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Abstract: The paper proposes a solution to a class of scheduling problems where
the goal is to minimize the schedule (production) time. The algorithm, which
takes into account a model of a hybrid system described as MLD (mixed logical
dynamical) system, is based on performance driven reachability analysis. The
algorithm abstracts the behavior of the hybrid system by building a tree of
evolution. Nodes of the tree represent reachable states of a process, and the
branches connect two nodes if a transition exists between the corresponding states.
To each node a cost function value is associated and based on this value, the tree
exploration is driven. As soon as the tree is explored, the global solution to the
scheduling problem is obtained. Copyright c©2002 IFAC
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1. INTRODUCTION

New methods and advanced technology enable
the automation of industrial processes to outgrow
basic low-level control functions. Higher levels
usually include discrete event dynamics. The tra-
ditional control approaches, however, are mostly
dealing with continuous dynamics. Hybrid meth-
ods deal with interactions between continuous and
discrete event dynamics.

In this paper we apply the mixed logical dynam-
ical (MLD) modeling framework to a class of
scheduling problems. Several control approaches,

1 Partially supported by the Ministry of Education, Sci-
ence and Sport of the Republic of Slovenia, grant J2-2417-
1538-01

based on MLD descriptions of a process were pro-
posed in the literature. A model predictive control
technique is presented in (Bemporad and Morari,
1999a), which is able to stabilize MLD system
on desired reference trajectories and where on-
line optimization procedures are solved through
mixed integer quadratic programming (MIQP).
Verification of hybrid systems is presented in
(Bemporad and Morari, 1999b) and (Bemporad et
al., 2000a). Optimal control (scheduling) based on
reachability analysis is addressed in (Bemporad et
al., 2000b).

In this paper we address a class of scheduling
problems for plants modeled as MLD systems,
where the goal is to minimize the schedule time.
A similar problem is addressed in (Blömer and
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Fig. 1. Hybrid control system. Discrete and con-
tinuous dynamic interact through interfaces.

Günther, 1998), where the mixed integer linear
programming (MILP) is used, while scheduling
approaches for the batch process are addressed in
(Reklaitis, 1995).

2. MLD SYSTEMS

Hybrid systems are the combination of logic, fi-
nite state machines, linear discrete-time dynamic
systems and constraints. The interaction between
continuous and discrete/logic dynamic is shown
in Fig. 1, where both parts are connected through
interfaces. The MLD modeling framework is based
on an idea of translating logic relations, dis-
crete/logic dynamics, A/L (analog to logic), L/A
conversion and logic constraints into mixed inte-
ger linear inequalities. The inequalities are com-
bined with the continuous dynamical part, de-
scribed by linear difference equations in the fol-
lowing relations (Bemporad and Morari, 1999a)

x(k+1)=Ax(k)+B1u(k)+B2δ(k)+B3z(k) (1a)

y(k)=Cx(k)+D1u(k)+D2δ(k)+D3z(k) (1b)

E2δ(k)+E3z(k)≤ E1u(k)+E4x(k)+E5 (1c)

where x = [xc,xl]
′ ∈ R

nc × {0, 1}nl is a vector of
continuous and logic states, u = [uc,ul]

′ ∈ R
mc ×

{0, 1}ml are the inputs, y = [yc,yl]
′ ∈ R

pc ×
{0, 1}pl are the outputs and δ ∈ {0, 1}rl , z ∈
R

rc are logic and continuous auxiliary variables
respectively. Inequalities (Eq. 1c) can include
also physical constraints over continuous variables
(states and inputs). Given the current state x(k)
and input u(k), the time evolution of (1) is de-
termined by solving δ(k) and z(k) from (1c), and
then updating x(k+1) and y(k) from (1a, 1b). For
a more detailed description, the reader is referred
to (Bemporad and Morari, 1999a) and (Torrisi et
al., 2000).

3. SCHEDULING OF HYBRID SYSTEMS

In (Bemporad et al., 2000b) and (Bemporad
and Morari, 1999a) the authors present proce-

dures for optimal control of hybrid processes
described in the MLD form. Optimal control

amounts to finding the control sequence u
kfin−1

0 =
{u(0), . . . ,u(kfin−1)}, which transfers the initial
state x0 to the final state xf in a finite time
T = kfin ·Ts (Ts is the sampling time) minimizing
a performance index. We will refer to “schedul-
ing” rather than “optimal control” to emphasize
the fact that we have to determine the timing
of proper production tasks, where the switching
between different tasks is modeled by discrete
decision variables. The stress will be given on the
scheduling of hybrid systems described in MLD
form, where the goal is to minimize the production
time. The problem will be tackled by extending
tools from reachability analysis. The whole idea is
based on the selection of a proper cost function as
will be explained in Section 3.5.

