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Abstract: A self-tuning neurofuzzy integrating controller is derived in this paper for offset
eliminating purpose. CARIMA plant model is used and the control law produces integral
control terms in a natural way. Neurofuzzy networks are chosen to implement the direct
self-tuning nonlinear integrating controller. The performance of the self-tuning
integrating neurofuzzy controller is illustrated by examples involving both linear and
nonlinear systems . Copyright2002IFAC 
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1. INTRODUCTION

        In real-time process control, mostly there exist
demand for the system to track the setpoint exactly.
Usually this could not be achieved by “position”
control. The integrating self-tuning controller,
suggested by P.S. Tuffs(1985),  aims at solving the
offset problem in the control system. For the problem
of offsets, integral action is incorporated in the
controller. A common approach is to postulate a
disturbance process which has stationary increments.
CARIMA model

     ∆+= −−−− )()()()()()( 111 tezCtuzBztyzA k      (1)

is provided for disturbed process from which the
integrating aspect of the controller is derived.

)( 1−zA , )( 1−zB and )( 1−zC  are polynomials in the

backward-shift operator 1−z , k is a lower bound on
the plant’s dead time in sample intervals, u(t) and y(t)
are  the input and output of the plant, and e(t) is a
sequence of independent random variables with
common variance 2σ . ∆  is the differencing operator

11 −− z .

     With generalised minimum variance (GMV),
integrating self-tuning control of offset eliminating
methods based on a linear mathematics description of
the process has been proved to be a very effective
method. The linear model may be acceptable only in
the case where the process is working around the
operating point. As most industry process is highly
nonlinear, non-minimum, uncertainty and load
disturbance, nonlinear model should be used to
describe the behavior of the process. Thus nonlinear
control method should be introduced. Neural
networks have been used in the adaptive control of
nonlinear systems(Narendra, and Parthasarathy,
1990), involving both indirect (Bittanti, and Piroddi,
1994)and direct (Lightbody, and Irwin, 1995)
method. Also fuzzy theory have been combined with
adaptive control(Takagi, and Sugeno, 1985)which  is
aimed to solve the problem of uncertainty and thus
introduce nonlinearity and human intelligence. 

     The combination of neural network and fuzzy
control constitutes the neurofuzzy networks(Brown,
and Harris, 1994), in which fuzzy rules could easily
express the expert knowledge in linguistic form
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while neural networks posses the learning ability
which could approximate nonlinear functions with
arbitrary accuracy. Thus it greatly impulses the
development of adaptive nonlinear control. Its ability
of being trained on line using faster linear parameter
estimation algorithms, and providing smooth
transition between successive operating regimes
make it suitable for the implementation of adaptive
nonlinear control. A simplified recursive least
squares method which is derived from the local
change property of neurofuzzy networks is proposed
(Chan, et al., 2000). 

The purpose of this paper is to propose an
adaptive integrating controller and then to discuss a
neurofuzzy network implementation. Simulation
examples involving a linear and a nonlinear system
respectively are presented to illustrate the
performance of the self-tuning integrating
neurofuzzy controllers.

2. INTEGRATING CONTROL FOR LINEAR AND

NONLINEAR SYSTEMS

       The motivation of the integrating control comes
from the offset elimination capability of an integrator
and thus to regulate the output of equation (1) to a
constant set point. With a system pseudo-output

)()()()( tRrtQuktPykt −++=+φ , the cost
function to be minimized is the variance of the
pseudo-output.

    Define E and G via the Diophantine equation:  
                      GzAEPC k−+∆=                        (2)
where the order of E and G are k-1 and

knnn cpa −+,max( ). an pn and cn are orders of  A,
P and C.

        Multiply through the system equation (1) by E,
substitute for EA from the Diophantine equation and
adding )()( tCRrtCQu − to both side gives:
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                                                                         (3)
which can be cast in the form:
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                                                                          (4)
    The error term Ee(t+k) is uncorrelated with the
remainder of the right-hand side. The cost function is
therefore minimized by setting the first term on the
right-hand side to zero. Let ∆′= QQ , the integrating
control law is : 

       0)()()()( =−+∆+′ tCRrtGytuBEQC        (5)
or                                                        
               0)()()( =++∆ tHrtGytuF                 (6)

with     BEQCF +′=    CRH −=

    Substituting equation (5) into CARIMA model
yields the closed loop equation:
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    Note that if 0=′Q , the open loop zeroes are
cancelled. For zero steady state tracking error(on
average), equation (7) yields the condition

                          1
1

=
+′∆ =zPBQA

BR                     (8)

     This is mostly satisfied by choosing )1(PR =
and  0)1( =′Q .

