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Abstract: This paper presents the model–based diagnosis in the framework of discrete–event
systems. Timed automata are used as a discrete–event representation which is suitable for
consistency–based diagnosis. The diagnostic statement is based on the observation whether
the measured event–time sequences are consistent with the timed automata. The diagnostic
algorithm can be applied online because it determines the fault occurrence recursively for the
measured event–time sequences. The result is applied to diagnose valve faults in a chemical
process.
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1. INTRODUCTION

The task of general fault diagnosis is to decide if
faults have occurred in the system and to identify
them. Various systematic approaches for diagnosis
have been gradually elaborated in the field of control
engineering and artificial intelligence, cf for surveys
(Hamscheret al., 1992; Pattonet al., 1989). For most
approaches, it is assumed that the signals from the
system can be measured numerically precisely and
the system can be represented by exact mathematical
model. The diagnostic task can then be carried out by
identifying the deviation of system states or parame-
ters (Isermann, 1984).

In contrast, this paper concerns diagnosis of discrete–
event systems as shown in Figure 1. The diagnosis
deals with sequences of events, which contain enough
information to discriminate the correct and faulty be-
haviours. The diagnosis of discrete–event systems has
yet to be elaborated in detail. The early work has
been reported in (Sampathet al., 1995) which investi-
gates the diagnosability of the discrete–event system
described by automata, while (Lunze and Schröder,
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2001; Förstner, 2001) investigate the diagnosis based
on stochastic automata and nondeterministic automata
respectively.

As an extension to these approaches, the diagno-
sis proposed is based on the timed discrete–event
representation in the form of timed automata. The
main motivation for dealing with timed discrete–event
representation is that the temporal distance between
events includes important information for diagnosis.
For example, the degradation of systems due to a fault
changes first the temporal behaviour between events
and then the event sequence. (Lunze, 2000) has ad-
dressed the diagnosis based on the timed discrete–
event representation using a Semi–Markov process but
the method proposed here uses a coarser model and
has, therefore, lower complexity.

This paper concerns the dynamic system that can be
described by differential equation

_x = f(x(t);u(t); f); x(0) = x0 (1)

where the behaviour of the state vectorx 2 IR
n

depends on the input vectoru 2 IR
m and the fault

f 2 IR
s which occur in the system.

Since technological systems usually have restriction
on the measurability of the signal values and many
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signals cannot be precisely measured, e.g. the system
is equipped with discrete level sensors so signals from
the system can only be measured qualitatively such as
“low”, “medium”, and “high”. Thus the system can
be regarded as a “quantised system” as described by
(Lunze, 1994; Lunzeet al., 2001).
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Fig. 1. Diagnosis of Discrete–Event System

This paper consists of two main parts. First, Section 2
deals with modelling of the discrete–event system us-
ing timed automata and second, Section 3 with the
solution of the diagnostic problem based on this rep-
resentation. Section 4 shows how a timed automaton
can be set up for a given system. Finally, the approach
presented is used for the diagnosis of valve faults in a
chemical process.

2. TIMED AUTOMATA

Automata are nondeterministic finite state machines.
They play an important role in discrete–event sys-
tem theory. Timed automata are nondeterministic au-
tomata with timed transition behaviour. They are used
as timed discrete–event representation of dynamic
systems. For diagnostic purposes the timed automata
have to include the dependence upon the faultf .

A timed automatonis described by

AT (Nz ;Nv ;Nf ; R; z0) (2)

whereNz denotes the set of automaton states,Nv

the set of automaton inputs, andNf the set of faults.
R represents the state transition relation of the timed
automaton andz0 its initial state.

The state transition relationR of the timed automaton
describes the dynamic behaviour of the automaton and
is represented by

R = (L; T ): (3)

R consists of two main components. The two compo-
nents together constitute the dynamic of the automa-
ton:

(1) The state transitionL of the automaton is de-
scribed by the following relation:

L : Nz �Nz �Nv �Nf �! f0; 1g: (4)

For L(z0; z; v; f) = 1 the automaton can step
from current statez to successor statez 0 if input
v has been applied and the faultf is present.

