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Abstract: This paper is concerned with the design of a model reference adaptive
variable structure control (MRAVSC) scheme for a class of perturbed large-scale
systems with mismatched uncertainties and time-varying delay interconnections in
order to solve robust state tracking problems. This control scheme with an adaptive
mechanism embedded and a perturbation estimation process can achieve robust state
tracking, neither the knowledge of upper-bound of mismatched perturbations nor the
knowledge of exact function of time-delay in the interconnections is required. Fur-
thermore, the overall controlled large-scale system is uniformly ultimately bounded.
Finally, an example is demonstrated to show the feasibility of the proposed control
scheme. Copyright c! 2002 IFAC
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1. INTRODUCTION

It has been shown that variable structure con-
trol (VSC) offers the robustness of stability and
the property of insensitivity to matched system
parameter variations and external disturbances
(Yeung et al., 1993; úZak and Hui, 1993; Walcott
and úZak, 1988; Slotine and Sastry, 1983; Drazen-
ovic, 1969). If mismatched perturbation exists,
however, the desired tracking precision of tradi-
tional VSC in general may not be always achieved.
On the other hand, the traditional VSC pays the
price of chattering phenomenon and the require-
ment of knowledge of upper-bounds of perturba-
tions in order to preserve the advantage of robust-
ness against perturbations (Yeung et al., 1993;
úZak and Hui, 1993; Walcott and úZak, 1988; Slotine
and Sastry, 1983; Drazenovic, 1969). In the steady
state, chattering phenomenon serves a source of
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exciting the un-modeled high-frequency dynamics
of system (Hung et al., 1993; Slotine and Sas-
try, 1983). Since the knowledge of upper-bounds
of perturbations is not available or too expensive
to access in many practical applications ( úZak and
Hui, 1993), the requirement of these information
may become a serious problem in the application
of conventional VSC. Recently, a perturbation
estimation scheme was proposed by Cheng et al.
(2001) so that the knowledge of upper-bounds of
perturbations is not required.

For large-scale systems, a few research results in
which VSC technique is employed exist due to
the complexity of control systems and the ef-
fects of interconnections. In such cases, the main
challenge is in handling the interconnected terms
among each subsystem. Matthews et al. (1988)
and Richter et al. (1982) applied VSC technique to
control a large-scale system with the requirement
of exact knowledge of all local systems� parame-
ters. Hsu (1997; 1998) and Wang et al. (1993)
proposed a robust decentralized VSC for large-

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



scale systems with the requirement of information
of upper-bound of perturbations. Chiang (1995)
presented a model reference control for a large-
scale variable structure adaptive control system. It
is noted that all the approaches mentioned above
do not consider time-delay interconnections. Chou
and Cheng (2000) proposed a decentralized model
following VSC scheme for perturbed large-scale
system with time-delay interconnections, however,
the knowledge of upper-bound of perturbation is
needed.

Time-delay commonly exists in various practical
engineering systems due to mechanism or the
Þnite speed of signal processing, and its exis-
tence is frequently a source of instability. In past
years, many different approaches are investigated
to solve the problem of robust stabilization or
tracking for dynamic system with time-delay, for
example: Yu (1983), Cheres et al. (1989), Luo and
Sen (1993).

The objective of this paper is to present a design
method of decentralized robust state tracking con-
trollers for large-scale systems with time-varying
delay interconnections and mismatched uncertain-
ties. Both a perturbation estimation process and
an adaptive control mechanism are embedded in
the controller, so that the proposed control scheme
is designed without the requirement of the knowl-
edge of upper-bounds of perturbations, and the
chattering phenomenon can also be reduced. The
resultant control scheme can achieve the property
of uniformly ultimate boundness.

2. SYSTEM DESCRIPTIONS AND
ASSUMPTIONS

Consider a class of perturbed large-scale systems,
which are composed of N-linked subsystems with
time-varying delay in the interconnections. The
dynamic equation of each subsystem is described
as

úxi(t) =Aixi(t) +Biui(t) +

N!
j=1,j !=i

Ai,j ×

xj(t− hij(t)) + di(t,xi), (1)

xi(t) =ϕi(t), t ∈ [−h̄, 0], i = 1, 2, · · · , N,
where xi(t) ∈ $ni , ui(t) ∈ $mi are the state
variable and control input vector of the i-th sub-
system, respectively. The vector di(t,xi) is the un-
known, lumped perturbation due to system�s pa-
rameter variations, e.g., ∆Ai(t,xi)xi(t), nonlin-
earity, modeling inaccuracy and external distur-
bances. Ai, Aij , Bi are known and real matrices
with appropriate dimensions. The unknown scalar
function hij(t) denotes unknown non-negative,

continuous and bounded time-varying delay sat-
isfying

0 ≤ hij(t) ≤ h̄ <∞, ∀i, j, i (= j,
where h̄ is a known positive constant. ϕi(t) is an
arbitrarily known continuous state vector-valued
function for specifying initial conditions. For the
purpose of model reference, the local reference
model of the i-th subsystem is given by

