Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

THRESHOLD POLICIES IN THE CONTROL OF
PREDATOR-PREY MODELS

Magno E. M. Meza* Michel I. S. Costa **

Amit Bhaya and Eugenius Kaszkurewicz *

1

* Dept. of Electrical Engineering, COPPE, Federal
University of Rio de Janeiro, P.O. Box 68504, RJ
21945-970, BRAZIL
E-mail: magno@pee.coppe.ufrj.br,
amit@nacad.ufrj.br, eugenius@coep.ufrj.br
** Lab. Nacional de Computa¢ao Cientfica, Av. Getilio
Vargas, 333 - Quitandinha Petrépolis-RJ 25651-070,
BRAZIL
E-mail: michel @lncc.br

Abstract: Threshold policies are defined and analysed for different types of one
species and predator-prey type models. It is shown that such policies can be
designed by suitable choice of so called virtual equilibrium points. The simplest
threshold policies are discontinuous, which leads to some drawbacks. It is also
shown how to design continuous threshold policies that retain most of the
advantages of their discontinuous versions but do not have the major drawback of
chatter in the control. Threshold policies are also seen to be robust to uncertainty
of model parameters, and initial conditions, as well as to delays between stock
assessment and policy enactment. The models which are controlled are the Noy-
Meir herbivore-vegetation model, subject to linear consumption curves, the two
species Rosenzweig—MacArthur model, and a three-dimensional chemostat model.
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1. INTRODUCTION

A pure threshold policy is of the on-off type.
In simple terms, whenever the predator (prey)
population is above a certain level, harvesting
of the predator (respectively, prey) is allowed. If
not, then harvesting is prohibited. Such threshold
policies or controls do, in fact, occur both in
mathematical models of ecosystems as well as in
real-life ecosystems. This paper points out that
a suitably chosen threshold policy can modify
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the dynamics of a predator-prey system in such
a way that a new robustly stable equilibrium is
introduced. The design of this policy is based on
the concept of virtual equilibria: these are to be
introduced in such a manner that the controlled
system has the desired behavior. The discontinuity
of the pure threshold policies leads to undesirable
chattering or high-frequency on-off behavior of
the control in order to maintain the system at
the desired equilibrium which is undesirable and
unimplementable in real ecosystems. This paper
also shows that a straightforward piecewise-linear
continuous version of the discontinuous policy
retains most of the good features of the latter,



in addition to alleviating the chattering problem.
The analysis, although a little more elaborate in
this case, can still be carried out in terms of real
and virtual equilibria.

The following models are studied in this paper. In
the single species case, Noy-Meir’s stock removal
herbivore-vegetation model is first studied as a
simple case in which the effects of a threshold
policy as well as its continuous version are clearly
seen.

In terms of previous work in this area, the paper
(Costa et al., 2000) proposed a type of thresh-
old policy known as a weighted escapement pol-
icy (WEP) in which a threshold is built from
a weighted (or linear) combination of prey and
predator densities. This discontinuous policy was
used to stabilize a Lotka—Volterra model under si-
multaneous harvesting of both predator and prey.
Thus the present paper can be viewed as carrying
the results of (Costa et al., 2000) further, propos-
ing continuous control and showing the usefulness
as well as ubiquity of threshold type policies in
mathematical ecology.

Studies of switching in population dynamics, more
specifically switching of predator behavior in the
context of optimal foraging, leading to chattering
behavior were made in (Kiivan, 1996; Kfivan and
Sikder, 1999).

The book (Emel’yanov et al., 1998) proposes a
general methodology, referred to as induced in-
ternal feedback, for the control of uncertain non-
linear dynamic systems. In particular, continuous
versions of threshold-type control are proposed for
the Lotka-Volterra model.

Finally, it should be mentioned that there is a
large literature on variable structure sliding mode
control that has appeared and continues to ap-
pear in control journals, although to the best of
the authors’ knowledge, an analysis in terms of
virtual equilibria and the specific application to
predator-prey models does not occur in this liter-
ature. Accounts of variable structure control can
be found in the books (Utkin, 1992; Edwards and
Spurgeon, 1998).

2. SINGLE SPECIES STOCK REMOVAL
MODELS

Threshold policies can be implemented in fisheries
(Quinn and Deriso, 2000) as well as in stock re-
moval in herbivore-vegetation models (Noy-Meir,
1975). In his work, Noy-Meir presents a stock
removal strategy and comments on its possible
effects on herbivore productivity. The vegetation-
herbivore interaction is modeled as follows.

v =G((V)—He(V)

o V(0) = Vo,

where V' is the vegetation density, G (V') is the
vegetation growth rate, H is the herbivore density
(considered constant) and ¢ (V') is the vegetation
consumption rate.