(2) The temporal functionT represents the follow-
ing mapping

T : Nz �Nz �Nv �Nf ! IR
+ � IR

+:(5)

T describes thesojourn time�(z) of each au-
tomaton statez 2 Nz before it moves to the
successor statez0 2 Nz under the influence of
the inputv 2 Nv and faultf 2 Nf . �(z) is
always nonnegative and increases continuously.
The temporal functionT of one automaton state
z can then be described with the time interval
[�min(z); �max(z)] where �min(z) and �max(z)

denote the lower and upper bound of the time that
passes after the statez but before the successor
statez0 in the timed automaton respectively.

The movement of the timed automaton from one state
to another is described byR and is possible only if the
following conditions hold true:

L 2Nz �Nz �Nv �Nf (6)

�(z) 2 [�min(z); �max(z)]: (7)

The first condition (6) means that the transition from
statez 2 Nz to statez0 2 Nz is possible under the
application of some inputv 2 Nv and the presence
of some faultf 2 Nf . The second condition (7)
implies that if a transition from one statez to its
successorz0 occurs, it must occur within the time
[�min(z); �max(z)] wherez is the current state of the
timed automaton.

Unlike the Semi–Markov process considered in (Lunze,
2000), the temporal functionT of a timed automaton
has no probability distribution. This means that it is
equally likely that the automaton can move from the
current statez to successor statez 0 at any timet 2
[�min(z); �max(z)]. So the representation of a system
by a timed automaton is simpler than the representa-
tion by a Semi–Markov process.

If the timed automaton is generalised for explicit
discrete–event system representation, all states of the
timed automatonz 2 Nz can be replaced with event
e 2 Ne. Thus

Ne = Nz =
[

i=1:::n

fei 2 Neg (8)

where n denotes the number of possible events in
the given dynamic system. Then, all the preceding
formulations can be written withe replacingz and
the timed automaton for the representation of the
discrete–event system is described by

AT (Ne;Nv ;Nf ; R; e0): (9)

wheree0 is the initial event of the automaton.



In this case the states of the timed automaton cor-
respond explicitly to the events in the discrete–event
systems.

3. DIAGNOSIS OF TIMED AUTOMATA

For diagnosis, it is assumed that an unknown fault
f 2 F = ff0; f1; : : : ; fnF g, wherenF is the num-
ber of faults considered, has occurred at timet �
0 and is present until the diagnostic algorithm is
stopped. The measured event–time sequence during
the time interval[0; th] is denoted byE(0 : : : th) =

fe0; t0; : : : ; eh; thg. The input to the system is mea-
sured simultaneously with the occurrence of event,
consequently the input–time sequence is denoted by
V(0 : : : th) = fv0; t0; : : : ; vh; thg. Thus the system is
considered to have “synchronised I/O events” (Förstner,
2001). The main idea ofconsistency–based diagnosis
is to answer the question:

Can the system generateE(0 : : : th) upon receiv-
ingV(0 : : : th) during[0; th]?

For the timed automaton (9), it has to be tested
whether event–time sequence generated by the system
with the input–time sequence is consistent with the
transition relationR of the timed automaton.

The diagnosis starts with no information about occur-
rence of fault. Therefore all faultsf 2 F may have
occurred. In addition, the initial evente0 of the system
under consideration is assumed to be known. The di-
agnostic algorithm determines the occurrence of faults
P (f; th), for increasing time horizon, recursively for
givenP (f; th�1) as follows:

P (f; th) =

8>><
>>:

1 if P (f; th�1) = 1

and E(0 : : : th) 2 R

0 otherwise.

(10)

The first part of (10) concerns the case that the faultf

cannot be excluded by using the observed event–time
sequence fromt = 0 to t = th�1. Then it is tested
whether the newly observed event–time is consistent
with the transition relationR of the timed automaton
AT . The second condition of (10) says that the fault
f is not the possible candidate for the diagnostic
result at the timeth if it has been previously excluded
due to the inconsistency with the timed automaton
modelled for faultf at time th�1. P (f; th) can be
determined for one observed event after another. Thus
this diagnostic method can be used online.

