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Abstract: Embedded computer control systems rely on software for performing their 
functions. These systems are essentially real-time systems and traditionally the research 
on these systems has been focused on functionality and performance. However, quality 
attributes as modifiability, portability, etc. are very important for developing high quality 
computer control software. One way of rising high quality is based on the study of 
software architectures. In this work, we present the followed process to obtain a reference 
architecture of a robot controller for a teleoperated service robot.  To achieve this goal, we 
have followed an architecture-based development process using UML, a standard notation 
for the design of static and dynamic properties of systems. Copyrigh  2002 IFAC. 
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1. INTRODUCTION 
 
Embedded computer control systems heavily rely on 
software for performing their functions. Software 
manages the operations of underlying hardware and 
makes possible to achieve other advanced functions 
such as diagnostics, human-machine interface, etc. 
However, due to the fact that there are physical 
processes under control, embedded control software 
differs from general-purpose software in several 
aspects:  
 
♦ It must support the execution of automatic control 

algorithms as well as other related functions. This  
means that the software together with hardware 
must support both logical determinism and 
temporal determinism. In other words, these 
systems are essentially real-time systems, where a 
too late completion of control task or a missed 
deadline may impact control performance and 
stability negatively, and may lead to total system 
failure.  

♦ It must be at least as dependable as mechanical 
solutions. This means that careful considerations 
with respect to fault avoidance and fault tolerance 
at different levels of computer hierarchy are 
needed. 

 
Traditionally, the research on computer control 
systems has been focused on these aspects: 
functionality, performance and dependability. 
However, control systems become increasingly more 
complex and widely used, and other characteristics 
become critical as well. Currently, quality attributes 

as modifiability, portability, reusability, etc. are very 
important  to develop high quality computer control 
software and reducing the cost of products. The 
consideration of software architecture contributes to 
developing high quality systems. The architectural 
design is critical for the success of system 
development because the qualities of large software 
systems are largely determined by system structuring 
(Bass, et al., 1998).  

 
Robot teleoperation systems are a typical area of 
application of control computer software (figure 1). 
In particular, our work is centralized for service 
robots. In these systems, an operator is in charge of 
monitoring and operating the robot according to the 
information provided by the teleoperation system. 
This  system receives commands from the operator 
and performs the corresponding actions for executing 
them. For this purpose, it communicates with the 
remote robot control unit, which physically actuates 
on the robot to move it. The robot control unit makes 
some sensing from the robot in order to evaluate its 
global state and sends this information to the 
teleoperation system, which uses it to represent 
graphically the state of the robot and ensure the 
correctness of its behaviour.  
 
 
 
 
 
 
 
Fig. 1. Teleoperated service robot system     
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Different tools are attached to the robot so as to 
perform the maintenance operations. The tools are 
operated in a similar way to the robot. 
 
In Alvarez, et al. (2001) a reference architecture for 
teleoperation platforms (reused for different 
applications) is described. In this work, we present 
the process followed to obtain a reference 
architecture for the control unit (ROC). In the next 
section, basic characteristics of these applications are 
described as well as desired quality attributes. In 
section 3, some design aspects are commented. An 
important aspect for managing software complexity 
is the description of the system structures under 
consideration through a formal language. As section 
4 shows, we have used UML for requirements 
elicitation and designing of the system architecture. 
Section 5 describes a particular application of this 
architecture and finally conclusions are included. 
 
  

2. SYSTEM REQUIREMENTS 
 
One conceptual illustration of the remote control unit 
for service robot applications is given in figure 2, 
partially based on a conceptual description of 
automotive control systems given by Axelsson 
(1999). Discrete time signals are shown with dashed 
lines and continuous signals with solid lines, e.g., 
y(k) is the discrete-time value of y(t) at the sampling 
instants (i.e., tk). From a functionality point of view,  
software at the application level can divided into the 
following functions: 
 
♦ Motion control functions are needed in order to 

actuate on the mechanical parts according to a 
given reference (e.g., acceleration, speed and 
position) even in the presence of unexpected 
environmental disturbances. The control is 
commonly based on the concept of feedback or 
closed loop control. The basic operations of 
feedback control include sampling, computing, 
and actuating. For the ease of control design, the 
states of the system under control are sampled or 
discretized periodically.  

♦ Discrete event control functions. These functions 
are responsible for determining the sequence of 
actions that should be performed to get desired 
behaviours. They are often implemented as state 
machines, which may run periodically or not. The 
desired timing mainly depends on the discrete 
dynamics under control. 

♦ Mode switch function. This function is 
responsible for determining and managing the 
local and teleoperated system operational mode. 
Inputs to the control unit come both from the 
teleoperation system (teleoperated mode) and 
from an operator close to the control unit (local 
mode).  

 
These functional requirements refer to requests that 
can be mapped into and implemented by one or 

several subsystems. Functionality itself is not 
sensitive to system structures. In contrast, other 
functional requirements (as performance and 
reliability) are concerned with system operations and 
depend on the architectural design. The 
interdependence of system constituent units must be 
properly structured to achieve the following non-
functional requirements or non-run-time quality 
attributes:  
 
♦ Modifiability. The system must allow making 

changes such as extending capabilities for working 
with several controllers for each axis of the same 
robot or different robots. 

♦ Portability. The system must be implemented on 
different target platforms. This can be ensured 
through introducing a portability layer that 
encapsulates all platform specific considerations.  

♦ Reusability. Different parts of the system need to 
be reused for future applications. Consequently, 
generic components must be separately developed 
to work together. 