For the self-tuning purpose, rearranging (6) gives,

)()()()()()()( 111 trzHtyzGtuzFtu −−− −−∆−=∆  
                                                                             (9)
where                                        
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f0 is the leading constant in F(z-1) and uy nn ∆,  are the
orders of the system.  From (9) φ(t) can be expressed
as:
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        (11)

      In linear self-tuning integrating control, the
parameters ]ˆ,,ˆ,ˆ,,ˆ,ˆ[)(ˆ

11010 LLL hggfftT =θ  are
updated from (11) using the RLS method by defining
a data vector

]),(,),(,),([)( LLL ktrktyktutxT −−−∆= . The
integrating control law is computed on-line by (9)
using the updated parameters.

         The above linear self-tuning integrating control
could be used for the following general nonlinear
dynamical system :
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when a local linearized model similar to equation (1)
is presented. euy nnn ′′′ ∆ ,,  and k are respectively the
orders and the time delay of the system, which are
assumed known. Assuming that f[.] is a smooth
nonlinear function such that a Taylor series
expansion exists. A local linear model of (12) at an



operating point O(t) can be given by the CARIMA
model, though it is valid only in a small
neighborhood about the operating point O(t). Thus
neurofuzzy network is aimed at presenting
satisfactorily operation over the full range of the
operating points.

3. NEUROFUZZY NETWORK BASED

ADAPTIVE INTEGRATING CONTROL

3.1 Neurofuzzy network based adaptive integrating
control

     The constitution of neurofuzzy network could be
in fact a fuzzy controller realized by neural
network(Fig.1). The network is initially designed to
specify the shape(order) of each of the univariate
basis functions, and this implicitly determines the
number of basis functions mapped to for a particular
network input. Thus the weights of the network were
trained using linear parameter estimation methods
from experimental data. Conceptually, the output of
the network shown in Fig. 1 could be considered as a
weighted sum of the outputs of several linear self-
tuning incremental controllers designed at several
specific operating points, which reflect the idea of
nonlinear self-tuning integrating control. As the
fuzzy sets in the neurofuzzy networks are distributed
over the neighbourhood regions, control result
obtained from a neurofuzzy network is generally
smooth.

Fig. 1: Illustration of neurofuzzy network controller

   It is obviously that the univariate basis function can
be used to represent the fuzzy membership functions
implementing the fuzzy linguistic terms. Therefore
the neurofuzzy network shown in Figure 1 could be
expressed as a set of fuzzy production rules :
R1: if )(ty is positive small   and )(, ynty −L is
negative large
and     )(tr is positive medium  and    )(, rntr −L  is
positive medium 
and     )1( −∆ tu  is negative medium and

)( untu ∆−∆L  is negative large
then    )(u t∆  is positive zero

…………
Rp: if )(ty is negative large   and )(, ynty −L is
negative medium
and     )(tr is positive medium  and    )(, rntr −L  is
positive medium 
and     )1( −∆ tu  is negative zero and )( untu ∆−∆L

is negative large
then    )(u t∆  is positive medium

    The incremental control output is the synthesizing
of these rules:
                            θ))(()( txatu T=∆                 (13)

][ 21 pθθθθ L=  is the weight vector of the network,
x(t) is the input vector given by
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a(x(t)) is the multivariate basis function obtained by
the tensor products of the outputs of the univariate
basis functions:
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where 2+++= ∆ury nnnn  is the dimension of the
input vector. Thus the desirable properties of the
univariate B-spline basis functions are all extended
in a natural way to the multivariate basis functions.
They are defined on hyperrectangles of size

)( 21 nkkk ××× L  and therefore possess a bounded
support. The output is positive inside this domain
and zero outside. Fig.2 shows the multivariate basis
function formed from two ,order 2, univariate basis
function.

Fig.2  Multivariate basis function

The total number of weights in the network is: 
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where ury ∆ρρρ ,,  are the respective order of the
basis functions for y(t), r(t) and )(tu∆ . Ry, Rr and

uR∆ , the respective number of inner knots. Let the
neurofuzzy network be denoted by NF(x(t)), the
generalized system output given by (11) can now be
rewritten as: 

      )())](()([)( tEektxNFktut +−−−∆=φ    (17)

Since the mean of e(t) is zero, the training target of
the output of the neurofuzzy network is: 



                    )()()( tktut φψ −−∆=                 (18)

            On-line training of the neurofuzzy by: 
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                                                                          (19)
where )(ˆ tθ  is the estimate of θ at time t, and P(t),
the estimate of the covariance matrix. 

3.2 Relationships to previous controllers 

    For linear self-tuning integrating control method,
using the decomposition of GG ′∆+=1  in equation
(6) and take  0=Fδ  0=′Gδ gives the linear PI
controller(Tuffs,1985):

     ])()(()([)( 0
0
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′

= gtytCRrty
f
g

tu    (20)

    A simple extension to PID-like structure is
obtained by choosing 1=Fδ  0=′Gδ . While the
controller is replaced by neurofuzzy network, it
could really be nonlinear  PI or PID controller. The
derivation and results are given by Ying (1993), Liu
(1997) and Liu (1999).

