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Abstract: A learning control solution to the problem of finding a finite-time optimal control 
history that minimizes a quadratic cost is presented. Learning is achieved without requiring 
a detailed knowledge of the system, which may be affected by unknown but repetitive 
disturbances. The objective of this work is considered as a validation of the results obtained 
in ( Mezghani, et al., 2001). It focuses on the temperature control of a semi-batch chemical 
reactor used for fine chemicals production. Such reactor is equipped with a heating/cooling 
system composed of different thermal fluids. With less modelling investigation, a feedback-
feedforward control structure is proposed for ensuring the tracking performance of the 
desired temperature profile. Such strategy is derived from the family of the Iterative 
Learning Control named Batch Model Predictive Control (BMPC). The synthesis of the 
considered strategy is studied and improvements of the algorithm features are proposed. A 
robust supervisory control procedure is employed to choose the right fluid and to reduce the 
superfluous fluid changeovers. Experimental results are presented to illustrate the practical 
appeal and effectiveness of the proposed scheme.  
 
Keywords: Model based control; Iterative learning control; Batch chemical reactors; 
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1. INTRODUCTION 
 

Batch manufacturing of pharmaceutical products has 
been a fast growing part of the chemical processing 
industry where the same batch plant must be able to 
rapidly reply to different processing operations under 
different operating conditions and to the manufacturing 
of a variety of products. Such multipurpose, multi-
product definition of a batch plant creates certain special 
challenges and requires the development of special 
techniques for control, analysis and monitoring of batch 
operation, which are quite distinct from their 
counterparts employed in continuous processes (Jupa, 
and Hamer, 1986; Berber, 1995). 
Current research approaches to monitoring batch 
processes have focused on the uses of fundamental 
mathematical models, detailed knowledge-based models 
(Frank, 1990) or the process repetitiveness. The first 
takes advantage of a mechanistic model to describe the 
process, where the monitoring procedure is based on 
state estimation methods. The second relies on the 
knowledge of operators and engineers about the process 
to formulate control algorithms. The third takes 
advantage from the field of Iterative Learning Control 
(ILC), where learning can be intuitively considered as a 
bridge between knowledge and experience. 

Since, batch processing are essentially dynamic 
operations over a wide range of operating conditions, 
consequently, conventional control and diagnosis 
techniques for continuous processes which rely on the 
stationarity of a nominal steady state are not 
applicable.  
The concept of (ILC) was originally introduced in 1984 
by Arimoto, et al., (1984) who presented an algorithm 
that generates the new trial control input by adding a 
“correction”  term to the control input of the previous 
trial. This is the key feature that distinguishes the ILC 
from the conventional feedback control (Bien,  and Xu, 
1998 , Moore, 1998). In the field of batch process 
control, the diversity of studies is only focusing on the 
adopted learning mechanism. In spite of the wealthy 
available simulation results (Mezghani, et al., 2001,  
Katoh, et al., 1989, Geng, et al., 1989, Chen, et al., 
1994, Lee, et al., 1996, Chen, et al., 1997), few 
experimental results are available in the field of batch 
process control (chemical reactor) (Chin, et al., 1997).  
In this work, we are mainly focusing with the 
temperature control of a semi-batch chemical reactor 
by using the ILC control approach, which is illustrated 
by some experimental trials. 
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In order to improve the tracking control of batch 
processes (namely by keeping with the on-line 
disturbance removal and constraints handling) an 
elaborated learning control algorithm was developed by 
(Lee, et al., 1999). Such algorithm combines the 
predictive control enhancements with the iterative 
learning control ones under the name of Batch Model 
Predictive Control (BMPC). Under this advanced 
learning control technique, the BMPC approach will be 
investigated in our studies. 
The remainder of this paper will be presented as follows: 
section 2 provides a brief description of the semi-batch 
chemical reactor, its environment and the associated 
thermal control strategy. Based on the derived 
input/output model, the model of the whole repetitive 
operation is presented. In the next section, the 
corresponding predictor will be defined, the latter one 
incorporates two indexes: the batch number ( k ) and the 
time evolution (t) during the batch. In section 4, we 
recall the control strategy. Practical issues are considered 
in the actual implementation such as reinitialization of 
the output error sequence, off-line filtering and robust 
supervisory thermal control. Extensive experimental 
results are included to illustrate the effectiveness and the 
practical appeal of the BMPC scheme faced with: 
repetitive disturbances and model mismatch. Finally, 
conclusions are drawn.  
 