úxmi(t) = Amixmi(t) +Bmiri(t), (2)

i = 1, · · · , N , where xmi(t) ∈ $ni is the state
vector of the i-th reference model, ri(t) ∈ $mi is
the piecewise continuous and bounded reference
input vector of the i-th reference model. Ami,
Bmi are real constant matrices with appropriate
dimensions, and Ami is stable. It is also assumed
that the following assumptions are valid:

A1. (Ai,Bi) is a controllable pair.
A2. The state vector xi of the i-th subsystem is
locally measurable for all time.
A3. di(t,xi) is continuously differentiable in xi
and piecewise continuous in t. There exist two un-
known constant qi0 and qi1 such that )di(t,xi)) ≤
qi0 + qi1)xi).
A4. There exist two unknown constant gi0 and
gi1 for all hij(t) ∈ [0, h̄] such that )xij(t −
hij)) ≤ gi0 + gi1xi,sup, i (= j, where xi,sup !
supt−h̄<τ<t )xi(τ)).
The main objective of this paper is to design a de-
centralized robust tracking controller so that the
state variable xi of the i-th subsystem can track
the state variable xmi of the i-th reference model
in spite of perturbations, and the robustness of
overall system�s stability can be guaranteed.

3. DESIGN OF DECENTRALIZED ROBUST
TRACKING CONTROLLERS

The design procedures of the proposed controller
are described as follows.
Step 1: Design of sliding surface
For the state variable xi of the i-th subsystem, the
tracking error vector is deÞned as

ei ! xi − xmi, i = 1, · · · , N. (3)

From (1), (2) and (3), one can obtain

úei =Amiei + (Ai −Ami)xi +Biui

−Bmiri +
N!

j=1,j !=i
Ai,jxj(t− hij(t))

+di(t,xi,ui), i = 1, · · · , N. (4)

For achieving the objective of state tracking, it
is desired that ei → 0 as t → ∞. Therefore the
sliding surface of each subsystem is designed as

σi = Ciei−
" t

0

Ci(Ami +BiKi)eidτ, (5)



where Ci ∈ $mi×ni is a constant matrix with full
rank, and is chosen such that CiBi is nonsingular
as well as Ci contains no columns whose entries
are all zero. The matrix Ki ∈ $mi×ni is designed
to satisfy the inequality

max [Re(λ(Ami +BiKi))] < 0. (6)

Step 2: Controller design
Substituting (4) into the derivative of (5) yields

úσi = Ψi +CiBiui +∆Pi, (7)

where

Ψi !Ci[(Ai −Ami)xi −Bmiri]−CiBiKiei,

and

∆Pi!Ci

 N!
j=1,j !=i

Ai,jxj(t− hij(t))+di(t,xi)
(8)

is a new lumped perturbation vector. Now one can
design the proposed controller as

ui ! (CiBi)−1(−Ψi −Ksiσi

−∆Pi,est − ui,adp), (9)

where Ksi ! diag[ksil] ∈ $mi×ni , l = 1, · · · ,mi,
is a constant gain matrix, ksil > 0, ∆Pi,est !'
∆pi1,est · · · ∆pimi,est

(T
is the estimation of∆Pi.

The vector ui,adp !
'
ui1,adp · · · uimi,adp

(T
is

adaptive control effort used to overcome the un-
known upper-bound of perturbation estimation
error, and is designed as

uij,adp =

)
�γij0 + �γij1)xi)

+
N+1!

k=2,k !=i+1
�γijkxk−1,sup

 sat)σij
βij

,
,

j = 1, · · · ,mi, where βij is a small positive
constant. The adaptive gains are given by

ú�γij0 =
1

αi0
(−ηij0γij0 + |σij |), (10)

ú�γij1 =
1

αi1
(−ηij1γij1 + |σij |)xi)), (11)

ú�γijk =
1

αi2
(−ηijkγijk + |σij |xk−1,sup), (12)

k = 2, · · · , N + 1; k (= i+ 1,
with zero initial conditions, where αi0, αi1, αi2,
ηij0, ηij1 and ηijk are all positive constants spec-
iÞed by the designer.
Step 3: Estimation of ∆Pi
First deÞne a nominal sliding function vector as

σi,n(t)!
" t

0

(−Ksiσi,n −∆Pi,est − ui,adp)dτ

+σi,n(0), (13)

where σi,n(t) =
'
σi1,n(t) · · · σimi,n(t)

(T
. From

(7) and (9), one can obtain

úσi =−Ksiσi+∆Pi−∆Pi,est−ui,adp, (14)

Let ∆Ii(t) ! σi(t)− σi,n(t). From (13) and (14),
one can obtain

∆Pi(t) =

)
d

dt
+Ksi

,
∆Ii(t). (15)

(15) implies that one can estimate ∆Pi by utiliz-
ing a Þlter with transfer function s

1+"is
(Cheng et

al., 2001; Chen, 1993), which means that

∆Pi,est(s) =

)
s

1 + (is
+Ksi

,
∆Ii(s), (16)

where (i is a small positive constant.

