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1. INTRODUCTION

The problem of electromechanical oscillations in
power systems has been studied for a long time.
This problem arose in the early 60’s, a time when
modern control was still in its infancy. The solu-
tions then developed for this problem made use
of the analytical tools available at the time, that
is, classical control methods. The basic stability
concepts and design methods were developed from
frequency response analysis and a lot of phys-
ical reasoning based on the system’s operation
experience (deMello and Concordia, 1969). This
was quite a successful development, as the con-
trol methods thus derived have been and still are
widely applied.

Today, several decades later, the application of
modern multivariable control methods has be-
come commonplace in the analysis of these phe-
nomena and controller design aiming at their
damping in multi-machine power systems (Kundur,
1994; Martins et al., 1994; Costa et al., 1997;
Bazanella et al., 1995). Yet, the basic stability
concepts developed in the 60’s still provide the
guidelines and physical insights, and these con-
cepts are still presented and understood from a
classical control perspective (Kundur, 1994; An-
derson and Fouad, 1995).

A formal analysis of the problem of electrome-
chanical oscillations in power systems under the

light of modern control in provided in this paper.
The classical concepts in the stability of single
machine systems are explained in terms of eigen-
analysis, controllability and observability. Generic
properties are formally derived from an algebraic-
differential model for the power system. In so
doing, these concepts get an elegant presentation
in a rigorous mathematical framework, which is of
particular interest for the control expert interested
in power system stability. This rigorous mathe-
matical derivation brings several implications and
reveals some new aspects which will be discussed
along the paper.

In section 2 the modeling of the power system
is presented. Linearized models for multi-machine
systems and for the single machine system are
derived from a generic nonlinear model. The single
machine case is studied in section 3, where the
concepts and results in (deMello and Concordia,
1969) are derived from this model. The formal
nature of this derivation provides formal proofs
of those results and reveals some new properties.
The multi-machine case is studied in section 4.
The concepts developed for the single machine
case are extrapolated based on physical insight
and knowledge of typical system characteristics.
A benchmark is used to illustrate these concepts.
Some concluding remarks are given in Section 5.



2. POWER SYSTEM MODELING

The essential features of the synchronous machine
regarding the power system stability problem are
captured by the E('J model, which for a round rotor
machine is given by (Anderson and Fouad, 1995;
Kundur, 1994):
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where §, w and E,’I are the state variables rep-
resenting load angle, shaft speed deviation from
synchronous speed and internal voltage respec-
tively, P,, represents the mechanical power sup-
plied by the turbine (which is assumed constant),
Ey represents the field voltage, I, and I stand for
the quadrature and direct axis components of the
output current, and the other symbols are physi-
cal parameters in standard notation (Arrillaga et
al., 1983).

The terminal voltage in the d — g reference frame
is given by
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More complete models are known which describe
the synchronous machine behavior more accu-
rately. However, from a qualitative point of view
- which is the scope of this paper - they yield the
same results as the E; model.

In order to write down a model for a power system
consisting of N machines connected through a
transmission network, each current and voltage
must be put into a common reference frame, which
is achieved through rotations:
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with similar equations for the currents, where the
subscripts r and m mean real and imaginary parts
respectively and the subscript ¢ means that the
variable is related to the ¢th machine. In this
common reference frame the currents and volt-
ages are related through the transmission network
equation:
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where Y is the admittance matrix of the network.

Excitation control is usually applied in order to
regulate the magnitude of the terminal voltage,
which is given by

Vi =V(VZ+ V) (7)

It is common practice to model the excitation con-
trol as a purely proportional action. This model
captures the net effect of the controller, although
actual implementations are far more complex. As
in the case of the synchronous machine model, al-
though more complete models give more accurate
results in the analysis, they are equivalent from a
qualitative standpoint.

3. THE SINGLE MACHINE CASE
3.1 The model

In the case of a single machine against an infinite
bus the algebraic variables I, and I3 can be
eliminated from the model (1)-(3) to obtain a
standard state space description of the system:
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where the b parameters are all positive. These
quantities are related to the physical parameters
of the system and have been introduced in order
to simplify the notation.