2. PROCESS DESCRIPTION AND MODELLING 
 
2.1. Process description 

 
The experimental runs were carried out on a pilot reactor 
that is considered as a test-bed for new control strategies, 
which can be implemented on industrial sites. This 
reactor is a 16 litres, glass-lined reactor (with a 
maximum operating volume of 12 litres). Three utility 
fluids are available at given temperatures: a mixture of 
monopropylene glycol/water (50%/50% weight, at a 
temperature of -10°C), cold water (at a temperature of 
15°C) and steam (at a pressure of 6 bars). A so-called 
"intermediate fluid" is obtained by direct mixing of cold 
water and steam, where the maximum reached 
temperature is about 70°C. Compressed air is available 
for the purge of the jacket when a fluid changeover is 
required. A schematic diagram of the pilot-plant glass-
lined jacketed reactor and its heating/cooling system is 
depicted on figure (1). The SCADA and the presented 
BMPC algorithm software have been operated under 
LABWINDOWS/CVI environment implemented on a 
Personal Computer (P200). 
 The pilot reactor is surrounded by a pipe-net for each 
thermal fluid delivery, which is equipped by instruments 
for data acquisition and control. These instruments 
include sensors of temperature and pressure, flowmeters 
and electro-pneumatic valves. Six temperature sensors 
are used to measure the following Temperatures: jacket 
inlet temperature ( eT ), jacket outlet temperature ( sT ), 

mixer outlet temperature ( mT ), cold water inlet 

temperature ( efT ), steam temperature ( vT ) and reactor 

temperature ( rT ). Four flowmeters are used to measure 

the flow rate of these different fluids: cold water ( 1D ), 

intermediate fluid ( 2D ), glycol water ( 3D ) and steam 

( 4D ). Four proportional electro-pneumatic valves 

( AV , BV , CV  and DV ) are implemented for the 
control of the utility fluid flow rates. Twelve on/off 
valves ( 1V , …, 12V ), are used for ensuring the fluids 
circulation. The pilot-plant is also equipped with a 
recycling pump of the intermediate fluid.  
 
2.2. Thermal control strategy 
 
The heating/cooling system is a hybrid configuration, 
which integrates the advantages of both the mono-fluid 
and multi-fluid systems (Cabassud, et al., 1995). This 
hybrid system allows to use either water as 
intermediate thermal fluid (which is industrially much 
cheaper than other thermal fluid) either glycol water or 
steam when, respectively, a colder or hotter fluid is 
needed. The thermal control strategy is based on the 
use of the thermal flux exchanged between the utility 
fluid and the mixture as the manipulated variable. The 
control strategy is composed of a model based on the 
iterative linear learning controller (BMPC) cascaded 
with two blocks (figure (2)). The first one is a 
supervisory control block enabling the choice of the 
adequate thermal fluid based on thermal flux limits 
analysis (intermediate fluid, glycol water or steam). 
The maximal and minimal thermal capacities of each 
fluid are computed to allow this choice. In the case of a 
conflict, the priority is given to the current fluid. The 
second block is a non-linear block ensuring 
computations of the fluid flow rate (based on the 
corresponding thermal fluid model) and of the resulted 
opening degree of the valves to be applied. The 
thermal flux computed by the BMPC controller is 
compared to the limit capacities of the current fluid. 
Thermal limits capacities computations are not detailed 
in this paper, the interested reader should consult 
(Louleh, et al., 1996). 
 
