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Abstract: The contribution is focused on robust design and analysis of continuous-time  
controllers for SISO systems without and with time delays. Controllers are obtained via 
solutions of diophantine equations in the ring of proper and stable rational functions by 
Youla-.XþHUD SDUDPHWHUL]DWLRQ� 8QFHUWDLQW\ LV VWXGLHG WKURXJK WKH LQILQLW\ QRUP

H∞. A scalar parameter was proposed as a tuning knob for minimization of the 
sensitivity function and uncertainty conditions. Both, feedback a feedback and 
feedforward structures of the controlled system are considered. Disturbance rejection 
and attenuation can be also easily solved by the proposed methodology. Copyright © 
2002 IFAC 
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1. INTRODUCTION 
 
Continuous-time controllers of PID type have been 
widely used in many industrial applications for 
decades. There are several features of their success, 
e.g. structure simplicity, reliability, robustness in 
performance, etc., see e.g. (Aström and Hägglund, 
1995; Bennet, 2000; Rad and Lo, 1992). However, 
the choice of the individual weighting of the three 
actions, i.e. proportional, integral and derivative has 
been a problem. Moreover, the number of tuning 
parameters in more sophisticated PID modifications 
proposed in (Aström, et al., 1992) is even higher. 
The classical tuning algorithms were derived from  
Ziegler and Nichols method (Aström and Hägglund, 
1995). The method is based on the ultimate cycle 
technique and it is not suitable for unstable and time 
delay systems, see e.g. in (Kaya and Atherton, 1999, 
Ventkatashankar and Chidambaram, 1994). 
Moreover, robust controllers and plant uncertainty 

became requisite and popular discipline in control 
theory during the last decade. Robustness also 
influenced design and tuning of PID controllers 
(Morari and Zafiriou, 1989; Prokop and Corriou, 
1997). The necessity of robust control was naturally 
developed by the situation when the nominal plant 
(used in control design) differs from the real 
(perturbed and controlled) one. A suitable tool for 
parameter uncertainty is the infinity norm H∞. 
Hence, a polynomial description of transfer functions 
had to be replaced by another one. A convenient 
description adopted from (Vidyasagar, 1985; .XþHUD

1993; Doyle, et al., 1992) is a factorization approach 
where transfer functions are expressed as a ratio of 
two Hurwitz stable and proper rational functions. 
Then, the conditions of robust stability can be easily 
formulated in algebraic parlance and all controllers 
are obtained and parameterized via linear 
diophantine equations in an appropriate ring. 
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For SISO systems of the first and second orders this 
approach yields a class of PID like controllers. The 
methodology is proposed and analysed in (Prokop 
and Corriou, 1997; Prokop, et al., 1997; Prokop and 
Prokopová, 1998). The algebraic approach 
illustrated by an example gives nontraditional PID 
structures proposed in e.g. (Aström, et al., 1992; 
Morari and Zafiriou, 1989) in a different way. The 
fractional approach for SISO controllers brings a 
scalar parameter m > 0 which influences the 
dynamic of the feedback system as well as the 
robustness and sensitivity of proposed controllers. 
The methodology is suitable for stable and unstable 
systems (Prokop, et al., 2000) and for systems with 
time delay (Prokop and Mészáros, 1995). 
 
 

2. SYSTEM DESCRIPTION OVER RINGS 
 
Let Rm(s) denote a ring of Hurwitz stable and proper 
rational functions having no poles in the region     
Re  s >− m; m ≥ 0. For m=0 the traditional ring Rs(s) 
see (Vidyasagar, 1985; .XþHUD� ����� LV REWDLQHG�

Any transfer function H(s) of a (continuous-time) 
linear system has been traditionally expressed as a 
ratio of two polynomials in s. For the purposes of 
this contribution it is necessary to express the 
transfer functions as a ratio of two elements of Rm(s). 
It can be easily performed by dividing, both the 
polynomial denominator and numerator by the same 
stable polynomial of the order of the original 
denominator: 
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The scalar positive parameter m>0 can be 
conveniently used as a tuning knob for control 
behavior. Systems with time delay are obtained in a 
similar way by appropriate approximation of the 
term e-Θs see e.g. (Prokop,  et al., 2000). 
 
The H∞ norm in these rings is defined by 
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This (called infinity) norm is the radius of the 
smallest circle containing the Nyquist plot of the 
transfer function and it is a convenient tool for the 
evaluation of uncertainty. 

Almost all mathematical models differ from physical 

systems. Let 
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given by inequalities 
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where ε1, ε2, ε are positive constants. 
 
 

3. CONTROL DESIGN IN Rm(s) 
 
The basic two degree-of-freedom (2DOF) control 
system is depicted in Fig.1. 
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Fig. 1. Two-degrees of freedom control structure. 

