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Abstract: In this paper a course-keeping autopilot for a containership designed with
fuzzy logic theory is presented. The autopilot control strategy is deduced heuristically by
exploiting expert knowledge and is implemented by means of fuzzy logic. In order to
facilitate analytical analysis of the closed loop system non-linear control theory is used
to guide the choice of control structure. An interpretation in terms of Fourier analysis of
the control strategy is given and used in order to improve the performance of the
autopilot in different sailing conditions while preserving the grey nature of fuzzy
systems. The final autopilot is proved to be locally stable in the Lyapunov sense while a
set of simulation results on a non-linear model of a containership shows the viability of
the proposed approach. Copyright © 2002 IFAC
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1. INTRODUCTION

The fast development of small and inexpensive
microcomputers and advances in computing
technology have fuelled the so-called “Intelligent
Control” theory, in which control algorithms are
developed by emulating certain characteristics of
intelligent biological systems (i.e. learning and
adaptation). Within the framework of intelligent
control systems, neural networks and fuzzy logic
systems have been widely used for the design of
more sophisticated and reliable control systems
(White and Sofge 1982). The primary advantage of
fuzzy logic based systems compared to neural
networks is their ability to manipulate imprecision
and uncertainty through the definition of pertinent
linguistic variables. Moreover, it has been proved
that under some assumptions fuzzy logic systems are

universal approximators, i.e. they are able to
approximate any continuous function defined in a
compact set. As a consequence, fuzzy logic based
controllers are intrinsically robust, furthermore
provided the use of a proper learning algorithm, they
can also guarantee the optimality of a desired
system’s performance. However, owing to their high
non-linear nature both neural networks and fuzzy
logic based systems are difficult to be studied
analytically (i.e. in terms of stability). Consequently,
the majority of the papers presented in the literature
rely on a large number of simulation trials to test the
effectiveness of the proposed fuzzy approach while
others tend to adapt well known non-linear stable
design methods for a sub-class of fuzzy systems at
the cost of loosing the system’s interpretability
(Wang L. 1993), (Tang Y. et al. 1997) and (Zirilli et
al. 2000).
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When focusing on the functional evaluation of the
above intelligent systems, little difference between
neural networks and fuzzy logic systems can be
appreciated. The two systems can be described in the
common framework of adaptive networks, where the
same learning algorithms are applied and synergistic
combinations of neural networks and fuzzy systems
are defined. Different papers address and propose the
design of fuzzy logic controller by extending and
combining well known results achieved in the field of
neural networks. However, by following this
approach the interpretability of the resultant fuzzy
system is reduced if not compromised (Yen et al
1998). A different way for the synthesis of a fuzzy
based controller, is to use a cognitive based approach.
In this instance, the aim is to design a control system
based on a model of the expert, who is able to specify
the general properties of the system, rather than on a
mathematical model of the system to be controlled.
The control strategy is then specified by a set of rules
deduced by a-priori knowledge of the system, that
constitutes the knowledge rule base of the controller.
Based on this stored knowledge, the actual situation
is evaluated in order to infer the appropriate control
action. The deduced control action, performed by the
inference machine, is based on fuzzy logic where
uncertainties are easily handled. While the former
approach is more suitable for analytical analysis, the
latter although preserving the system interpretability,
results in a highly non-linear system.

In this paper, by following the cognitive based
approach, a heuristic description of course-keeping
manoeuvres is given and fuzzy set theory is used for
the design of a course-keeping autopilot for a ship.
Although, with the above approach, the
interpretability of the overall system is still preserved
the tuning of the controller parameters is somewhat
heuristic and is mainly based on trial and error.
Therefore, the optimality of the overall system’s
performance is not always guaranteed. To overcome
this drawback, the heuristic description of the
manoeuvre is interpreted by means of a Fourier
transform while the proposed control strategy is
analysed by means of the Lyapunov method. The
resultant autopilot is shown to be locally stable in the
Lyapunov sense and then tested for a different range
of sailing conditions in a simulation study involving
the non-linear model of a containership (Tiano and
Blanke 1997). It is shown that the proposed fuzzy
autopilot is able to steer the ship acceptably well and
represents a viable control structure for further
implementation of adaptive and learning algorithms.