Let us initially study the case of constant field
voltage, which represents the machine operated
without AVR or with AVR after ceiling voltage
has been reached. In this case, linearizing the
system (8)-(10) around an arbitrary operating
point yields
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and the subscript o means the value of the variable
at the operating point; the natural damping D
has been neglected, which makes the analysis



much simpler and has no qualitative effect on the
results, since D is usually very small.

The eigenvalues of the dynamic system (12) are
given by the roots of the characteristic polynomial
of its dynamic matrix:

Po(A) = X% + by X® + b1 E, cos Go) +
+b1by B, cos &, — bybs sin?§, (14)

Applying the Routh-Hurwitz criterion to this
polynomial shows that it has all its roots in the
left half of the complex plane if and only if

b1b4Eéo cosd, — bi1bs sin? 6o >0 (15)

which is satisfied whenever an equilibrium exists.
The point at which this inequality ceases to be
satisfied represents a saddle-node bifurcation as-
sociated to the reaching of the maximum power
transfer capability of the system (Bazanella et
al., 1998). The classical concept of synchronizing
torques may suggest that the system’s equilibrium
becomes unstable, which is not the case: instabil-
ity is observed only when the equilibrium ceases
to exist.

By adding an AVR to the machine the loss of equi-
librium point through a saddle-node bifurcation is
avoided as long as ceiling voltage is not reached
(when the system behaves again as if no AVR were
present). Then small-signal monotonic instability
is ruled out by the AVR. On the other hand, it can
cause the electromechanical oscillations to become
unstable, as can be seen in the analysis of its effect
on the eigenvalues of the dynamic matrix.

The output equation linearized yields
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where y 2 Vi — Vio. From this state space model
the transfer function from field voltage to terminal
voltage is calculated as
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and p,(-) is the characteristic polynomial given in
(14).
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Root locus for Ka in the single machine case
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Fig. 1. Typical root locus for the AVR gain in a
single machine system.

For typical operating conditions there is a pair of
complex poles with low damping and a real pole.
The zeros of the transfer function (17) are purely
imaginary and given by

21,2 = :tjblE;o COS 50(1 (19)
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If the proportional controller is applied around the
transfer function (17) then the closed-loop poles
move towards the imaginary zeros, eventually
crossing the imaginary axis. Figure 1 shows a
typical case (data for the example are given in
the appendix).

The particular configuration of the root locus de-
pends on the system parameters and the operating
condition, but two important characteristics are
always present: i) there always exists a pair of
imaginary zeros; ii) the poles always cross the
imaginary axis. The first of these characteristics
has been shown above; the second can be proven
as follows. The characteristic equation for the
closed-loop system is

pe(s) = Xo8® + (b4 X, + Kobg(bs cos b, + beEy,))s”
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where X, 2 \/2b5b6E{1050 +02E2 + b2 A con-

dition for existence of purely imaginary poles is
obtained by substituting s = 5 into (21), which
after some manipulation yields

- bE,

Q=,/biE}, cosd, (23)

meaning that for K, given by (22) the closed-loop
poles cross the imaginary axis at the frequency
+)Q given by (23).
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3.2 Controllability and observability

When the problem of electromechanical oscilla-
tions in power systems first appeared, for some
time it was possible to design AVR’s as lead
and/or lag controllers to guarantee closed-loop
stability (deMello and Concordia, 1969). However,
as the systems became more heavily loaded, more
machines were equipped with AVR’s and the per-
formance requirements became more strict, the
difficulty in designing such controllers was grow-
ingly overwhelming, eventually reaching the point
where no satisfactory solution could be found.

It is easy to see why this is so by looking at the
root locus given in Figure 1. However complex
transfer function one may think of using as an
AVR, it will be very hard to move the poles away
from the imaginary zeros, since they are so close to
begin with. This almost cancellation of the poles
by the zeros in the transfer function can be due
to poor controllability or observability of these
modes. The controllability matrix is given by

0 0 —by sinéd,
U=10 —bysind, bibsysind, (24)
1 —by b3
and its determinant is |U| = —b?sin®4J,, which

is zero only at zero load and grows as the load
grows. Hence controllability is not the issue and
observability must be.