The vegetation dynamics under stock removal and

a threshold policy can be defined as follows:
dv
=GV - HV), (1)

where
dp(V)=11V >V
{d)(V):OingVth.
Choosing the threshold value V;;, amounts to
defining a threshold policy. The herbivore density
is normalized, i.e., H = 1.

3. THRESHOLD POLICIES WITH LINEAR
VEGETATION CONSUMPTION RATE

We first analyze the system subject to a variable
structure threshold policy under the assumption
that the vegetation consumption rate is linear, i.e.,
(V) = mazV-

Let the vegetation growth rate be given by the
following logistic function:

|
G(V)=4gV <1 — Vmax) ,
c (V) = cmaxV,

where g > 0 is a constant denoting the intrinsic
vegetation growth rate. As mentioned above, a
threshold policy applied to the system (1) gener-
ates two systems: a free system (i.e., system with-
out grazing) when ¢ (V) = 0, and a grazed system
when ¢ (V') = 1. The equilibrium points are calcu-
lated for each value of ¢. When the equilibrium
point corresponding to ¢ = 1 (i.e., V > Vi)
occurs in the region V < V4, then this point is
called virtual (Costa et al., 2000) and will never be
attained by the system. A similar statement holds
for the equilibrium point calculated for ¢ = 0.

For ¢ = 0, the equilibrium points are calculated

by setting
v
Vil- =0,
g ( Vmaw >

thus the equilibrium points of the free system are
Vspl = 07 Vsp2 = Vinae-

For ¢ = 1, the equilibrium points are calculated
by setting

v
gV <1—V >—cmamV:0,

so that the equilibrium points of the grazed system
are

‘/spl = 07 Vsp2 = Vinax <]- - cm%) .



The graph of the logistic curve G(V) is a convex
parabola intercepting the V-axis at the origin,
where it has slope g, and at the point Vij,a.x. The
consumption curve is a straight line through the
origin with slope c. Clearly if ¢ > g, then the
consumption curve and the logistic curve intersect
only at the origin, which becomes the (undesir-
able) equilibrium of the system (no vegetation
survives the action of the herbivores). Thus, in the
absence of grazing control, it is necessary that ¢ be
less than g, in order that the free system possess
a nonzero equilibrium, which, from the graph will
lie between 0 and Viyax, more precisely at (1 —
?)Vmax. The question that arises is the following:
is it possible to do better by the introduction of a
threshold policy? In other words, can a threshold
policy induce the system to stabilize at a higher
vegetation level V7 If so, a greater yield can be
expected from the herbivore, since it is known
that a larger V leads to a larger consumption
(the consumption curve has been assumed linear
with positive slope), and, as a consequence larger
production by the herbivore.

Figures 1 and 2 show that this can indeed be
the case. In the first figure, the slope of the
consumption curve is above the maximum level
g, implying that the uncontrolled grazed system
equilibrium, Vj,, corresponds to zero vegetation.
Applying a threshold policy with, for example,
Vit, = Vinax /2, the system subject to on-off grazing
stabilizes at vegetation level Vi,ax/2, which is
clearly superior to the equilibrium Vj,. Figure 2
shows that, even if the slope of the consumption
curve is below the maximum level ¢ < ¢max = ¢,
and the uncontrolled system reaches equilibrium
at Vg, = (1 - ?)Vmax < Vinax (since ¢ < g), it is
still possible to choose the threshold level V;, such
that Vy, < Vi < Vmax, resulting in an increase in
the stabilized vegetation level.
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Fig. 1. Equilibria with consumption curve (V)
linear with large slope (¢ > g). Free system
equilibrium point — e. Grazed system equi-
librium point — x. Parameter values: g = 1,
c=12,Vy, =05, Vipax = 1.

The discontinuous (on-off) threshold policy leads
to stabilization at the threshold level (V = V}),
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Fig. 2. Equilibria with consumption curve (V)
linear with medium slope (¢ < g). Free system
equilibrium point — e. Grazed system equi-
librium point — x. Parameter values: g = 1,
c=0.3, Vi = 0.85, Vipax = 1.

with very rapid alternation of grazing and graz-
ing supression. The vegetation density also ‘sta-
bilizes’ in a high frequency oscillation around the
threshold value V;;, — this is known as a sliding
mode in the literature on variable structure sys-
tems (Utkin, 1992). This makes the application of
such a policy impractical and motivates the next
development, which is the design of a continuous
policy that has similar features.

Design of a continuous threshold policy

Given the model studied in the previous section
subject to a threshold policy ¢(V),
dv \%
— = 1-— — H 2
= (1= ) —emHe), @

this section is concerned with the design of a new
policy ¢(-) that is a continuous function of V.