2.  AUTOPILOT DESIGN

Traditionally in the design of steering control
systems, it is common practice to distinguish between
two modes of operation, namely course-changing
and course-keeping. In the former operating mode the
ship’s heading angle is changed in a way that the ship
can sail in the new (desired) direction. While
engaged in a course-changing manoeuvre, the control
signal must be such that a good transient response
(which implies minimum time for changing sailing

direction) and minimum overshoot (which infers
good precision) can be achieved. On the contrary
while in the course-keeping mode of operating the
autopilot has to maintain a fixed direction of sailing.
The rudder as the control signal, is therefore used in
order to compensate for the different external
disturbances (i.e. wind, waves and current) bearing in
mind that an excessive rudder signal will introduce
additional drag force and consequent loss of speed.
The control aim is therefore to maintain the course
error as small as possible and at the same time
minimising the number of rudder calls.  Figure 1
shows a possible rudder sequence where the different
rudder calls in terms of amplitude and period are in
general a function of the external disturbances and
the desired course precision.

For the determination of the rudder calls, the low-
pass nature of the yaw dynamics has to be considered
and rudder movements that are too fast must be
avoided. The control action produced by the rudder
should be aimed at compensating the yaw
acceleration induced by the external disturbances
(mainly the effect of the waves). A rudder angle
which is proportional and in counter phase with the
yaw rate is then a possible solution.

An interpretation of the above control strategy can be
attempted by considering the series expansion of the
pulses sequence. Equation (1) and (2) express the
Fourier transformation and its coefficients
respectively.
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From equation (2) it is clear that the amplitude of the
Fourier coefficients is proportional to the width (w )
of the pulses, while the number of harmonics in the
first lobe are inversely proportional to w. Increasing
w therefore will increase the amplitude of the
harmonics whilst the number of the significant
harmonics will be reduced. For a fixed period T this
is equivalent to increasing the low frequency
contribution. On the other hand, if roll damping is
attempted, higher frequencies of the control signal
are of interest. The value of w therefore needs to be
reduced. However, this will reduce the amplitude of
each harmonics that can be re-amplified by

cδ

Fig.1: Rudder sequence during
course-keeping
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increasing the value of maxδ . This is why, for roll

damping faster and larger rudder movements are
needed.

Provided that the amplitude and the period of the
pulse sequence are fixed, the control law reduces to
modulation of the pulse width. The rudder sequence
as described above may be expressed as:

( ) ( ) ( )( )[ ] ( )( )rsignkwkTtkTtt −−−−−= maxmax δδδ     (3)

for ( )TktkT 1+<< , where T is the rudder sequence

period, ( )kw  the width signal modulator and r is the

yaw rate.

To study analytically the behaviour of the
heuristically deduced control law (expressed by
equation 3), let a linear approximation of the ship
dynamics in diagonal state space form be expressed
as equation 4:
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The general solution of the state equation is:
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where 0t  is an arbitrary initial instant and Λ  is the

diagonal matrix of eigenvalues. Substitution of the
following two set of values for tt  and 0
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combining equation (6) and (7) gives:
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The integration of (8) results in:

( )( ) ( ) ( ) ( )[ ]beIegkTxeTkx kwTT Λ−−ΛΛ −Λ+=+ 1sin1 δ
(9)

where I is the unit matrix. If niT i ,..2,1 ,1 =−<< λ
then,

( )
( )

i

kw ie
kw

λ

λ−−
≈

1
(10)

so that equation (9) can be rewritten

( )( ) ( ) ( ) ( )bkwegkTxeTkx TT ΛΛ +=+ δsin1 (11)