2.3. Modelling 
 
A dynamic process can be represented generally by a 
set of differential equations (in the time domain) or a 
transfer function (in the frequency domain). Since, the 
considered system to be studied, belongs to the class of 
repetitive systems, where a repeated operation task is 
defined over a finite time interval, the construction of a 
dynamic model linking all the process input/output 
during the whole operation is rather credible to achieve 
better performance of the repeated operation. It can be 
considered as a two-dimension model, which is a 
function of the time evolution of the process behaviour 
during the considered operation (index t) and the batch 
number (index k). This partial knowledge of the 
process behaviour is essentially based on energy 
balance equations on the reacting mixture and on the 
reactor jacket wall (Mezghani, et al., 2000). Then, the 



model of the whole operation model can be derived by 
integrating the energy balance equations. 
 By considering the following operation sequences ky , 

ku  and rp  (see figure (3)), the sequence ky  can be 

rewritten in a vector form, as a function of the ku  and 

rp  sequences.  
rpkGu ky +=  

(1)

 
With: 
G  matrix is a lower triangular matrix, where 
components are the Markov parameters of the nominal 
model given by the discretisized energy balance 
equations, for more details see (Mezghani, et al., 2000). 
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with (see figure (3)): 
 N    :  batch time (in number of sampling times),  

 ky : output sequence of the thk  batch,  

ku  : control sequence of the thk  batch,  

 rp : sequence of the non-repetitive disturbances 
(disturbances due to unmodelled dynamics and the free 
response sequence caused by initial conditions of the 
state vector ( 0x )). 
 

3. PREDICTOR SYNTHESIS 
 

The presented strategy allows to keep on one hand, with 
the Model Predictive Control (MPC) methodology 
(Richalet, et al.,1978), using a linear finite memory 
output predictor (based on the internal representation of 
the uncertain process to be controlled), and on the other 
hand, with the Iterative Learning Control (ILC) strategy 
based on the previous input/output information during 
the repetitive operation. The adopted strategy is based on 
combining the MPC features with the ILC features under 
the name of Batch Model Predictive Control (BMPC). 
The resulting strategy integrates both properties of 
feedback and feedforward actions respectively to the 
MPC and the ILC controllers.  
While, the interest is to improve performance operations 
from one batch to the next one, the available formulation 
of the whole operation given by equation (1), does not 
exhibit a recurrent formulation that takes into 
consideration the batch number (k) and the time 
evolution (t) during the batch. Therefore, in order to 
embed both control actions: feedback (current batch 
measurements) and feedforward (previous batch 
measurements), it is recommended to dispose of a model 
incorporating two indexes (k, t). 
The computations of the control values in the BMPC 
require predictions of the output error sequence 

 ke (t/t) over the horizon ( m ).  The one step predictor 
of the output error sequence is given by: 
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Where 
-  (t)kK represents the dynamic matrix of the Kalman 
filter which is determined by minimizing the 
covariance error of the estimated error sequence.  

-  (t/t)m
ke  and  1)-(t/tke   represent respectively the 

measured and the estimated tracking error during the 
thk  batch at the instant t (Chin, et al., 1997) : 

1)-(t/t(t)1)-(t/tke keH=  
(3)
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4. CONTROLLER SYNTHESIS 

 
According to the conventional predictive control 
strategy (Garcia, et al.,1989), the performance 
objective consists in minimizing a quadratic criterion 
ensuring a compromise between the tracking quality 
and the dissipated energy. Similarly, the BMPC control 
law is designed with the aim to minimize the following 
criterion (Lee, et al., 1999) :  
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            (5) 
where m  is the control horizon. ∆  is the integral 
action according to the batch index. Note that no 
controller outputs mt

ku +  but only their increments 
mt

ku +∆  are penalized. The reason is to ensure that the 
mean of the tracking error ( 1-kk y-y ) will be near 
zero when ∞→k  (steady state of the successive 
carried out batches). Q  and R  are two definite, 
positive and symmetric matrices. It is to be noted that 
this performance criterion is composed of two terms: 
the first one is the sum of the future predicted output 
square errors where the predictions are based on 
current measurement (at instant t), previous batch 
measurements from ( mtt +→ ), control value 
increments sequence computed at each step ( mt

ku +∆ ),  
noise covariance matrices and the truncated part of the 
matrix G  ( mtG + ). The second term represents the 
future control increments square over the prediction 
horizon m  penalised by the matrix R. According to the 



established m -step ahead predictor (4), the criterion (5) 
can be expressed by an algebraic matrix form and the 
computation of the future control increments sequence 
( mt

ku +∆ ) minimising the criterion is immediate. Hence, 
from the least square formula, the expression of the 
optimal sequence ( mt

ku +∆ ) is readily obtained: 