4. ROBUSTNESS OF SYSTEM�S STABILITY

The robustness of the proposed control system�s
stability is stated in the following theorem.

Theorem: Consider the large-scale system (1)
with the sliding function (5) for each subsystem
and the proposed controller (9). If all the afore-
mentioned assumptions are valid, and the pertur-
bation estimation error satisÞes

|∆pij −∆pij,est| ≤ γij0 + γij1)xi)

+

N+1!
k=2,k !=i+1

γijkxk−1,sup, (17)

i = 1, · · · ,N , j = 1, · · · ,mi, where γijl, l ∈
{0, · · · , N + 1}, l (= i + 1, are unknown positive
constants, then

(a) each sliding function σij of the i-th subsys-
tem is globally uniformly ultimately bounded;

(b) each tracking error ei of the i-th subsystem
will be bounded.

Furthermore, the stability of overall controlled
system is guaranteed by the proposed control
scheme. 2

Proof : (a) For each subsystem, deÞne a Lyapunov

candidate function Vi =
'
Vi1 · · · Vimi

(T
, where

Vij =
1

2

σ2ij + N+1!
k=0,k !=i+1

αijk�γ
2
ijk

 ,
and �γijk ! �γijk − γijk are the errors of adaptive
gains. Differentiating Vij with respect to time and
using (14) yields



úVij = σij(−ksijσij +∆pij −∆pij,est − uij,adp)

+

N+1!
k=0,k !=i+1

αijk�γijk ú�γijk

=−ksijσ2ij + σij(∆pij −∆pij,est)− σij ×

sat

)
σij
βij

,)
�γij0 + �γij1)xi)

+

N+1!
k=2,k !=i+1

�γijkxk−1,sup

+ �γij0(−ηij0 ×
�γij0 + |σij |) + �γij1(−ηij1�γij1 + |σij |)xi))

+

N+1!
k=2,k !=i+1

�γijk(−ηijk�γijk + |σij |xk−1,sup).

If |σij | > βij , then using (10), (11), (12) and (17),
the preceding equation can be further derived as

úVij =−ksijσ2ij + σij(∆pij −∆pij,est)− |σij | ×�γij0 + �γij1)xi)+ N+1!
k=2,k !=i+1

�γijkxk−1,sup


+�γij0(−ηij0�γij0 + |σij |)
+�γij1(−ηij1�γij1 + |σij |)xi))

+

N+1!
k=2,k !=i+1

�γijk(−ηijk�γijk + |σij |xk−1,sup)

≤−ksijσ2ij + |σij |
)
γij0 + γij1)xi)

+

N+1!
k=2,k !=i+1

γijkxk−1,sup

− |σij | ×�γij0 + �γij1)xi)+ N+1!
k=2,k !=i+1

�γijkxk−1,sup


+�γij0(−ηij0�γij0 + |σij |)
+�γij1(−ηij1�γij1 + |σij |)xi))

+

N+1!
k=2,k !=i+1

�γijk(−ηijk�γijk + |σij |xk−1,sup)

=−ksijσ2ij −
N+1!

k=0,k !=i+1
ηijk�γijk�γijk

=−ksijσ2ij −
N+1!

k=0,k !=i+1
ηijk�γ

2
ijk

−
N+1!

k=0,k !=i+1
ηijk�γijkγijk +

N+1!
k=0,k !=i+1

ηijkγ
2
ijk.

Since �γijk ≥ 0,

úVij ≤−ksijσ2ij −
N+1!

k=0,k !=i+1
ηijk�γ

2
ijk +

N+1!
k=0,k !=i+1

ηijkγ
2
ijk

≤−ζij
1
2

σ2ij + N+1!
k=0,k !=i+1

αijk�γ
2
ijk


+

N+1!
k=0,k !=i+1

ηijkγ
2
ijk

=−ζijVij +
N+1!

k=0,k !=i+1
ηijkγ

2
ijk, (18)

where 1
2ζij ! min

/
ksij ,

min
k

/
ηijk
αijk

00
≥ 0. Note

that ηijk and γijk are bounded, it is easy to see
that Vij is globally uniformly ultimately bounded,
which implies that σij and �γijk (and hence �γijk)
are also globally uniformly ultimately bounded.
(b)From (11), it can be shown that