Algorithm 1 summarises fault diagnostic method of
the system described by timed automata. The main
idea of the algorithm is to determine the set of fault
candidatesF(th) = ff : P (f; th) 6= 0g at time
th from the fault setF which enables the movement
of the timed automaton. This follows the idea of
consistency–based diagnosis which means to exclude
fault for an increasing time horizon. In the main loop
of the algorithm (10) is applied. This is done at every

occurrence of new event. In Step 1 of the algorithm,
the time horizonth is updated at the time the next
event has occurred.

Algorithm 1. Diagnosis of timed automata

Given: Timed AutomataAT for all f 2 F
Initial evente0
Time horizontH

Initialise : th = 0, P (f; 0) = 1 for all f 2 F
1. Wait for next evente, measure

evente, inputv, occurrence timeth
2. Determine the relationP (f; th)

according to (10)
3. DetermineF(th) fromP (f; th)

at timeth:
3.1 If P (f; th) = 0, thenf =2 F(th)

3.2 If P (f; th) = 1, thenf 2 F(th)

4. If th � tH , go to Step 1
Result: P (f; th) and possible set of fault

f 2 F(th) for increasingth

The diagnosis based on the timed automata yields the
following results:

� Fault detection:If P (f0; th) = 0 holds (where
f0 symbolises the faultless case), then some fault
must have occurred in the system.

� Fault identification: If P (f; th) = 0 holds, the
system has not been affected by the faultf .

Fault detection shows an important aspect of the
consistency–based diagnosis. Even if only a model
of the faultless system were available, fault detection
would still be possible.

Fault identification by means of consistency based di-
agnosis means to exclude those faults that, according
to the available information, are known not to have
occur. This means that if the observed behaviour is
inconsistent with the model for a certain faultf , then
the faultf can be excluded as the primary reason for
the faulty behaviour. Therefore (10) gives a basis for
choosing the probable faultf from the set of possible
fault setF .

4. DETERMINATION OF TIMED AUTOMATA

This section shows how a timed automaton can be
set up for a given dynamic system. Since the system
under consideration has restriction on measurability
of input and output, it can be considered as a “quan-
tised system” whose structure is shown in Figure 2
(Lunze, 1994; Teneketziset al., 1994). The system
under consideration is the continuous–variable system
described by (1). The quantisers represent the parti-
tion of the state and input signals. For example the
quantiser on the right hand side of Figure 2 introduces
mapping of state space partitionIRn into finite num-
ber of disjoint setsQx(z(t)), which denote the set of
statesx(t) 2 IR

n with the same qualitative valuez(t).



The mapping invoked by the quantiser is symbolised
by [�].

[x(t)] = z(t), x(t) 2 Qx(z(t)) (11)

The quantisation of the input signalsu(t) by the
quantiser on the left hand side is analogous to the
quantisation of the state space.

Continuous
Variable System

[u(t)] [x(t)]

u(t) x(t)

x0

Quantiser Quantiser

Quantised System

Fig. 2. Quantised System

Figure 3 shows the state space partition of the chem-
ical process in Section 5. It is obtained from the dis-
crete level sensors mounted on reactorsR1 andR2

The state variablesx1 andx2 correspond to the level
of the solution in reactors. The two states are par-
titioned independently and contribute to 9 quantised
states. The grey box represents the initial state of the
system which lies inQx(1), and corresponds to low
solution level in both reactors.

x 2

x 1

R 2

e 4 1

e 2 1Q  x ( 1 )

Q  x ( 9 )Q  x ( 8 )Q  x ( 7 )

Q  x ( 6 )Q  x ( 5 )Q  x ( 4 )

Q  x ( 3 )Q  x ( 2 )

Fig. 3. Signal partitioning of a two dimensional state
space

If the “border” between partitions is defined as

ÆQxij = ÆQx(x(i)) \ ÆQx(x(j)) (12)

whereÆQx(x(i)) denotes the hull ofQx(x(i)). If the
state trajectoryx(t) crosses such borders, an “event”
is generated. Figure 3 shows the occurrence of events
e41 ande21 with the corresponding borders between
partitions.