3.3 The Power System Stabilizer

The terminal voltage feedback is necessary to
regulate the output voltage but, as shown above,
it is impractical to design an AVR with a transfer
function to make the system stable in closed-
loop. Hence, the use of an additional controller is
necessary to provide the system stable, while the
AVR still performs its function of regulating the
terminal voltage in steady state. This additional
controller can use the same input, since the modes
are controllable by this input, but must measure
another output from which the modes are strongly
observable.

Practical measurable quantities are rotor speed,
electric power, accelerating power and bus fre-
quency. From a theoretical point of view bus
frequency and rotor speed are the same signal,
differences arising exclusively from practical con-
siderations regarding instrumentation issues. Ac-
celerating power is also equivalent to electrical
power from a theoretical point of view, since they
are different only by a constant (P). Moreover,
electrical power and rotor speed are directly re-
lated by equation (2), where we can see that the
transfer function from w and P, is just a zero at

the origin, which does not influence controllability
or observability of the complex eigenvalues, since
they are far from the origin. Different controllers
must be designed for either one of these signals,
but none can be said to be more efficient from
a theoretical point of view. For this reason only
rotor speed feedback is considered in the following
analysis.

The transfer function from the new input V, to
the output w is given by

w(s)
Vi(s)

= —by sin(z1) (25)
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which does not present zeros close to any of the
eigenvalues. Therefore the system is observable

from this output. This can also be seen calculating
the observability matrix, whose determinant is

det(0) = b? sin(x ) [baz3 cos(z1) + bz sin’ ()]
= byby P cos(zy) + b3bs sin®(xy) (26)

which is nonzero for any valid operating point.

4. THE MULTI-MACHINE CASE

In the multi-machine case it is not possible to
eliminate the algebraic variables in the nonlinear
model to obtain a generic state space model as in
the single machine case. Therefore one can not
perform an analysis similar to what was done
for the single machine, obtaining exact results
of generic nature. Instead, one can take those
results as an initial approximation for the multi-
machine system’s performance and build upon
them to determine the general characteristics to
be expected in a multi-machine system.

The single machine model is a simplified model
for a multi-machine system in which all the ma-
chines in the system but one are modeled as a
static voltage source. A Thevenin equivalent is
then derived for this static network, resulting in
the model (8)-(10). This model is valid only for
phenomena more closely related to the variables
of that machine whose dynamics has been kept.
The oscillation modes in this model, identified by
the complex eigenvalues of the linearized model
(12), are the local modes of this machine. As a
first approximation to the system stability studies
one can take one single machine model for each
machine in the system.

In the actual multi-machine system the oscilla-
tion modes present in the single machine models
will still be observed. New modes of oscillation,
involving the interaction between the dynamics of
the different (groups of) machines - which are not
modeled in the single machine models - will also be
present. These are called inter area modes, as each



Table 1. Electromechanical modes of the
New England system.

1 —0.48£38.91 2 —0.51 4+ 38.63
3  —0.34 £ 38.40 4 —0.25+57.64
5 —0.24£,7.08 6 —0.34+£;6.84
7 —0.25£76.41 8 —0.29 £ 36.06
9 —0.77£32.91 | 10 +72.45

machine or group of machines which oscillates
coherently is called an area.

The typical characteristics of electromechanical
oscillations in multi-machine systems will be il-
lustrated with a benchmark: the well-known New
England system. A highly stressed operating con-
dition is studied. The one line diagram, system
and bus data for the benchmark can be found in
(Byerly et al., 1978).

4.1 Controllability and observability

The multi-machine model as described in Section
1 can be put, after linearization and elimination
of the algebraic variables z, in a standard linear
state space form:

& = Az + Bu (27)
y=Cx (28)

The first step in analyzing the system’s stability is
the calculation of the eigenvalues of the dynamic
matrix A in (27). If N is the number of machines
in the model, N + 1 modes of electromechanical
oscillation can be expected: one local mode for
each machine and an inter area mode.

