section, interval
observers are derived. Finally, simulation results on a
simple example are presented.

 
2. THE PROCESS UNDER CONSIDERATION

The complex biological system considered in the
present study is represented as a succession of N
tanks connected in the following way :
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Figure 1 : System considered

αiQ and βiS0  represent respectively the flow rate and
the concentration of the input substrate in tank i
(i=1...N-1). δ1 and δ2 are the part of the total input flow
rate going out through Qout1 and Qout2 respectively
and thus verify δ1+δ2=1. αi and βi    are functions of

time belonging to [0,1]  and 1
1

1

=∑
−
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k
kα . Finally, γQ is

the recirculation flow rate (and thus γ is a non
negative function of time).

Hypotheses :
• Tanks 1 to N-1 are assumed to be perfectly mixed

reactors;
• The settler (tank N) is assumed to be perfect : the

particulate matter (the biomass) is completely

settled and none of it leaves the process by the
way of Qout1.

The model of the process is given hereafter, where Xi,
Si and Pi are the concentrations, respectively, of
biomass, substrate and product in the ith tank. Vi are
the volume of each tank. We consider the same
biological reaction in each tank i (i=1…N) involving
three concentrations Xi, Si and Pi. Y1 is the yield
coefficient of this reaction, identical in each tank i.

For the first tank, a mass balance between the input
and the output is written as :
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For the ith (i=2...N-1) reactor, we have :
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and for the Nth reactor (the settler), the mass balance is written as (3) :
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In these equations, ( ) ( ) ( )∑
=
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αγη  and the

terms µi(t) represent the realizations of the growth
functions, i.e. µi(t)=µi(t,X(t),S(t)), which are unknown
functions of the concentrations of biomasses and
substrates.

3. SYNTHESIS OF AN UNKNOWN KINETICS
OBSERVER

 In the following we assume that for any tank i
(i=1...N), either the substrate concentration Si or the
product concentration Pi is measured on-line. The
objective is to estimate the biomass concentrations
Xi, without the knowledge of the kinetics µi(.).
Following the design procedure proposed in (Bastin
and Dochain, 1990), the auxiliary variables Zi=Xi/Y1+Si

and Wi=Xi/Y2-Pi  (i=1...N) are introduced. Their
dynamics are given by (for simplicity time
dependence of parameters are not written) :
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 with the convention Z0=ZN and
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 with the convention W0=WN. This leads to the construction of two observers (6) and (7):
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 Define the matrix ( )
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A sufficient condition of stability of these observers
is now given when βi(.) and δ1(.) are known.
Proposition 1: Assume that at any time, αi(t) and γ (t)
belongs respectively to [

i
α , 

i
α ] and [0, γ ] with

(i=1...N), and δ2 (t) belongs to [ 2δ , 2δ ], where

i
α , 

i
α ,  γ , 2δ  and 2δ are positive numbers. If 1#X̂

and 2#X̂  are initialized such that ( ) ( )00ˆ 1#
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XX ≤  and
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guarantee that (6) and (7) are asymptotic observers is
given by :
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Proof : Consider the error vectors of the two observers:
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for i=1,2. Matrices A+ and A- being cooperative (i.e. all
nondiagonal elements are non positive) and such that

( ) +− ≤≤ AtAA , whatever t, we can deduce that the solution

of (L) and (U) are such that ( ) ( ) ( )tEtEtE
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whatever t (see for instance (Smith, 1995)). The convergence
of the two observers is guaranteed.as soon as A+ is Hurwitz.
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1959) and (Laddle, 1976)) : a matrix M with negative main
diagonal, for which there exists bi>0 and a>0 such that

am
b

b
m

n

ijj
ij

i

j

ii >− ∑
≠= ,1

 (i=1…n) is stable.