In addition the quantiser determines timetk when an
eventeij is generated if[x(tk + Æt)] = Qx(x(i)) and
[x(tk � Æt)] = Qx(x(j)) for Qx(x(i)) 6= Qx(x(j))

and smallÆt > 0.

Because quantised systems generate events and their
occurrence time, timed automata are thus a suitable
timed discrete–event representation of the quantised
system. The construction of the timed automaton is to
determine the transition relationR as defined in (3).
Algorithm 2 is proposed for setting up the timed
automaton.

The algorithm starts with the transition relationR = 0

(L = 0 and T = 0). Then it determines the case
whereL(e0; e; v; f) = 1 with respect to the possible
transitions to the successor events. To determine such
transitions, at first the set of compatible successor
events for the current evente 2 Ne is determined.
A check is then made to ensure that such event can
occur in the given system. If the transition is possible
(L(e0; e; v; f) = 1), the algorithm then determines
the the duration between the two successive events
or sojourn time�(e), which is finally appended to
the temporal functionT to get all possible sojourn
time. Finally the current event is set to the new event
and time to the latest event occurrence time, and the
process is repeated.

Algorithm 2. Abstraction algorithm

Given: System (1), quantisers (11)
Time horizontH
Current evente = Initial evente0

Initialise : Transition relationR = 0

Start time horizont = 0

1. Determine transitions from current
evente to new evente0:
For (e0; e; v; f) with e0,e 2 Ne, v 2 Nv,
f 2 Nf

1.1Construct e0 from e by
appendinge0 toL.
1.2Check the transition ofe to e0:
If (1) and (11) can generatee 0

thenL(e0; e; v; f) = 1.
2. Determine elapsed time between

e ande0 for all (e0; e; v; f)
2.1Construct sojourn time�(e) for
evente, �(e) = [�min(e); �max(e)].
2.2Append �(e) for e to T .

3. Sett := t(e0) ande = e0.
4. If t � tH , go to Step 1.

Result: Automaton transition relationR
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Fig. 4. Automaton graph of chemical process

Figure 4 shows an automaton graph of the chemical
process considered in Section 5. The graph nodes rep-
resent events which occur in one cycle of the process
starting from the initial evente41. It is also possible
to havee21 as the initial event but this is not shown
for clarity of representation. The label above each arc



denotes the time between event (sojourn time). In the
figure, the black numbers correspond to the faultless
case while the grey numbers represent the sojourn
time of the events in the chemical process with fault
in V2. Note that the blockage ofV2 does not affect the
outflow. This automaton is used in the next section for
diagnosing valve faults in the chemical process.

5. EXAMPLE

In this section an example is discussed to demonstrate
the effectiveness of diagnostic algorithm described in
the preceding section.

The system under consideration is the chemical pro-
cess given in Figure 5 (Hanisch, 1992). The prod-
uct of the process results from a reaction between a
substance and a solvent in the reactorsR1 andR2.
A certain amount of substance is pumped by pumps
P2 andP3 through valvesV1 andV5 into R1 andR2

respectively. A certain quantity of solvent is provided
to R1 andR2 from tankB1 through the valvesV2

andV6. The process starts once the substance and the
solvent are mixed in the reactors. The solution after
reaction flows through the valvesV4 andV8 into the
tank B2. Finally the solution fromB2 flows to the
filter F1 where the solvent is separated from the final
product. The solvent is then pumped back toB1 by
P1.

solvent

product

B1

B2

F1

V1 V2

V4

V5V6

V8 V9

substance substance

P2 P3

P1

LS1_1

LS1_2 LS2_2

LS2_1

Fig. 5. A chemical process

The discrete levels from both reactors detected by the
discrete level sensors as shown byLS in Figure 5
are the only available measurement information. They
act as quantisers as explained in Section 4. Thus the
available information from these sensors tells only
whether each reactor is full, medium or empty. The
possible faultsf 2 F = ff0; f1; f2; f3g can occur in
the system, where

f0 : faultless case
f1 : blockage of ValveV2
f2 : blockage of ValveV4
f3 : blockage of ValveV8.