�γij1(t) =

" t

t0

e
− ηij1
αij1

(t−τ) 1

αij1
|σij|)xi)dτ

+e
− ηij1
αij1

(t−t0) 1

αij1
�γij1(t0). (19)

Since from (a) it has been derived that �γij1 is
bounded, and the integrand in (19) is positive,
one can conclude that )xi) is bounded, this also
implies xi,sup, i = 1, · · · , N , are also bounded.
From (17), one can see that ∆pij − ∆pij,est is
bounded. Therefore according to (8), (15), (16)
and assumption A3 and A4, ∆pij and pij,est are
bounded respectively. On the other hand, from (3)
one can also obtain that ei(t) is bounded since
xmi is bounded. Therefore, the stability of overall
controlled system is guaranteed by the proposed
control scheme. ,
If there is no perturbation estimation error, i.e.,
∆pij = ∆pij,est, then according to (17), γijk = 0,

k = 0, · · · , N . From (18), one can see that úVij ≤
−ζijVij , it implies σi → 0 as t→∞.

5. EXAMPLE

Consider a large-scale system with dynamic equa-
tion given by
subsystem I:

úx1 =

0 1 00 0 1
1 2 3

x1 +
 0

0
1− 0.2 cos(t)

u1
+

0 00 0
1 2

1 x21(t− 0.3| cos(t)|)
x22(t− 0.1| cos(2t)|)

2
+

d11d12
d13

 ,
d11 = 0.3 cos(2t)x11 + (0.2 sin(t)− 0.1)x12,
d12 =−0.2 cos(t)x13 − 0.2x11x12 cos(x13),
d13 = 0.1x13u1,

subsystem II:



úx2 =

1
0 1
−2 −3

2
x2

+

1
1 + 0.3 cos(2t) 0

1 1 + 0.2 sin(t)

2
u2

+

1
1 0 1
1 1 2

2 x11(t− 0.1| cos(t)|)x12(t− 0.2| sin(t)|)
x13(t− 0.3| sin(3t)|)

+ 1d21
d22

2
,

d21 =−0.2 sin(t)x21+(0.5 cos(t)+0.3 sin(x21))x22,
d22 = 0.2 cos(t)x21 + (0.3x21 − 0.2 sin(t))x22,

where x1 =
'
x11 x12 x13

(T
, x2 =

'
x21 x22

(T
. The

desired reference models are chosen as

úxm1 =

 0 1 0
0 0 1
−1 −3 −3

xm1 +
00
1

 r1, r1 = sin(t)
úxm2 =

1
0 1
−4 −4

2
xm2 +

1
1 0
0 1

2
r2, r2 =

1
1

cos(t)

2
where xm1 =

'
xm11 xm12 xm13

(T
, xm2 = [xm21

xm22]
T . Let C1 =

'
1 0 1

(
, C2 =

1
1 0
−1 1

2
, K1 ='−4 −8 −4(, K2 =

1
0 0
−5 −2

2
, (1 = (21 = (22 =

β1 = β21 = β22 = 0.001, (ks1, ks21, ks22) =
(2, 1, 1) and the design parameters of adaptive
gains are chosen to be α10 = α11 = α12 = α20 =
α21 = α22 = 10, η10 = η11 = η12 = η210 = η211 =
η212 = η220 = η221 = η222 = 0.01. The initial

conditions are set to be x1(0) =
'
0.9 −0.4 0.3(T ,

x2(0) =
'−0.8 0.1(T , xm1(0) = xm2(0) = 0.

The simulation results are shown from Fig. 1
to Fig. 4. From Fig. 1 and Fig. 2 one can see
that the controller can achieve very good tracking
accuracy. There is almost no chattering, as shown
in Fig. 3. Fig. 4 shows that the adaptive gains �γ110,
�γ111 and �γ113 are all bounded. The other adaptive
gains �γ2jk, j = 1, 2, k = 0, 1, 2, whose Þgures are
omitted in this paper, are all bounded too.

6. CONCLUSIONS

A decentralized model reference control scheme
with perturbation estimation process and adap-
tive mechanism embedded is successfully pro-
posed for a class of large-scale mismatched per-
turbed systems for solving robust tracking prob-
lems. Due to the adaptive mechanism, the knowl-
edge of upper-bounds of perturbation as well as
the knowledge of the exact function of time-delay
are not required. Since the perturbation estima-
tion process is embedded in the controller, the pro-
posed adaptive gains need only to overcome the
unknown upper-bounds of perturbation estima-
tion errors, high control gain is avoided. Therefore
the chattering phenomenon is further alleviated

than those of traditional VSC in which boundary
layer controllers are used.

Fig. 1. Tracking error e1.

Fig. 2. Tracking error e2.

Fig. 3. Control effort u1 and u2.

Fig. 4. Adaptive gains �γ110, �γ111 and �γ113.
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