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Abstract: This paper presents an algorithm for optimization. This algorithm is based
on a team of learning stochastic automata. Each automaton is characterized by two
actions providing a binary output (0 or 1). The action of the team of automata
consists of a digital number which represents the environment input. The probability
distribution associated which each automaton is adjusted using a modified version of
the Bush-Mosteller reinforcement scheme. This adaptation scheme uses a continuous
environment response and a time-varying correction factor. A normalization procedure
is used in order to preserve the probability measure. The asymptotic properties of this
optimization algorithm are presented. A numerical example illustrates the feasibility
and the performance of this optimization algorithm.
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1. INTRODUCTION

Frequently, the information necessary for solving a
problem (control, optimization, etc.) is not avail-
able or may be incomplete. It is then necessary to
learn (acquire) additional information. Learning
deals with the ability of systems to improve their
response (performance in the sense of some crite-
rion) based on past experience (Tsypkin, 1973).
Learning models stem from diverse approaches,
frequently grounded on heuristic intuitions and
experiments. Learning automata are information
processing systems whose architecture and be-
havior are inspired by the structure of biological
systems (the organism is born with relatively lit-
tle initial knowledge and learns actions that are
appropriate through trial and error).

A learning automaton operates in a random en-
vironment (process to be controlled, function to
be optimized, etc.) and adapts his probability in
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order to achieve the desired control (optimization)
objective (learning goal). The main theoretical as
well as practical results related to learning au-
tomata (Najim and Poznyak, 1994) (Poznyak and
Najim, 1997) (Poznyak et al., 2000) have been car-
ried out in the last decade. The convergence and
the estimation of the convergence rate of both bi-
nary and continuous reinforcement schemes have
been carried on the basis of martingale theory and
Lyapunov approach. The behavior of hierarchical
structure of learning automata and learning au-
tomata with changing number of actions has also
been analyzed and several theoretical results have
been stated.

Learning automata have been used to solve en-
gineering problems as well as problems stemmed
from economy which are characterized by nonlin-
earity and a high level of uncertainty (Najim and
Oppenheim, 1991). They have been used for pro-
cess modelling and control, optimization, pattern
recognition, image processing, signal processing,
trajectory planning of robot manipulators, tele-



phone and internet traffic routing, process naviga-
tion, neuro-fuzzy networks training, process syn-
thesis, etc.

Binary coding is common with genetic algorithms.
Howell (Howell, 2000) proposed a genetic learning
automata (GLA) optimization algorithm, applied
to probabilities of binary actions of a team of
learning automata. The outputs of the team of
automata form a binary number which constitutes
the environment input. The continuous environ-
ment response is obtained from a realization of
the function to be minimized, and a normalization
procedure is then used to ensure the preserva-
tion of the probability measure. Each automaton
in the team is provided with the same normal-
ized environment response. In the GLA algorithm
(Howell, 2000), the population consisted of strings
of binary-action learning automata probabilities.
At each generation, a set of sample vectors was
generated using the probability distribution in the
population. The sample vectors were evaluated,
and a max-min normalization conducted within
the current population. The probabilities in the
strings of the population were then updated using
a reinforcement scheme. He then further applied
crossover and reordering operators, before pro-
ceeding to next generation.

In this paper, an optimization algorithm is de-
veloped based on a team of learning automata
with two actions (one action is equal to 0 and
the second ome is equal to 1). Note that it can
—loosely— be seen as a special case of Howell’s ap-
proach (population of one probability string only,
no genetic operators). It uses the Bush-Mosteller
reinforcement scheme with a continuous input
(continuous environment response) and a time-
varying correction factor. In this paper, theoret-
ical results concerning the asymptotic properties
of the system are presented, as well as computer
simulations illustrating the performance of the
approach.

The remainder of this paper is organized as fol-
lows: The next section deals with the definition
of a learning automaton and the presentation
of the reinforcement scheme (adaptation mecha-
nism) used in the adaptation procedure. The op-
timization problem is stated in section 3. Section
4 presents the asymptotic properties. A numerical
example is presented in section 5. Some conclu-
sions end this paper.