3.1 Complexity of the scheduling problem

The solution to a scheduling problem is the final
time T = kfin · Ts and the optimal control seq-

uence u
kfin−1

0 = {u(0), . . . ,u(k), . . . ,u(kfin−1)}
where u(k) represent the input to the system
at step k. If the system has ml discrete inputs
and no continuous inputs, that means u(k) ∈

{0, 1}ml and u
kfin−1

0 ∈ {0, 1}ml·kfin . Because all
the inputs are discrete, there are 2ml·kfin possible

combinations for u
kfin−1

0 . Hence the scheduling
problem is NP-hard and the computational time
required to solve the problem grows exponentially
with the problem size.

3.2 Scheduling based on reachability analysis

In general, all the combinations of inputs are not
feasible, because of the constraints (1c). One way
to rule out infeasible inputs is to use reachability
analysis. The idea for hybrid systems with contin-
uous inputs presented in (Bemporad et al., 2000b)
and (Bemporad et al., 2000a) is here extended to
hybrid systems with discrete inputs.

Through reachability analysis it is possible to
extract the reachable states of the system, al-
though enumerating all for them would not be
effective, as many of them will be far away from
the optimal trajectory. Therefore it is reasonable
to combine reachability analysis with procedures
which can detect reachable states not leading to
the optimal solution and remove them from the
exploration procedure. The whole procedure is a
kind of branch and bound strategy. The procedure
involves the generation of a tree of evolution, as
described below.



3.3 Reachability analysis

Let xi(k) be the state at step k. Reachability
analysis computes all the possible states xrj

(k +
1) which are reachable at the next time step.
If the system has ml discrete inputs, then 2ml

possible next states may exist. However, because
of the constraints (1c), only a smaller number
of states can actually be reached. The reachable
states can be computed using the algorithm for
reach-set computation described in (Bemporad et
al., 2000a).

3.4 Tree of evolution

A “tree of evolution” (see Fig. 2) abstracts the
possible evolution of the system over a horizon
of kfin steps. The nodes of the tree represent
reachable states and branches connect two nodes if
a transitions exists between corresponding states.
For a given root node V0, representing the initial
state x0, the reachable states are computed and
inserted into the tree as nodes Vi. A cost value
Ji is associated to each new node. A new node is
selected based on the associated cost value Ji and
new reachable states are computed (Bemporad et
al., 2000b). More about the cost function and node
selection criteria will be presented in the following
section. The construction of the tree of evolution
continues in depth first until one of the following
conditions occurs:

• The step horizon limit kmax has been reached.
• The value of the cost function at the current

node is greater than the current optimal one
(Ji ≥ Jopt, where initially Jopt =∞).

• A feasible solution has been found (xk = xf ).

A node which satisfies one of the above conditions
is labelled as explored. If a node satisfies the first
or the third condition, the associated value of
the cost function Ji becomes the current optimal
one (Jopt = Ji), the step instance k becomes the
current optimal one (kopt = k) and the control

sequence u
kfin−1

0 which leads from the initial node
V0 to the current node Vi becomes the current
optimizer. The exploration continues until there
are no more unexplored nodes in the tree and the

temporary control sequence u
kfin−1

0 becomes the
optimal one.

3.5 Cost function and node selection criterion

The selection of the cost function and the node
selection criterion have a great influence on the
size of the tree of evolution and, indirectly, on
the time efficiency of the scheduling algorithm.
The best node selection criterion is to propagate
the tree of evolution in a direction that minimizes
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Fig. 2. Tree of evolution

the value of the cost function. At the same time
the cost value Ji associated with a node is used
to detect nodes which are not going to lead to
the optimal solution. To achieve that, the cost
function must have certain properties that we
describe below.

As the goal is to minimize the total production
time we choose the following cost function:

Ji = h(x) + g(k) (2)

where h(x) is a rewarding function (the “quality”
of the product) and g(k) is a penalty function (the
influence of the production time). Detecting nodes
not going to lead to the optimal solution before
the step instance reaches the current optimal one
(k < kopt) can be achieved by increasing the
cost value Ji with function g(k) (penalizing) and
decreasing with function h(x) (rewarding). When
the cost value becomes greater then the current
optimal one (Ji ≥ Jopt), we want to ensure that
by continuing the exploration no better solution
than the current one can be found. To achieve
that, the cost function (2) has to be monotonically
increasing, i.e. in the next steps the cost value can
only increase. To this end, we impose

∆Ji =
∂Ji

∂x
∆x+

∂Ji

∂k
∆k ≥ 0 (3)

4. A CASE STUDY: MULTI PRODUCT
BATCH PLANT

We applied the scheduling algorithm to a multi
product batch plant, designed and built at the
Process Control Laboratory of the University of
Dortmund (Bauer, 2000; Bauer et al., 2000).