The model used for the New England system is
of order 75. The complex eigenvalues related to
the electromechanical oscillations are identified
among the 75 eigenvalues and listed in Table
1. The operating condition was selected at the
stability limit, at which one of the modes (# 10)
turns unstable by crossing the 2 axis.

The association of each local mode to its cor-
responding machine can be made by means of
participation factors, which relate eigenvalues to
state variables (Kundur, 1994). The larger is the
participation factor p;; the stronger will be the
observability of the j —th mode in the dynamics of
the i — th state variable. Verifying the largest par-
ticipation factors for a mode determines whether
it is local or inter area, and to which machine(s) it
is associated. Table 2 presents the largest partic-
ipation and to which variable it is associated for
each one of the electromechanical modes.

From the complete participation matrix it follows
that eigenvalue # 10 is an inter area mode, since
it has large participation factors in the variables
of all the machines.

Table 2. Largest participation factors
for the New England system.

Mode state variable PF

1 wWaE36 0.27
2 wasr 0.45
3 wa33 0.39
4 WG32 0.26
5 wWaE30 0.35
6 WG4 0.13
7 wWaE31 0.16
8 wWaG38 0.27
9 E:;Gss 0.19
10 Eclzcss 0.23

4.2 PSS design

The participation factors have strong implications
on the control design. The available signals are
the reference voltages of each generator as con-
trol inputs and their speeds as measured signals
(outputs), that is:

B=1[b ... by] (29)
C1

c=|: (30)
CN

with b; € RV*! and ¢; € RN the input
and output vectors corresponding to each each
machine. Each b; and ¢; has only one nonzero
element: in each b; this nonzero element is at the
line corresponding to the state variable E}; and in
each c¢; it is at the column corresponding to w;.

In the example several electromechanical modes
present poor damping and the inter area mode
is not stable, so the corresponding eigenvalues
should be moved to the left in the complex plane
by means of supplementary control. This is possi-
ble through these inputs and outputs if and only
if the poorly damped eigenvalues are not fixed
modes of the control structure to be used, which
is of decentralized feedback.

The controllability and observability can be as-
sessed by looking at the transfer functions for each
input-output pair separately. To this end, take

& = Az + bu (31)
Y =cx (32)
with ¢ = 1,..., N, whose transfer function is
w;(s) -1
=ci(sI — A)"b; 33
‘/—”(8) Ci (8 ) 1 ( )

Then for each i one can analyze what can be done
with each one of the local controllers by looking
at the transfer functions 52((55)). Figures 2 and 3
show a zoom at the pole-zero configuration of
the transfer functions G33(s) and Gs(s); only the

singularities close to the j{) axis are shown.
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Fig. 2. Pole-zero configuration for the input-
output pair V,.g33 — wgss-
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Fig. 3. Pole-zero configuration for the input-
output pair V,.g3s — wgss-

For each machine only the eigenvalues related to
its local oscillation mode(s) is (are) controllable
and observable; the remaining eigenvalues appear
canceled by zeros in the figures. A PSS installed in
generator G3s, for instance, can shift significantly
to the left only its local mode, which is # 3. This
is the only eigenvalue which is not almost canceled
by a very close zero in the figure, which is in
accordance with the fact that wgss is the variable
most strongly associated to this eigenvalue, as
shown in Table 2. The PSS in generator G33 could
hardly move the inter area mode (seen sitting on
the jQ axis in the figures) to the left either, since
there is a right-half plane zero to attract it. On
the other hand, a PSS placed at generator Gsg
could probably do it, as in Figure 3 this zero is on
the other side of the yQ axis.

5. CONCLUDING REMARKS

The classical concepts in the analysis of elec-
tromechanical oscillations in power systems can
be derived formally from a state-space model-
ing of the power system. This approach allows

to cast these concepts into the modern control
framework, which completes the physical reason-
ing behind these concepts with formal mathemat-
ical analysis, leading to shorter and more formal
derivations of the results. It also sheds new light
on the problem, revealing some additional details
and providing further insight into the problem
which is very useful in the design of PSS’s.
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Appendix A. DATA FOR THE SINGLE
MACHINE SYSTEM

by 34.290 | bs
bs  0.504 | bs

0.149 | by
0.496

0.330