2. STOCHASTIC LEARNING AUTOMATA

A k-automaton (k :L_N) with binary output,
belonging to a team with NV participants, oper-
ating in a random environment (medium), is an
adaptive discrete machine described by
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where:

(1) = is the automaton input bounded set;

(2) U* denotes the set {u*(1)=1,u"(2) =0}
of actions of the automata (k :L_N) (we
consider a team of N automata), and {uf’L}
is a sequence of binary automaton outputs
(actions): uf = {0;1} ;

(3) {fﬁ} is a sequence of automaton inputs

(payoffs ¥ € Z) provided by the given mech-
anism in a binary (P-model environment)
form,;

(4) pk = [p,’,”;(l),p,’,”;@)]T is the conditional prob-
ability distribution at time n :

pE(i)=P {w e Q:uf =uk3) Fn_l}
2
Zpﬁ(i) =1

where F,, = (r(u’f,p’f,f’f; ...;uﬁ,pﬁ,{f’l) is the
minimal o-algebra generated by the corre-
sponding events (F,, C F).

(5) T* = TF represents the reinforcement scheme
(updating scheme) which changes the proba-

bility vector p to p 41, that is,

o1 = P + 10 TY (0 (1)
k Lk
{ft }t:L...,n’ {w }t:1,...,n)
pi(i) > 0, i = 1,2, where 7% is a scalar

correction factor and the vector T(.) =
[TT’f’l(.)TT’f’Q(.)]T satisfies the following con-
ditions (for preserving probability measure):

2 T() =0

i=1 .
Pr(i) + 7, T () €10,1]
Vn,k=1,...N

The environment establishes the relation be-
tween the actions of the automaton and the
signals received at its input. It includes all ex-
ternal influences. The environment produces
a random response whose statistics depend
on the current stimulus or input.

3. OPTIMIZATION ALGORITHM

Several engineering problems require a multi-
modal functions optimization strategy. Usually,
the function f(z) to be optimized is not explicitly
known: only samples of the disturbed values of
f(z) at various settings of x can be observed, com-
plicating the application of the usual numerical
optimization procedures.



Let us consider a real-valued scalar function f(x),
T € [Tmin, Tmax)- We would like to find the value
x = z* which minimizes this function, i.e.,
" = arg min f(z) (2)
zeX

=[Tmin,Zmax]

There are almost no conditions concerning the
function f(z) (continuity, unimodality, differen-
tiability, convexity, etc.) to be optimized. We are
concerned with an e-global optimization problem
of multimodal and nondifferentiable functions.

The actions of the team of N stochastic automata
form a binary string of length IV:

1,2 N
Upy, Uphy ey Uy
where uf = {0;1}. The quantized real value is

given by

N
i oi—1
Ty =T (un) = Tmin T AZ“ZLQZ (3)
i=1
where 2, € X, X = {Zmin, Tmin+ A4, Tmin+24, ...
Tiax ) and u, = (u}“u%, ufy)T The resolution

of the quantization is equal to
x — Tmi
A — max min 4
Without loss of generality, we can assume that

ZTmin = 0. Let y,, be the observation of the function
f(z) at the point z,, € X i.e.,

Yn = f(xn) + wy, (5)

where w,, is the observation noise (disturbance)
at time n. We assume that the observation noise
is a conditionally zero mean random variable with
finite variance, i.e.,

(H1) The conditional mathematical expecta-
tions of the observation noise w,, are equal to
zero for any time n = 1,2,...: E{w,/F,_1} =
0, Fpoy1 =0 (a:s,ws; s=1,n— 1), ie. {w,} is
a sequence containing martingale-differences.

(H2) The conditional variances of the observa-
tion noises exist and are uniformly bounded:
E{w2/Fo_1} < 02(i), max;sup, 02(i) =
o? < o0

The optimization algorithm operates as follows,
see Fig. 1. At each time n, each automaton of the
team selects randomly an action uf (k = 1,_N)
According to (3) and (4), these actions are in turn
used to calculate the new value of the argument
Zpn, and then, the realization y, of the function
f (zy,) is obtained. This realization is then nor-
malized as follows:

€= (6)

,in) — min Sn—1(j17---,jN)] /
J1r--IN +

J1se0dN JiseedN

max [Sn(il,...,i]\r)_ mln Sn—l(jlz-":jN):| +1
+
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Fig. 1. Schematic diagram of the optimization
algorithm.

where

with

zif x>0
M+"{01fa:<0’ ®
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The normalized environment response belongs to
the unit segment, &,, € [0,1]. It is then used as the
input of all the automata belonging to the team
of automata, that is,

~k —_—

€ =6 k=T,N

~k
(¢,, represents the input of the £*" automaton).
We are dealing with a random stationary envi-

k
ronment where responses §,, are characterized (in
view of (H1) and (H2)) by the following two
properties.