An obvious way to modify the discontinuous
threshold policy and turn it into a continuous one
is to incline the vertical segment at V.

The expression for ¢ is then given by ¢ (V) = ey, if
V> Vin+o; e (FgE0) i Vin =0 <V < Vi +
0;0,iff V<V —o.

Note that, in order to analyze this policy it will
be necessary to consider three regions. The idea
is to choose €; such that the system has its real
(and desired) equilibrium in the linear region of
the control, i.e., Vi, — o0 < V < Vi, + 0 and
that the equilibria in the remaining two regions
(V> Vin+oand V < Vi, — o) are virtual. This
analysis follows.

o Vip—0 <V < Vip+o: In this region the system
is described by the equation

. \%4
V:gV <].—V ) _¢(V)cmamva

max
which implies that the equilibria are given by:

€1Cmax
g+ (Vin — o) 12 .
a

g €1Cmax
+
Vinaa 20

Vspl = 07 Vsp2 =




Requiring that Vjpo = V4, implies that ¢; must
have the following value:

29 Vin
= 1-— .
el Cmax < Vmaz

A sample simulation result is given below in figure
3.
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Fig. 3. Vegetation density G(V), as a function of
time, under continuous threshold policy with
¢=0.3,V, =0.7 and Vy, = 0.85.

Pertinent remarks here are that the policy is
continuous and so the problem of high-frequency
on-off switching of the policy is removed. The
vegetation rate still stabilizes at the designed
threshold level V;y,.

3.1 Robustness of threshold policies

This section shows that the threshold policy dis-
cussed in section 3 is robust to uncertainties in
measurement. In the grazing model, such an un-
certainty can occur either in the measurement of
the vegetation V, and is denoted AV, or as a
small delay At in the switching from one value
of the control ¢ to the next. In order to model
these uncertainties, the switching control is mod-
ified to: ¢ (V (ta)) = e1, if V(ta) > Va + o;

€1 (W),if‘@—oﬁv(%) < Va+o;0,

ifV (ta) < Va—o, where ta =t—At; Va = Vi F
AV,AV = 0.6 % 7(‘/"“”27‘/97‘); ‘/th = 7Vma12+vgr;

51:—29—(1——‘/’h )

Cmax maz

Figure 4 shows a simulation result from which it
may be concluded that threshold policy is robust
to errors in the measurement of the vegetation
AV. Moreover, these errors may be fairly large
(= 10.5%), as long as it is guaranteed that the
switching threshold is in such a region as to
guarantee appropriate virtual and real equilibria.
The effect of the uncertainty AV is to introduce
a corresponding error (offset) in the equilibrium

value of V' which goes from 0.85 (= V;) in the
unperturbed case, to 0.76 (= Vi, —AV) in the case
where measurement error (AV) and delay (At)
are both present. Furthermore, small delays in the
application of switching are also tolerable. As is
to be expected, small oscillations are introduced,
but the system stabilizes in a neighborhood of the
desired equilibrium. Calculations of estimates in
measurement errors and proofs of robustness are
omitted here for the lack of space, but can be found
in (Meza et al., 2001).

Vegetation density

‘ ——  Vegetation density

0.8

I I I I I I I I I |
2 4 6 8 10 12 14 16 18 20

Time

Fig. 4. Vegetation density G(V), as a function of
time, under continuous threshold policy with
uncertainty and delay, where g = 1, ¢ = 0.3,
Vinb =085, Vyp = 0.7, Vipae = 1, At =255
or At = 0.625time unit, AV = 0.09, h is the
integration span.

4. CONTINUOUS THRESHOLD POLICY FOR
THE ROSENZWEIG-MACARTHUR MODEL

The Rosenzweig—MacArthur model, subject to the
threshold policy on the predators is given by the
equations below

T ==z r(l—%)—wiA>,

(3)

. sA(x—J) >
where
1 if Y>Yth +0
- + .
¢ (y) = (7?/ g;t; U) if yin—0<y<ym+
0 if Y < Yth — 0.