The blockage of these valves are to be diagnosed by
means of a discrete–event model described by timed
automata.

Timed automata with different event–time sequence
are obtained for the system subjected to each fault

f 2 F as described by Algorithm 2. Instead of
an automaton graph, the event-time sequences from
abstraction obtained for the initial evente0 = e41 are
shown in Figure 6. Four different parts of the figure
correspond to event–time behaviour of the system
subjected to four different faults. They–axis of each
part is labelled with events which can occur in the
chemical process provided that the initial event in the
process ise41. The timet = 0 denotes the occurrence
of e41. It is clear from the figure that each fault affects
the chemical process in a different way.
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Fig. 6. Event–time sequences of the chemical process
for all faultsf 2 F
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Fig. 7. Diagnostic result of the chemical process with
the presence off2

The diagnosis method described in Section 3 is ap-
plied to detect the blockage of valvesV4 (f2). Fig-
ure 7 represents the diagnostic results of the chemical
process subjected to the blockage of valveV4. The
dark ticks in the upper part of the figure illustrate the
actual occurrence of events in the chemical process
and the corresponding occurrence time instant. The
diagnostic algorithm has no information about the oc-
currence of the fault in the system so it is assumed
that all faults can occur in the system once the initial
evente41 has taken place. It can be seen that the first
two event occurrences in the process are consistent
with the model for all faultsf 2 F by comparing
the upper part of Figure 7 with the events and their
corresponding time for all faults in Figure 6. Therefore
no fault can be excluded. After the occurrence of the



third evente65, only the automaton of the system sub-
jected to the blockage ofV4 (f2) is consistent with the
measurement. Therefore all other faults are excluded.
Since the faultsf0, f1, andf3 are excluded, the next
cycle of the diagnostic algorithm will not consider
the occurrence of these faults. The fourth event also
confirms the blockage ofV4. Therefore it can be con-
cluded that the valveV4 is blocked. This is shown
in the diagnostic result in the lower part of Figure 7.
Note that the blockage ofV4 can be detected because
the inconsistencies of event occurrence of the actual
events with the timed automata which represent the
system subjected to faultf0, f1 andf3. The system
subjected to these faults cannot produce the evente65
as can be seen in Figure 6.
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Fig. 8. Diagnostic result of the chemical process with
the presence off1

Consider now the blockage of valveV2 (f1) with the
same initial evente41. The measurement of the actual
events is shown in upper part of Figure 8. Again it can
be seen that the first two events are consistent with
all the models of the system subjected to all faults
f 2 F . However when the third evente85 occurrs, the
algorithm is able to detect the blockage of valveV2

despite that the same event could have occurred also
for the system subjected to all other faultsf 6= f2.
This is because the temporal distance between events
of other fault cases does not agree with the measure-
ment. Therefore these faults can be excluded. This is
shown in Figure 8 where the diagnostic algorithm says
that the only possible fault in the chemical process is
the blockage of valveV2 after the occurrence of the
third evente85. The fourth evente98 also confirms this
diagnostic result. Hence the diagnostic algorithm can
detect the faultf1 in the chemical process by using the
temporal information.

Note that only a single–fault case is considered in this
example. However, Algorithm 1 can also be used to
detect multiple faults, and in such cases the modelling
method described in Section 4 can be applied withf

denoting combinations of faults.

6. CONCLUSIONS

The paper demonstrates a diagnostic method for dy-
namic systems, for which only the event- and input–

time sequences are available as on–line information.
This diagnostic approach uses timed automata as the
representation of the discrete–event system. Timed
automata can be obtained by abstraction from the
quantitative description of the system as explained in
Section 4. For diagnosis, the event- and input–time
sequences are used to test for consistency with the
timed automata for all faultsf 2 F . If the inconsis-
tency with the automaton setup for the faultless system
occurs, a fault is detected. It is shown by example of
a chemical process that faults can be detected shortly
after their occurrence due to the change of temporal
distance or event order. The diagnostic results can
be improved by extending the consistency check for
every sampling time step instead of every occurrence
of event. In such case faults which are not consistent
with the measurement will be excluded earlier, for
similarity see (Lunze, 2000).
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