Lemma 1. Assume that assumptions (H1) and
(H2) hold and suppose that the considered re-
inforcement scheme (1) generates the sequences
{p]fl} such that for any index collection (i1, ...,iN)
the following ”ergodic condition” fulfilled:

[ ki) 2 o (9)

~

Then, the normalized environment response &
(6) possesses the following properties:

kg3

o The number of selections of each action col-

lection (i1, ...,iy) 1s infinite, i.e.,
oo N
ks a.s.
T x(ud = u (i) =2 oo (10)
=1 k=1



e The random wvariable sp(i1,...in) (7) is
asymptotically equal to the value of the func-
tion to be optimized for the corresponding
point x(u' (iy),u? (iz),...,u™N (in)) belong-
ing to the finite set., i.e.,

Sn (i1, eenyin) = (11)
Flaut (i) 0 (i2) , ot (i) + 0u(1)

e For the selected actions uF = u® (i) at time
n, the normalized environment reaction &, s
asymptotically equal to A(iy,...,ix), i.e.,

En " Ain, in) +o0u(1) €[0,1)  (12)
where
A(ig, eyiny) = (13)
[f(x(ir,....in)) — flz(ar,...;an))l/

[f(@(ix,...in)) = fla(an, . an))] +1

(il,...,iN)
Alir, i) € [0,1), (an, ..

(’L],,...,ZN)

e For the optimal action u,, = u(z(ay, ..., an)),
the normalized environment reaction is asymp-
totically equal to 0, i.e.,

2 a.s.

§n = 0u(1) (14)

if un = u(@(a, ..., an)).

Jay) = arg

Lemma 2. If for some reinforcement scheme the
following inequality holds

n N
1 e/ 1 1
il ) > il Z
STk =o(5) re (0g) 09
t=1 k=1

then, for any small positive e this implies

Sn(ity ein) — fla(it, .. in)) (16)
a.s. 1
= 0u(—75==)

and, as a result, for large enough n > ng(w), it
follows

2 a.s. . . 1
§n = Alig,.yin) Jr%(m) €10,1)
(17)
~ 2 -
a.s. 1
= O(nl—QT) (18)
with uf = u*(is,), and
E{¢/k=TN|
1

The proofs for the Lemmas are omitted here (see
(Najim et al., 2002)). They are based on the Borel-
Cantelli Lemma, the strong law of large numbers

and Lemma 4 in (Poznyak et al., 2000) Appendix
A.

Finally, the automaton input is used in connection
with a modified version of the Bush-Mosteller
reinforcement scheme (Najim and Poznyak, 1994)
to adjust the probabilities distributions, i.e.,

phay (1) = pl (1) + Apl ., (1)
{ +pfi+1 (2)=1- pfiﬂ (+1) (20)

. ~k
Aphay (1) =7k [ulh = ph (1) +

€,(1— 2uk)
where
Ve, €, 01

The original Bush-Mosteller reinforcement scheme
uses a binary input (P-model environment) and a
constant correction factor 'y];; = 7y = const.

The loss function ®,, associated with each learning
automaton is given by

L~k 1
Tp==> & =-> & (21)
t=1 t=1

It is a useful quantity for judging the behavior
of a learning automaton. We will show in the
sequel that if a stochastic automaton minimizes
its loss function then it automatically solves the
corresponding unconstrained stochastic optimiza-
tion problem on a discrete set.

Remark. The accuracy of the approximation of
the initial optimization problem on continuous set
by the optimization problem on finite (discrete) set
can be estimated for a wide enough class of Lip-
schitz functions (see section 1.5 of (Poznyak and
Nagjim, 1997)) : to obtain an e—approximation of
the initial optimization problem it is enough to use
the partition of the given compact set X with the
diameter D into a subsets X, (k=1,...,N) with
diameters
<P €
N ~ maxg_y, n LY
(LY is the Lipschitz coefficient at Xy) and with
the integer N, characterizing the number of such
subsets, such a way that the following inequality:

0
D maxXg=1,. N Lk

N>
g

should be satisfied.

The convergence as well the convergence rate of
this optimization algorithm will be stated in the
next section.

4. ASYMPTOTIC PROPERTIES

(H3) In this study, we assume that the correc-
tion factor v in (20) is time-varying and is



selected for any k according to the following
rule:
k v
.= 1 22
=5 1€0,a>y  (22)
(H4) The initial probabilities are assumed to be
strictly positive, i.e.,
pPGE) >0 Vk=1,..,N;i=1,2
The Bush-Mosteller scheme (20) can be rewrit-
ten in the following vector form:

Pﬁ-ﬁ-l = pf”; (23)
b [euh) = ph + €, (e — 2e(ul))]

with 7% = v, == 3=, v € (0,1/N), a > N,
€ € [0.), e(uf) == (uf, 1-uf)", ufy = {0:1}
and e := (1, 1)T.
Theorem. For the Bush-Mosteller scheme (23),
condition (9) is satisfied, and if the assumptions
(H1) - (H4) hold, and the optimal action is

single, i.e.,

in) = A" >0
(24)

then, the given collection of automata with bi-

nary actions selects asymptotically the global

optimal point x(aq,...,an) and the loss func-
tion @, (21) tends to its minimal value equal to

min Ay, .
(11, in )£ (o, an)

zero min )A(il, e inN) = 0) with proba-

(31,.-iN
bility one, that is,
1
a.s.
Cn = 0u( =)

The proof is obtained by selecting a Lyapunov
function W, := (1=TTi_, 1 (ax)) / TLiy P (o),
finding an upper bound for E {W,,;1/F,} and us-
ing the Robbins-Siegmund theorem, hence show-
N
ing that W,, “3 0, which implies [] pf(as) “3
n—o0 k=1 n—oo

1 and én %% 0. The proof is omitted here as

n—oQ

it is lengthy, see (Najim et al., 2002); a similar
treatment of W, := (1 — p(a)) / p(a) in the
case of a single automaton can be found from
Section 3.6.1 in (Poznyak and Najim, 1997). This
theorem shows that, a team of learning binary
automata using the Bush-Mosteller reinforcement
scheme with the normalization procedure, de-
scribed above, selects asymptotically the optimal
actions.

The next corollary gives the estimation of the rate
of optimization.

Corollary (on convergence rate). Under the
assumptions of this theorem it follows:

a.s. 1
so(2)
nl/

]
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Fig. 2. Multimodal function. Solid line shows the
true function f, noisy data is evaluated at
points obtained using N = 4.

where
1
0<1/< E—QN’Y

So, for a given v € (0,a/N) the order v of the
learning rate n~" decrease if the number N of
automata team increase.

The proof is obtained using Lemma A.3-2 in
(Poznyak and Najim, 1997) (again, see (Najim et
al., 2002)).

5. NUMERICAL EXAMPLE

In order to illustrate the feasibility and the per-
formance of the algorithm presented above, let
us consider the following optimization problem
(minimization of a multimodal function):

i 25
o ) 2
where
f(z) = cosx +si I+1s' Z (26)
z) = cosw +sin g + 5 sin -

and w ~ N (0,0.1). x is obtained from (3). The
task is then to find the optimal combination of
uP’s, k = 1,2,...,N. Figure 2 shows an example
of the data for N = 4, n = 100. The minimum is
found at z* =9.9.

Figure 3 (gray dots) shows the probabilities p¥ (1)
in a typical simulation with N =4, v = ﬁ, a=1,
to = 10000N, T = to + 10000, and

vy if t <ty
Tn = AtOStST (27)
(t—to) +a

It can be seen that for the first 30 000 itera-
tions, no apparent learning takes place. Taking
the sample mean (solid line) shows, however, that
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Fig. 3. Evolution of the probabilities p (1).
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Fig. 4. Frequencies of the solutions found.

already after few hundred iterations the mean
probabilities remain larger than 0.5 (k = 1,2,3)
and less than 0.5 (k = 4). At iterations ¢ =
31275—31300, the probabilities suddenly converge
to 1’s and 0’s, and remain there until the iterations
are terminated.

In order to have a better view of the practical
viability of the approach, 50 repeated simulations
were conducted using N = 2,3,...,8 using a
constant v,, = v = 0.25. Simulations were stopped
when the probability for selecting a single action
in the discretized search space was 99.99%, i.e.,
[T, max;—1 2 p% (i) > 0.9999. The results are
summarized in Figs. 4-5. Fig 4 shows the number
times a particular solution was obtained (out of
the 50 test runs). For N = 3, 4 and 5, all
50 simulations converged to the optimum x*.
For N = 6,7 and 8, the correct optimum was
found in 47, 19 and 12 test runs, respectively,
while the other solutions were found in the close
neighborhood of z*. Fig. 5 shows the histogram
of the distribution of the number of iteration
rounds required until convergence. As expected,
the number of required iterations increases with
N.
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Fig. 5. Distribution of the number of iteration
rounds.

6. CONCLUSIONS

This study demonstrates a potentially power-
ful tool for optimization purposes. The approach
adopted here is based on a team of learning
stochastic automata with a continuous input (en-
vironment response) and binary outputs. A mod-
ified version of the Bush-Mosteller reinforcement
scheme is used for the adjustment of the proba-
bility distributions. The asymptotic properties of
this random search optimization technique have
been stated and a numerical example illustrates
the feasibility and the performance of the opti-
mization algorithm.
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