The value of g5 for which the system stabilizes
at the threshold value y;;, must be calculated.
System (3) submitted to this control consists of
three structures: (i) no harvesting with ¢ = 0;
(ii) constant harvesting effort for predator ¢ = 1;
and (iii) linear harvesting effort for predator with
¢ = L=42t? Tp (i) and (ii) the equilibrium points
should be virtual, and in (iii) the equilibrium point



should be real, i.e., the unique real equilibrium
point belongs to this region. Analyzing the system
in the region y;p, — 0 <y <y + 0, leads to:

(-5 2)
y<( sA(x—J) €2

m_%(y_yth’f‘g)):&

Since it is desired to stabilize the system at the
threshold value vy, this means that the stable
equilibrium points are (x;,y:,) for ¢ = 1,2, and
€9 is given by the expression

2sA(z; — J)
(J+A) (z; + A

while the x;’s are given by

E9 =

K—Ai\/(A—K)2—4<§yth—KA>

2

From the expression for &5, we must have z; >
J. A sample simulation of predator and prey
densities is shown in Figure 5. In the simulations
the following values were used: z; = 44.0394
and x5 = 5.9606. From z; > J the value of &5
is obtained as 0.2966 and the parameter values
shown in the figure captions were used. Note
that this system without control exhibits a stable
limit cycle (Gurney and Nisbet, 1998), so that
the threshold policy has successfully introduced
a robustly stable equilibrium into the controlled
system.

T12 =
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Fig. 5. Time evolution of predator and prey densi-
ties z(t) and y(¢) under continuous thresh-
old control with r = 2, K = 60, s = 1,
yen = 2875, A = 10, e5 = 0.2966, J = 20
and o0 = 2.5.

5. CONTINUOUS THRESHOLD POLICY AS
A CONTROL STRATEGY IN A SIMPLE
CHEMOSTAT

The system is given by the following equations

mixy Moxz

i = (2" —z)D —
z= (2" —x) otz oia z(0) = xo,
. miT _

= - D 0) = 4
y y<a1+$ 1>, y(0)=w0 (4)
) Max _

= _ D =
i=: (20 () D). 0) = 2

where ¢ (z) is showed in equation (5).

In this strategy we need to know the value of ¢
such that we can reach the desired equilibrium
point, in this case we want to reach z,,;,. System
(4) submitted to this control consists of three
structures: (i) dilution rate with ¢ = «; (ii)
dilution rate with ¢ = e1; and (iii) linear dilution
rate for microorganism with ¢ = . In (i) and
(ii) the equilibrium points should be virtual, and
in (iii) the equilibrium point should be real, i.e.,
the unique real equilibrium point belongs to this
region. The threshold policy is given as follows

er if 2> Zmin + 0
¢ (Z) = ﬂ if zZmin—0<2<2min+0 (5)
a if 2 < Zmin — O,

where = a + (g1 — @) ((z — zmin + 0)/20).

The system must be analyzed in the linear re-

gion zmin — 0 < 2z < Zyiy + 0 in order to

calculate an appropriate value of £;. After some

algebra the equilibrium is calculated as z., =

(D1a1)/(m1 — D1); 2eqg = Zmin which implies that
2 M2Teq o -

eg==|———%Dz .

1= 5, < 2

Figure 6 shows the time plots of z(t), y(t) and 2(t),

respectively.

Simple Chemostat

081

——  Nutrient

— = Microorganism 1
Microorganism 2

0.7

02f >

1‘0 2‘0 3‘0 4‘0 50 (;O 7‘0 8‘0 90 100
Time

Fig. 6. Time evolution of the nutrient z(¢) and the

microorganisms y(t), z(t¢) under continuous

threshold policy with o = 0.015,e; = 0.5909.

This policy engenders coexistence of the microor-
ganisms as can be seen in Figure 6, in contrast to
the use of a proportional control, which results in
extinction of microorganism 1 (Meza et al., 2001).



6. CONCLUDING REMARKS

Simple on-off or threshold type policies, which
are discontinuous, as well as their continuous ver-
sions, have been shown to be effective in the
control of one (Noy-Meir) and two (Rosenzweig—
MacArthur) species predator-prey type models
commonly used in mathematical population bi-
ology. In addition a three-dimensional chemostat
model is also controlled successfully.

The design of the continuous threshold policies
is based on an analysis of the equilibria of the
system: the control is chosen so as to make all
the equilibria virtual, with the sole exception of
the desired one. The novelty in this paper is the
analysis via real and virtual equilibria, which the
authors find intuitive for design purposes. Sim-
ulations in section 3.1 show that the strategies
proposed here are robust to uncertainty of model
parameters, initial conditions and delays between
stock assessment and policy enactment. The latter
may be described by a slight translation of the
switching line, which does not alter the dynamics
significantly, provided that the equilibrium points
are all virtual. Moreover, some counter-intuitive
results can be achieved by threshold policies. For
example, in the herbivore-vegetation model under
a threshold policy, maximum herbivore consump-
tion (and consequently, production, assuming it
is directly proportional to consumption) is guar-
anteed for high levels of herbivore densities, which
would drive vegetation to extinction in the absence
of this policy. Further details, such as plots of
control inputs, comparison of discontinuous and
continuous threshold policies, and proofs excluded
here for lack of space can be found in (Meza et
al., 2001).
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