4.1 Description of the plant

In the batch process two liquid products, one
of blue colour, one green, are produced from
three liquid substances (yellow, red, white). The
chemical reaction behind the change of colours is
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Fig. 3. Multibatch process

the neutralization of the diluted hydrochloric acid
(HCl) with the diluted sodium hydroxide (NaOH).
The diluted hydrochloric acid is mixed with two
different pH indicators to make the acid look
yellow or red. During the neutralization reaction
the pH indicators change colour when the pH
reaches approximately pH 7. The first indicator
changes from yellow to blue, while the second from
red to green.

The plant consists of three different layers, as
shown in Fig. 3. The upper layer consists of the
buffering tanks B11, B12 and B13 which are used
for holding the raw materials, “Yellow”, “Red”
and “White” respectively. Each of the buffer tanks
is used exclusively for one raw material and can
hold two batches of liquid. The middle layer
consists of three reactors R21, R22 and R23. Each
reactor can be filled from any raw material buffer
tank. This means that each reactor can produce
either ”Blue” or “Green”. The production is done
by first filling the reactor with one batch of
“Yellow” or “Red” and then neutralizing it with
one batch of “White”. The lower layer consists
of two buffer tanks B31 and B32 in which the
products are collected from the middle layer. Each
of them is used exclusively for “Blue” or “Green”
and can contain three batches of product.

The processing times of the plant (data of the
scheduling problem), presented in Table 1, are
based on following assumptions: the sampling
time is Ts = 1 s and one batch of raw material
is 0.85 l (one batch of product is then 1.7 l). For

Table 1. Processing times

Processes Times

Pumping 1 batch “Yellow” into B11 12 sec.

Pumping 1 batch “Red” into B12 12 sec.

Pumping 1 batch “White” into B13 12 sec.

Draining 1 batch “Yellow” into R21 15 sec.

Draining 1 batch “Red” into R21 11 sec.

Draining 1 batch “White” into R21 10 sec.

Draining 1 batch “Yellow” into R22 12 sec.

Draining 1 batch “Red” into R22 13 sec.

Draining 1 batch “White” into R22 9 sec.

Draining 1 batch “Yellow” into R23 12 sec.

Draining 1 batch “Red” into R23 14 sec.

Draining 1 batch “White” into R23 13 sec.

Draining 1 batch “Blue” from R21 into B31 12 sec.

Draining 1 batch “Green” from R21 into B32 13 sec.

Draining 1 batch “Blue” from R22 into B31 12 sec.

Draining 1 batch “Green” from R22 into B32 12 sec.

Draining 1 batch “Blue” from R23 into B31 12 sec.

Draining 1 batch “Green” from R23 into B32 12 sec.

Pumping 3 batches “Red” out of B31 30 sec.

Pumping 3 batches “Green” out of B32 30 sec.

more detailed description the reader is referred to
(Bauer, 2000) and (Bauer et al., 2000).

4.2 MLD Model

The system was described in HYSDEL and trans-
formed into MLD form. HYSDEL is a language
and a tool (Torrisi et al., 2000) for generat-
ing hybrid models in MLD form. The tool re-
turns a MATLAB script defining the matrices
of the corresponding MLD form. The code for
the multi product batch plant can be found in
(Potočnik, 2001).

The HYSDEL tool generates a MLD model of
the form (1), where x(k) ∈ R

28 × {0, 1}6, u(k) ∈
{0, 1}12, δ(k) ∈ {0, 1}85, and z(k) ∈ R

40. Matrices
A, B1, ..., C, ..., D3 have suitable dimensions.
Matrices E1 to E5 define 511 inequalities. As can
be seen the matrices are quite large and building
them without an automated tool like HYSDEL
would be extremely difficult and tedious.

4.3 Scheduling of a multi product batch plant

Problem formulation:

For a given initial condition schedule the pro-

duction of “Blue” and “Green” to minimize the

production time.

We assume that the raw material batches are
delivered at fixed, given times, which are known in
advance (see Table 2). The degrees of freedom for
the scheduling are the times at which one batch
of “Yellow”, “Red” or “White” is emptied into a
reactor and the selection of a reactor in which the
raw material will be emptied.



Table 2. Delivery times in [min:sec] for
raw material

Yellow Red White

0:00 0:10 0:00 4:20

0:30 0:40 0:30 5:30

1:10 1:50 2:00 6:20

4:20 5:30 2:20 6:55

5:40 6:50 3:00 7:10

6:45 7:50 3:35 8:00

The goal is to produce 6 batches of “Blue”
and “Green” constrained by the deliver times of
batches “Yellow”, “Red” and “White” given in
Table 2.