A sufficient condition for the stability of A+ is that there exists positive λ1...λn such that :

∑∑

∑

∑

∑
−

=

−−

=

−

=
−−−

=

=
−

+
<

+
<

+
<

+
+

<< 1

1

2
12

1

1

1
121

1

1
1

1

21
21

1
1 ,,...,...,,, N

k
k

NNN

k
k

N

k
k

NNi

k
k

i

k
k

iiN

αγ

δ
λλ

αγ

α
λλ

αγ

α
λλ

αγ
αα

λλ
γ
α

λλ  which is equivalent to

∏
∑

∑

∑

−

=
−

=

=
−

=


















++
<

1

1
1

1

1
1

1

21
N

m
m

k
k

m

k
k

N

k
k αγ

α

αγ

δ
 which is exactly condition (8).

4. SYNTHESIS OF AN INTERVAL OBSERVER IN
PRESENCE OF UNKNOWN INPUTS

 When used as wastewater treatment processes, it is
the rule rather than the exception that biological
systems are subject to input disturbances both in
flow rates and concentrations. When controlled,
however, it is usually considered that the input flow
rates are the control inputs and that the only
disturbances are the input concentrations, that are
the βiS0. In other words, the parameters βi are not
constant over the time. Furthermore, because of the
presence of suspended solids in the input, it is

usually not possible to measure on-line and directly
these variations. As a consequence, the input
concentrations have to be considered as unknown
inputs. Notice that the observers (6) and (7) proposed
here above can no longer be implemented since we
precisely assumed that the input concentrations were
measured on-line. Other approaches must be used. A
first solution is to estimate these unmeasured inputs
using the available output measurements, but then
kinetics must be known. Another method consists in
the synthesis of "interval observers" in the spirit
described in (Gouzé et al, 2000): from known bounds
on the inputs, we derive time varying bounds on the



state variables to be estimated. With this approach,
we no longer need the system to be observable for
unknown inputs, as we do not require intervals to
converge towards singletons, but at least we provide
guaranteed bounds at any time. It is also very easy at
the same time to take into uncertainties on αi(.), γ (.),
βi(.) (i=1..N) and δj(.) (j=1,2), as it is formulated the
following proposition:
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Furthermore, when condition (C1) is fulfilled, the
vector X+(t)-X-(t) remains bounded.

Proof:  Similarly to the proof of Proposition 1, the error
vector is solution of a cooperative dynamical systems, whose
solutions can be bounded by two autonomous lower and upper
dynamical systems.

5. SIMULATIONS

We consider a digestion process that can be modeled
by a cascade of three tanks followed by a settler. The
detailed model of this process is presented in
(Harmand et al. 2001). In particular, it is used to
produce Volatile Fatty Acid, an easily biodegradable
substrate that is useful in denitrification processes.
The input loading rates of solid waste, soluble waste
and VFA in the reactor i are respectively αiQXsin,
αiQS sin, αiQAin. In the present study, we are interested
in designing an interval observer for estimating the
hydrolytic bacteria concentrations X j (j=1…4), from
the knowledge of lower and upper bounds on the
input concentrations αjXsin (j=1…3) and from the on-
line measurements of substrates S j (j=1…4). The
settler being assumed to be perfect, no biomass is
present in the outlet. The variable X4 is the Hydrolytic
biomass concentration in the recirculation loop.
Using the design procedure described above, it is
straightforward to synthesis an interval based
observer for the VFA production system. The
simulations presented below have been obtained over
250 days. Arbitrary initial conditions have been

chosen and an uncertainty on the input substrate
concentration of 10 % has been considered. The
following results have been obtained :
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Figure 2a : Available measurements
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Figure 2c : Lower/upper bounds and real value of X2
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Figure 2e  : Lower/upper bounds and real value of X4

As shown on Figures 2, the approach allows us to
estimate lower and upper bounds on unmeasured
variables given a number of on-line measurements
and the knowledge of lower and upper bounds on
unknown inputs. Furthermore, no knowledge at all
about the kinetics is necessary. However, the most
important drawback we can notice is the low
convergence properties of the observer that only
depends on the flow rates (see (Bastin and Dochain
1990)). Tentative alternatives have been studied but
all of them need for the knowledge - at least partial -
of the kinetic terms of the reaction network.
 
 Conclusions
 
 In this paper, an interval observer for complex
interconnected biological systems has been
proposed. In particular, a sufficient condition for the

stability of such an observer was established. The
application of this new scheme for estimating biomass
concentration in a complex anaerobic system was
proposed.
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