 
Note that a traditional one degree-of-freedom 
(1DOF) feedback controller operating on the 
tracking error is obtained for Q = R. External 

signals 
w

w

F

G
w =  and v

v

v

F

G
=  represent the reference 

and disturbance signal, respectively. The most 
frequent case is a stepwise reference and a harmonic 
disturbance. Their denominators of transfer 

functions are then 
ms
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respectively. 
The basic task is now to ensure internal stability of 
the system in Fig.1. All stabilizing feedback 
controllers are given by all solutions of the linear 
diophantine equation (Vidyasagar, 1985; .XþHUD�

1993): 
 
 A P + B Q = 1  (4) 
 
with the solvability condition that A and B are 
coprime. In the Youla- KuþHUD SDUDPHWHUL]DWLRQ

form, the feedback controllers are expressed by the 
fraction: 
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where P0, Q0 ∈ Rm(s) is any particular solution of (4) 
and T is free in Rm(s). 
From the practical point of view, it is often desirable 
to ensure more than stability. Probably the most 
frequent problem of importance is that of reference 
tracking. Now, it is necessary to solve both structures 
1DOF and 2DOF separately. Further, the following 
equations for 2DOF hold: 
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and for 1DOF structure the last relation gives the 
form: 
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Since eq.(4) holds, the control error takes the form 
for the 2DOF: 
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and for the 1DOF structure: 
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For asymptotic tracking then follows: 
 
a) Fw divides AP for 1DOF (10) 
b) Fw divides 1-BR  for 2DOF (11) 
 
The last condition and the 2DOF structure give the 
second diophantine equation in the form: 
 
 1=+ BRSFw  (12) 

 
For the 1DOF structure, the asymptotic tracking 
problem leads to the condition of divisibility that Fw 
divides the product  AP or 0FFAP w= . 

The next step is aimed to the disturbance rejection 
problem. Both structures can be solved in a unified 
way since the transfer functions from v  to e are the 
same. The problem then gives a second condition of 
divisibility that the product  AP has to be divisible by 
Fv, or 1FFAP v= . More precisely Fv must divide the 

multiple AP. When define relatively prime elements 
A0, Fv0  in Rm(s) by 
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then the feedback controller is given by 
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where P1, Q is any solution of the equation 
 

 110 =+ BQPAFv  (15) 

 
In the case of (15) all stabilizing controllers are also 
given in the parametric form similar of (5): 
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For robust control, it is necessary to choose a part of 
all stabilizing controllers (4), (5) which stabilize 
perturbed plants (2). The answer can be found in 
(Vidyasagar, 1985). For perturbed plants (2) choose 
such P, Q in (4), (5) which fulfill the conditions 
 
 121 <ε+ε QP  (17.a) 

 1or  
Q

P
<ε  (17.b) 

 
where P, Q are any solution of (5) or (15). The first 
condition of (17) is a sufficient one, the second is a 
necessary and sufficient one see (.XþHUD ����; 
Vidyasagar, 1985). For a deeper insight into 
robustness the notion of the sensitivity function: 
 

 AP
v
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can be also used in the sense of (Doyle, et al., 1992). 
For the mentioned SISO systems, sensitivity function 
∈ is a nonlinear function of m > 0 and it can be 
minimized by a simple scalar optimization method. 
In this way, the „most robust“ controller of given 
structure can be obtained.  
The proposed robust design can be also used for time 
delay systems. Let the transfer function of 
a controlled plant be: 
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Then the linear approximation of the time delay 
term has to be performed. It can be done in several 
methods. The first one and the simplest is neglect 
the delay e-τs. Then the time delay is considered as 
a perturbation of the nominal transfer function. Next 
two approximations are based on the Taylor series 



approximation of e-τs in the numerator or in the  
denominator of the time delay term e-τs  ≈ (1-τs) ≈ 
(1+τs)-1 . The last model can be obtained by Padé 
approximation. All approximate transfer functions 
then can be covered by the second order in the form: 
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for m > 0. See (Prokop and Meszaros, 1996) or 
(Prokop, et al., 2000) for details. 
 
 

4. PID CONTROLLERS AND TUNING 
 
In this section, a derivation of a class of PID 
controllers will be shown through the scalar 
parameter m. Suppose a second order system by (19). 