4.4 Complexity of the problem.

The solution of a scheduling problem is a control
sequence uT−1

0 . At each time 9 inputs can influence
the system u(k) ∈ {0, 1}9(valves V111-V133, see
Fig. 3). The first three inputs are predefined by
the deliver times. The minimal scheduling time
can be estimated from Table 1 and 2, although
such a time may not be feasible. The last batch of
white is delivered after 480 seconds. Additionally
12 + 9 + 12 = 33 seconds must be added to
finish the production, so the minimal time cannot

be smaller than Tmin = 513s and u
kfin−1

0 ∈
{0, 1}9·513=4617. Because all the inputs are logical,
24617 possible combinations of the solution vector

u
kfin−1

0 exist and searching the solution through
all the combinations is practically impossible.

4.5 Scheduling of the multi product batch plant.

The goal is to minimize the production time of
“Blue” and “Green” for given initial conditions.
According to the cost function and node selection
criterion introduced earlier, we use the following
cost function

Ji = (Vmax − v)F + k, (4)

where Vmax is constant defined as Vmax = 3 ×
volume of all products, v represents the current
value of material pumped/emptied into the first,
second and third layer (see Fig. 3), k is the current
step and F is a factor, whose properties will
be explained later. The goal (final state xf ) is
reached when v = Vmax i.e. the predefined number
(volume) of batches is produced. The cost function
value at the feasible solution is

Ji = k. (5)

According to (3), the cost function (4) has to be
monotonically increasing

Table 3. Tree of the evolution

Interval Param. F Tree size Time effi.
[nodes] [h:min:sec]

k ∈ [0, 40] 1.90 32205 0:22:26

k ∈ [0, 40] 1.80 36852 0:25:48

k ∈ [0, 50] 1.90 497799 5:48:10

k ∈ [0, 50] 1.80 608826 7:11:23

∆Ji =
∂Ji

∂v
∆v +

∂Ji

∂k
∆k = −F∆v +∆k ≥ 0 (6)

and hence the parameter F must satisfy the
condition

F ≤
∆k

∆v
, (7)

where ∆k = Ts = 1. The value for ∆v is defined
through the estimation of maximum change of vol-
ume in the system not taking into account delivery
times. If all three raw materials are delivered, two
reactors are filled and the third is emptied into a
buffer tank at the same time, i.e. 3 · 0.85/12 (see
Table 1) for filling all the three tanks in upper
layer, 0.85/9 and 0.85/11 represent filling two re-
actors using maximum flow (shortest deliver time)
and 1.7/12 emptying reactor into buffer tank, then
the following estimation for ∆v is obtained

∆v = 3
0.85

12
+

0.85

9
+

0.85

11
+

1.7

12
= 0.526. (8)

Hence it follows that

F ≤
∆k

∆v
=

1

0.526
= 1.90. (9)

Regarding the node selection criterion, it is rea-
sonable to choose the node which leads to the best
(current) optimal solution, i.e., the node with the
smallest associated cost function value Ji at step
k (the influence of step instance k is the same, but
the influence of v is greater).

5. RESULTS

5.1 Scheduling on a bounded interval.

The scheduling algorithm is run for the time
interval k ∈ [0, 50] and k ∈ [0, 40] and for two
values of the parameter F (F = 1.80 and F =
1.90). The corresponding trees of evolution are
presented in Table 3.

The obtained results illustrate that parameter F
has a great influence on the tree size and indi-
rectly on the time needed to solve the scheduling
problem.

5.2 Complete production scheduling.

The complexity of the scheduling problem grows
exponentially with the scheduling horizon. Due to



Table 4. Production time [min:sec] and
corresponding reactor)

Blue Reactor Green Reactor

0:24 R22 0:42 R21

2:29 R23 2:12 R22

3:50 R21 3:12 R22

4:44 R22 5:42 R21

6:32 R22 7:22 R21

7:09 R22 8:13 R21

these limitations suboptimal algorithms, based on
additional knowledge on the process, are preferred
and in most cases give satisfactory results in
acceptable time.

Here the same algorithm will be applied with a
constraint over the tree size of 100000 nodes (≈ 1
hour) and parameter F set to 1.90. The solution,
production starting times and corresponding reac-
tors, is presented in Table 4 and in Fig. 4. The first
and in this case the final suboptimal solution was
obtained in just 27 seconds. The production of 6
batches of “Blue” and “Green”, can be achieved
in 515 seconds. The lower bound to the global
optimal solution (513 seconds) is missed only by
2 seconds.
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Fig. 4. Volumes in the tanks

6. CONCLUSIONS

In this paper we addressed a class of scheduling
problems where the goal is to minimize the to-
tal production time. The problem was solved by
combining reachability analysis and a branch and
bound technique.
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