(t/t)
Tmt1-mtTmtmt

keGR)QGGku ++++=+ ( (6) 

and the first component of the vector mt
ku +∆  is 

considered as the instantaneous correction term to the 
control value computed at the previous batch. The 
control value is given by: 

)()()( 1 tututu kkk ∆+= − (7) 
Besides,  the necessary Kalman filtering, which is 
needed to improve such control strategy in terms of 
control performances, it is necessary to get a smooth 
control action (to prevent from equipment damage) and a 
fast convergence rate. Based on the learning concept, the 
control variance is continuously increasing.  In order to 
be able to enhance the behaviour of such batch process 
some supervisory control tasks has to be considered: (1) 
off-line filtering of the previous computed control 
sequence, (2) strategy for the right selection of the 
thermal fluid by taking advantage of the knowledge of 
the future control values computed at each sampling 
time, for further details see (Mezghani, et al., 2001).  
 

5. EXPERIMENTAL STUDIES 
 
In this study, experiments involve chemical reaction, 
which have been simulated using heat source for 
exothermic reactions. For safety and experimental cost 
saving, the pilot plant reactor has been fitted with heating 
resistances. This device allows the "simulation" of the 
generation of heat during an exothermic chemical 
reaction as described in (Kershenbaum and 
Kittisupakorn, 1994). The heat generation rate is 
computed on-line according to the kinetic model of the 
chemical reaction concerned. This value is then applied 
to the process by means of the heating resistance. The 
time evolution of the heat generation rate is presented on 
figure (4). The BMPC computations of the first batch are 
initialised by the input/output data obtained through the 
application of the generalized  predictive controller 
(GPC). This is done according to experimental studies 
investigated in (Mezghani, et al.,2000). The choice of 
GPC controller is not a restriction and any conventional 
controller can be used to provide the BMPC 
initialisation. More precisely such studied strategy can be 
resumed in two steps design: (1) at the first trial: the use 
of a conventional feedback controller (i.g. GPC), (2) at 
next trials: the use of an Iterative Learning Controller 
(BMPC). 
To illustrate some of the BMPC features, two successive 
experimental run sets have been carried out ( palT =45°C 
and 60°C). A classical four steps profile tracking is 
considered: (1) a preheating step of the initial mixture 
(The reactor has been charged with 10 litres of water) 
from ambient temperature to palT  during 900 s, (2) a 

maintaining temperature step ( palT ), from 900 s to 
2700 s, with the “simulation” of the reaction by the 
two heating resistances, from 1200s to 2200 s, (3) a 
cooling step of the mixture from 60°C to 35°C during 
800 s, to prevent the formation of secondary products, 
(4) a maintaining step at 35°C during 100 s. The 
outline of such experimental studies can be organized 
as follows: (1) firstly, to illustrate the convergence of 
the algorithm, in the presence of a repetitive 
perturbation (heat released by an exothermic chemical 
reaction), (2) secondly, to evaluate superfluous fluid 
changeovers via a convenient handling of the different 
heating/cooling fluids.  
 
For the presented examples, m=10, Q=I, R=10*I, Rw = 
Rv =J, where I  is the identity matrix and J ,  the 
dynamic matrix of low frequency perturbations. More 
details on the choice of these synthesis parameters (G, 
m, Q, R, Rw , Rv, J) can be found in (Mezghani, et al., 
2001).  