Further, the step-wise reference with 
ms
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assumed. Then the equation (4) takes the form: 
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After comparing left and right hand side terms of 
(20) the general solution of (4) can be expressed. 
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where  
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were obtained by straightforward calculations. 
The divisibility condition Fw\P is achieved for 

0

0
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mp
tT −==  and the final solution is: 
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and the transfer function for 4
3

 is given: 
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It is clear that (24) corresponds with the realistic 
PID controller, see (Aström, et al., 1992) 
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Remarks: 
1. Equation (12) for a feedforward part can be 

solved in a similar way. The final controller 
contains the setpoint weighting, see (Aström and 
Hägglund, 1995). 

2. As follows from (22) - (24) the scalar m>0 is 
incorporated into controller parameters as an 
independent and nonlinear variable. This "tuning 
knob" influences stability of the closed-loop 
system as well as the robustness and behavior. 

3. The sensitivity function as well as the left hand 
sides of inequalities (17), (18) are non-linear 
functions of this scalar parameter m>0. 

 
 

5. SIMULATIONS AND ANALYSIS 
 
Example 1: Stable second order system 
The nominal stable process is 
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and the perturbation is caused by time delay:  
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The 1DOF controller was calculated by (22)-(24). 
Fig.2 illustrates the left side of  the necessary 
condition (17.a)  as a nonlinear function η(m) of 
m>0 with the minimal value m0 = 0.69. The interval 
for 1)( ≤ η m  is <0.19; 1.34>. 
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Fig. 2. Condition (17.a) as a function a of m > 0 for 

nominal plant (27). 
 
Fig.3 shows the control responses for the minimal 
value m0 =0.69. This figure demonstrates that the 
most robust behavior would not be optimal from the 
user point of view. Fig.4 illustrates the nominal and 
perturbed response for another value of the interval 
<0.19; 1.34> and this response does not exhibit the 
nonminimal behavior.  

10 20  30 40  0  

1 

2 

Time (second)  
Fig. 3. 1DOF response for m=0.69(dotted - nominal, 

solid - perturbed). 
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Fig. 4. 1DOF response for m=1.3 (dotted - nominal, 

solid - perturbed). 
 
Example 2: Integrator plus time delay process 
 
Integrator plus dead time model was found to be a 
suitable model for a number of technological plants  
(Kookos, et al. 1999). In this example, the integrator 
with transfer function: 
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was controlled. Fig. 5 shows the control response 
with neglecting of the time delay term and PI 
controller. Fig. 6 represents the PID control in which 
the time delay term is approximated by a first order 

Taylor denominator expansion. as well as the 
Nyquist plot of the open loop. The robustness of the 
resulting control system is clear from the distance of 
the Nyquist curve from the critical point -1. 
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Fig. 5. Control response of the integrator with dead 

time (29) with neglecting of the  dead-time 
(m=0.1) 
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Fig. 6. Control response of the integrator with time 

delay (29) and the open loop Nyquist plot with 
the denominator approximation (m=0.3) 

 
 

6. PROGRAM IMPLEMENTATION 
 
A MATLAB-package with simulation support in 
SIMULINK was developed for nominal plants of the 
first and second orders with or without dead-time. 
These transfer functions in the mentioned control 
design cover a class of generalized PID-like control 
structures. The program system enables design and 
simulation of a wide spectrum of robust control 
problems. 
 
First, a nominal plant of a desired structure with its 
transfer function and dead time has to be defined. 
A transfer function of the perturbed plant can be set 
up. The default choice is the identity of nominal and 
perturbed systems. Then, a control structure (1DOF 
or 2DOF ones) is chosen.  Fig. 7 shows the main 
menu of the program system. 



Further, there are three main options for the control 
design. The simplest case calculates controller 
parameters for a given  m>0 according to the above 
mentioned methodology. The second possibility 
obtains the particular m0 by scalar minimization of 
the norm of  the sensitivity function. In this way, the 
„most robust“ regulator for a given nominal plant is 
obtained. The third option with respect to 
perturbations generates a scalar optimization of 
robust stability conditions in the sense of  (17).  
 

 
 
Fig. 7. The main menu window in MATLAB 
support for automatic tuning. 
 
The simulation of the perturbed plant with the 
regulator computed for the nominal transfer function 
is performed in the standard Simulink environment. 
Various simulation parameters (simulation horizon, 
reference, load and output disturbances, input 
constraints, etc.) can also be defined by the user. 
 
 

7. CONCLUSIONS 
 
A design method based on fractional representation 
was developed for SISO continuous-time systems 
generally with time delay. Resulting control laws for 
first and second order systems give a class of 
generalized PI and PID structures. The proposed 
method enables to tune and influence the robustness 
and control behavior by a single scalar parameter 
m>0. The tuning parameter can be chosen arbitrarily 
or it is a result of the robust and sensitivity 
optimization. The proposed methodology is 
supported by a Matlab + Simulink program system 
for automatic design and simulation. 
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