4. SIMULATION EXAMPLES

Example 1-Linear system:

Consider the following linear CARIMA model:

4.0)]1(5.0)([         
)2(5.0)1()2(7.0)1(5.1)(

+∆−−+
−+−+−−−=

tete
tututytyty

      

                                                                            (21)
where e(t)~N(0,1).

       Let the generalized system output to be
)1()()( −−= trtytφ , which means that P=1, R=1

and Q=0.  Solving the Diophantine equation
acquires:

21 7.02.22 −− +−= zzG    15.01 −+−= zH
15.01 −+= zBE      0=′QC

     The control law could be:

         
)]1(5.0)()1(5.0            
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    For self-tuning control, the control law could be
expressed as:
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Using RLS estimation:
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                                                                           (24)
    Fig.3 shows the system response of the integrating
control under triangular wave setpoint and the
parameter estimating process.

   
Fig3-a: Self tuning integrating control of linear
model

Fig3-b: Estimating of 121010
ˆ,ˆ,ˆ,ˆ,ˆ,ˆ hgggff

        The self-tuning neurofuzzy controller is
implemented with the same inputs. Two triangular
basis functions are required for each input, giving ρy

= ρr = ρu = 2, and 0=== ∆ury RRR . The number
of weights of the neurofuzzy network p is: 26=64.
The range of y(t) and r(t) is chosen to be between –5
and 10, whilst that for )(tu∆  is between –10 and 10.

The weights )0(θ̂  are initially set to 0.1, and the
covariance matrix P(0) to 100I, where I is an identity
matrix. Fig.4 shows the system response and the
estimating process. 

                

Fig4-a. Response with the self-tuning neurofuzzy
controller



Fig4-b: Estimating of 161
ˆˆ, θθ →  (totally 64

coefficients)

       Fig5 shows comparison of the accumulated cost
function between self-tuning integrating controller
and self-tuning integrating neurofuzzy controller
from time t=230s to t=1000s. As can be seen, there is
no obvious difference of the system response
between these two methods.

Fig.5 Comparison of the accumulated cost function
between self-tuning integrating controller(solid line)
and self-tuning integrating neurofuzzy controller
(dashed line)

Example 2 Nonlinear model:

Consider the following nonlinear CARIMA
model(Bittanti and Piroddi, 1994 ):

∆+−+−+−= )()]2([)2(6.0)1(3.0)( 3/1 tetutytyty

                                                                            (25)

where e(t)~N(0,0.1). 

          Since )2()()( −−= trtytφ , the linearized
self-tuning integrating control law could be:

      
0)()2(

)1()()1()(
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     (26)

Fig 6 shows the system response under square wave
by the self-tuning integrating controller. There exist
obvious oscillations in the output. Nevertheless, the
coefficients of the control law could reach
convergence, which proves the correctness of the
algorithm. It shows weak robustness possessing
weak ability of overcoming noise disturbances. 

 

Fig.6-a : Response with linearized self-tuning
integrating controller

   
Fig.6-b: Estimating process of 21010 ˆ,ˆ,ˆ,ˆ,ˆ gggff

    The self-tuning neurofuzzy controller is
implemented with the same inputs. Two triangular
basis functions is used for each input. y(t) and r(t)
are selected between 3 and 12, )(tu∆  is between –
112 and 117.  The number of weights of the
neurofuzzy network p is: 25=32.  Fig.7 shows the
good tracking of the set-point of the self-tuning
neurofuzzy integrating controller and it weights
estimating process. Fig.8 shows the comparison of
the accumulated cost function between the two
method. As can be seen, great improvement has been
made by using neurofuzzy integrating controller. It
shows better tracking ability and the accumulated
cost function is much reduced. For nonlinear system,
nonlinear controller could control nonlinear model
better. 

Fig.7-a Response with the self-tuning neurofuzzy
controller

Fig.7-b: Estimating process of 161
ˆˆ, θθ →



Fig.8 Comparison of the accumulated cost function

5. CONCLUSION

A self-tuning neurofuzzy integrating controller
is derived following the approach in deriving self-
tuning integrating controllers for linear systems
while CARIMA model is introduced. Neurofuzzy
networks are chosen to act as nonlinear self-tuning
controller. From the simulation examples, the
performance of the self-tuning neurofuzzy
integrating controller for the linear system is similar
to that of the self-tuning integrating controller, but is
superior to the self-tuing integrating controller for
the nonlinear system. Comparing with ‘position’
adaptive control, integrating adaptive control could:
(1)  Eliminate offsets effectively because integral
action is incorporated in their control laws. Besides,
the parameter estimation is more robust because the
estimated controller parameters need not to be re-
tuned when sudden changes in offset are
encountered.
(2)  Reduce the computing burden for neurofuzzy
network. There is one fewer input into the
neurofuzzy network than that of ‘position’ control(if
there is u(t),u(t-1),u(t-2)in the position control law,
then there is only )1(),( −∆∆ tutu in the integrating
control law). For the univariate basis function chosen
as example 1, there will be 27=128 weights to be
estimated in the position control rather than 26=64
weights in the integrating control.
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