Experimental set 1on : palT = 45°C 

Figure (5-a) depicts the reactor temperature during the 
successive batches. First of all, with the BMPC it is 
possible to progressively decrease the disturbance 
effect due to the heat generation rate (not included in 
the process model) in a few successive experiment runs 
(four successive runs as shown on figure 5-a). 
Secondly, there is not a degradation in the 
performances during the preheating and the cooling 
steps as tracking performances are notably similar to 
those obtained by the GPC controller. Figure (5-b) 
displays the thermal flux minimal and maximal 
capacities of each fluid, the thermal flux computed by 
the GPC controller (initial data required for the BMPC 
computations) and the thermal flux computed by the 

BMPC controller at the th4  batch. In this experiment, 
the intermediate fluid was used during the preheating 
and the cooling and a changeover to glycol water was 
needed during the maintaining step to cancel out the 
heat generation. As it can be seen in figure (5-b), one 
of the main advantages of the BMPC is the powerful 
capacity of anticipation in the changeovers of fluid. 
The first changeover occurs at 1200s merely 100 
seconds before the one performed in the initial 
experiment (with the GPC). 

Experimental set 2on : palT =60°C  

In order to illustrate the robust handling in such 
thermal control system equipped with several fluids, 
the performance of the BMPC controller are tested for 
the same four step temperature profile but with a 
maintaining temperature of 60°C. Figure (6-a) shows 
the successive process output behaviour. Figure (6-b) 
depicts  the thermal maximal and minimal capacities of 
each fluid and the thermal fluxes computed by the 
GPC and the BMPC (4th run) controllers. Since faster 
heating and cooling phases are required, the successive 
use of the intermediate fluid and steam during the 
preheating step and of glycol water during the 
maintaining and the cooling steps is needed. Notable 
improvements can be observed not only in the 



cancellation of the disturbance but also in the tracking 
performance at the end of the cooling step. Similarly to 
the previous experimental set, it can be noted that an 
earlier switch to the glycol water is performed with the 
BMPC that confirms the anticipation capacity of such a 
strategy. As previous, the disturbance is nearly cancelled 
after a few number of experimental runs (four successive 
runs). It is to be noted that, during the preheating step 
(figure 6-b) and for the four batches, the switch from the 
intermediate fluid to the steam is always accompanied by 
a temperature overshoot, which cannot be improved by 
the BMPC controller. This is essentially due to the 
reactor jacket wall inertia and its assumed static thermal 
model presented by (Mezghani, et al., 2000 ; Louleh, et 
al., 1996).  
 

6. CONCLUSION 
 
The experimental results have illustrated the 
improvement of the achieved performance applied to a 
semi-batch chemical reactor equipped with a thermal 
system composed of several fluids by using an 
appropriate Iterative Learning Controller. The robust 
strategy dedicated to the class of repetitive operations 
has been evaluated for different maintaining temperature 
profiles. Thus, various scenarios have been tested: the 
impact of noise affecting the measured data and of 
uncertain physical parameters used to derive the dynamic 
matrix G  (the uncertain real process). In order to ensure 
a compromise between robust performance and learning 
convergence rate, an appropriate filtering has been 
investigated. In spite such successful results, interesting 
questions and critical points for the actual 
implementation should be mentioned. Notably, the 
algorithm should be extended to non-linear plants and 
using more complicated performance criteria should 
perform improvements of the rate of convergence.  
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Fig. 1. Scheme of the pilot plant reactor. 
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Fig. 2. Closed loop scheme of the reactor and its  
            environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Descriptive scheme of the repetitive disturbed  
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Fig. 4. Heat generation rate profile applied to two 
immersed resistances.
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Fig. 5. Experimental results of set n°1. 
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yd=[yd(1), …yd(N)] 
Desired sequence of the kth batch 

ek=[yd(1)- yk(1), …yd(N)- yk(N)] 
Tracking error sequence of the kth batch 

yk(t) 
ek(t) 

Time 1 N
ud=[ud(0), …ud(N-1)] 
Optimal control sequence :allowing the perfect remove
of the repetitive disturbance 

uk=[uk(0), …uk(N-1)] 
Input sequence of the kth batch 

uk(t) 

1 N
Time 