In order to study the stability conditions for the
system described by equation (11), consider the
Lyapunov function candidate

( )( ) ( ) ( )kTxkTxkTxV ,= . The first, derivative along

equation (11) is then:
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Letting

( ) ( ) bekTxsignsign TΛ−= 2,δ  (13)

equation (12) can be rewritten in the following form:
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Since the first term on the right hand side of equation
(14) is negative definite, W has its most negative
value for any x if:
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Since ( )kw  cannot exceed T, the best choice is:
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For a system with linear dynamics as expressed by
equation (4), the control law expressed by equation
(3) with the constraints expressed by equations (13)
and (16) result in the equilibrium point of the system
being asymptotically stable.

3. FUZZY COURSE-KEEPING AUTOPILOT

The control strategy along with all the above
considerations about the frequency component as
well as the stability conditions for the rudder pulse
sequence will be used in this section to present a
solution for the course-keeping control problem
based on the implementation of equation (3) by
means of fuzzy logic.

In order to implement the above control strategy it is
necessary to define adaptively the rudder pulse



characteristic (i.e. width (w), period (T) and
amplitude ( maxδ ) see Fig 1) which will be a function

of the actual ship state. Based on equations (3) , (13)
and (16), a fuzzy system with inputs being yaw error
and yaw rate (equivalently the change in the error)
and output width (w), period (T) and amplitude
( maxδ ) will be defined. Since any multi-input multi-

output (MIMO) fuzzy systems with m outputs can be
represented by m multi-input single-output (MISO)
fuzzy systems the course-keeping autopilot will be
constituted by three MISO fuzzy systems with
outputs width (w) the period (T) and the amplitude
( maxδ ) of the rudder sequence. Based on equation

(16) the fuzzy system determining the width of the
rudder pulse will have its rule base knowledge
constituted by rules of the form:

IF abs(yaw_rate)  is Big THEN width is Big

With respect the determination of the rudder
amplitude it is necessary that phase lags between the
rudder angle and the yaw rate signal are not
introduced by the limited rudder speed. In van
Amerongen and van Naute Lemke, (1980) it is
suggested that in order to avoid rudder rate saturation
and consequent phase lags the following inequality
must hold:
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where τ  is the main time constant of the ship. For a

value of 15≈τ  seconds and 5.2max =δ&  deg/sec, the

maximum allowed rudder angle is approximately
7.5o.

Based on equation (13) and (17) the rule base
knowledge of the fuzzy system for determining the
rudder amplitude is constituted by rules of the form:

IF course-error is Positive_Big and yaw_rate is
Positive_Big THEN maxδ  is Positive_big

The determination of the rudder sequence period (T)
is in general more complicated. It must be related not
only to the ship state vector but also to the sea
condition (i.e. relative angle of encounter, sea state
etc.). Since for a fixed sailing condition the rudder
sequence period is fixed, it is possible to construct a
look-up table relating the period of the rudder
sequence to the different angles of attack. Table 1
gives approximate figures of the rudder sequence
period for a sea state characterised with respect a
Pierson-Moskowitz spectral density by a mean period
of 8 seconds and an significant wave height of 4
meters.

For the design of the two fuzzy systems a normalised
universe of discourse has been chosen, along with a
first order Sugeno-type fuzzy inference system with
triangular input membership functions, singleton
fuzzification and weighted average defuzzification.
The completeness of the rule knowledge base

therefore is guaranteed by a proper adjustment of the
associated input and output gains. The course-
keeping autopilot, so designed, is then tested in a
simulation study involving the non-linear model of a
containership which is described in appendix A.

TABLE 1
Angle of attack

(degree)
Period (seconds)

145 50
130 45
110 30
90 10
70 25
50 45
30 45

4.  SIMULATION RESULTS

Figure 2 shows an example of the fuzzy course-
keeping autopilot operating with an angle of
encounter of 70 degrees with a period of the pulse
sequence equal to T=25 sec. as given by table I .

Figure 2.a shows the rudder sequence amplitude,
while figure 2.b and 2.c shows respectively the
rudder sequence width and the yaw angle. Figure 3
shows the same signals for a course-keeping with an
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Fig.2.a: Rudder sequence amplitude
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angle of encounter of 145 degrees (following sea)
and the pulse sequence period of 45 seconds.

In both manoeuvres of figure 2 and 3, the rudder
amplitude never saturates to the limit of 7.5 degrees
and the yaw angle is maintained within an acceptable
course error. On the contrary, the rudder sequence
width in the second manoeuvre is higher then the
first, by a factor of about five. According to the
discussion of section 2 this implies an increasing of
the low frequency contribution of the rudder signal,
in accordance with the following sea sailing
condition.

5. CONCLUDING REMARKS

In this paper a solution for the course-keeping control
problem is presented. The aim is to combine the
cognitive model design approach with more rigorous
analytical methods. Therefore the course-keeping
autopilot design is divided into two steps. First the
control strategy of the proposed fuzzy autopilot is
described heuristically in terms of an experienced
helmsman behaviours. Then a more rigorous
interpretation of the control strategy, in term of
Fourier transform as well as by means of Lyapunov
methods is given. The latter analysis while preserving
the grey box nature of fuzzy logic based systems and
giving a rigorous interpretation of the control law, is

of fundamental help during the tuning phase of the
fuzzy controllers. The effectiveness of the proposed
fuzzy autopilot is finally shown with a simulation
study by means of a non-linear model of a
containership.

APPENDIX 1

The mathematical model of a container ship used in
this study is described in detail in (Tiano and Blanke
1997) and (Blanke and Jessen 1997). The non-linear
equations describing the motion of the rigid body in
four degree of freedom are as follows:
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The above equations with reference to the co-ordinate
system shown in figure A.1, describe the coupled
surge, sway, yaw and roll motions, where D is the
displacement, g the gravity constant, ρ the water
mass density, RZ(ϕ ) is the action of the rightening
arm that depends on the roll angle ϕ, while (xG,0,zG)
are the co-ordinates of the mass centre. The mass is
denoted by m whereas Ixx and Izz are the inertial
moments about x and z, respectively. The linear
velocity of surge and sway are u and v and the
angular ones of yaw and roll are respectively r and p.
The rightening arm function can be expressed as:
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where GM is the ship metacentric height and BM is
the distance from the centre of buoyancy to the
metacentre. Terms X, Y denote the deterministic
forces acting along x e y while N and K are the
deterministic moments around z and x, which takes
into account the hydrodynamic effects from the hull
movements and forces exerted on the ship by the
rudder and by the propulsion system. Such forces and
moments are usually described by regarding X,Y,N,K
as polynomial expansion in terms of state variables,
control actions and hydrodynamic coefficients (Lewis
1988).

The effects of external disturbances, i.e. wind and
waves, consist of related forces Xw, Yw and moments
Nw, Kw acting as perturbation terms in the
corresponding right hand parts of equation (A.1).
Such terms, owing to their intrinsically random
nature, are generally quite difficult to be
characterised through explicit mathematical relations.

By limiting attention to sea waves, which are by far
the dominant disturbance, it is possible to regard a
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long crested irregular sea height ( )tς , at time t, as

described by a one-dimensional amplitude spectrum,
the main parameters of which are the significant
wave height, h and the average wave period T. This
spectrum, accepted by the International Ship
Structure Congress (ISSC) is given by:
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The response of each individual component of the
wave induced ship state vector xw=[uw vw rw pw]T, can
be obtained in terms of the receptance operator,
which is assumed to be known from experimental
tests. They describes the response of the ship ith

motion to the waves (Blanke and Jessen 1997). Once
the waves induced ship state vector xw is computed
the total ship state vector is represented by:

xtot=xw+x

According to this approach, it is possible to
implement an accurate and numerically reliable
simulation of sea wave induced ship motions.
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