♦ Interoperability. The system must  work with 
teleoperation systems. For this reason, 
communication subsystems must guarantee the 
completeness and the consistency of their interface 
specifications. 

 
In order to reach these functional and non-functional 
requirements, an architecture-based development 
process has been considered, as the next section 
shows.  
 
 

3. DESIGNING ARCHITECTURE 
 
Traditionally, robotic software programs have 
followed the semantics defined by control design, and 
coupling and cohesion have been considered 
important structuring criterions. It is easier to keep 
consistency and completeness of information with a 
structured design approach. In this work, coupling and 
cohesion criteria (Peterson and Stanley, 1994) have 
been considered for mapping functional requirements 
into components.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Conceptual illustration of controller.  



Moreover, for domain systems, a reference 
architecture represents a domain specific way of 
structuring software systems through decomposing the 
problems into parts and their relationships , and 
mapping the decomposition results onto software units 
and their interactions . It is shown that the qualities of 
a software system are largely determined by its 
structures. For this reason, in order to determine the 
structures of the system, functional and non-functional 
requirements as well as architecture styles and 
patterns need to be considered. Architecture styles 
denote well-known ways of structuring. This issue can 
be found in the architecture-based development 
process proposed by Bass and Kazman (1999). This 
process is based on a top-down and iterative process 
and it can be characterized by the following steps:  
 

1. Developing subsystems for the requirements: 
A set of subsystems is generated from 
functional and non-functional requirements, 
based on architectural styles and pattern as 
well as experiences. The considered choice is 
such that satisfies more requirements 
simultaneously. 

2. Determining an actual architecture: These 
subsystems can be seen as components in a 
larger subsystem. Thus, functional view is 
described and transformed into a process 
view based on the considerations of 
parallelism. 

3. Validating the solution: The architecture 
solution is validated using the quality 
scenarios, e.g., change scenario for 
modifiability, use scenario for performance, 
etc. 

 
 

4. ARCHITECTURAL DESCRIPTION 
 

One of the most important issues around software 
architecture is the description of the system structures 
under consideration. It is the basis for all design 
activities including comprehending, communicating, 
analysing, trading-off, as well as for modification, 
maintenance, and reuse. Similar to other models, the 
description can be based on mathematical, textual, or 
graphical notations, but in order to manage the 
complexity of a system, a complete architecture 
description should be divided into multiple views.  

 
Often, each architectural view includes a set of 
models that describes one aspect of a system. One 
well-known and widely used approach to multi-
viewed architectural description is the 4+1 View 
Model of Architecture proposed by Kruchten (1995). 
This model has also been adopted in the development 
of Unified Modeling Language (UML) (Booch, et al., 
1998; OMG, 2001). UML has emerged as a standard 
notation for conceptual modeling using the object-
oriented paradigm. Taking into account the benefits 
of blending object-oriented concepts with 
concurrency aspects, it is essential to successfully use  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Deployment diagram. 
 
the UML notation when designing distributed and 
real-time applications. The UML notation provides 
several diagrams that allow us to represent static and 
dynamic properties of real systems and integrate 
them following the previous 4+1. 
 
In order to obtain a reference architecture we have 
followed the COMET methodology (Concurrent 
Object Modeling and Architectural Design Method 
with UML) proposed by Gomaa (2000). It is a design 
method for concurrent applications based on the 
USDP (Unified Software Development Process) and 
the spiral model of Boehm. Starting from the system 
Use Cases, a static and dynamic design of the classes 
in the architecture can be derived until reaching the 
final implementation. Our goal is to reach a reference 
architecture for the design of control units in 
teleoperated service robots. In this kind of systems, a 
teleoperation system sends commands to the robot 
control unit, which controls the electromechanical 
elements composing the robot. In turn, this control 
unit returns the state of the robot to the teleoperation 
system.  In figure 3, a possible deployment diagram 
of the whole system is presented, where different 
modules – nodes are included. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Use Cases diagram. 
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Following the development process, once the 
requirements of the system are collected (functional 
and no functional), we create a detailed tabular 
specification of the system functionality. It is divided 
into categories where attributes (as time response, 
fault tolerance, etc) are included. From such 
specification, the use cases of the system are 
extracted (figure 4). 
 
A system context class diagram (figure 5) is derived 
from use case diagram by considering the actors and 
which devices they utilize to interface with the 
system. In that diagram, the ROC object is composed 
of several other objects, and receives inputs from 
external objects and actuates over them. Several of 
these objects are device interface objects that 
interface to external I/O devices, mainly the robot 
sensors and actuators. It also receives inputs from the 
manipulator and interacts with the teleoperation 
system.  
 
4.1 Discovering classes. 
 
After the previous step, every Use Case is studied in 
order to obtain the objects that take part in it and the 
exchanging messages between objects. This is the 
most complicated phase in the development process 
and it needs a bug creativity effort from the designer. 
Several collaboration diagrams are consequence of 
this study. Once the different objects of the system 
are extracted from collaboration diagrams, the classes 
of the system can be proposed as a generalization of 
objects. 
 
One of the main objects composing the control unit is 
the Joint_Controller, which has to implement several 
methods as move_to, stop, etc. Therefore, the control 
architecture is based on the class Joint_Controller, 
defined as interface or abstract class (figure 6). Each 
controller could be different, so it will be an 
implementation of Joint_Controller, giving the same 
interface to the rest of the system. It will be as many 
controllers as joints the robot has, one for each joint. 
Each of them implements its own control algorithm, 
which could be only software or an interface to a 
hardware control board. It is clear then, that if a 
coordinated movement is needed, there should be a 
coordinator of controllers, as shown in figure 7. This 
figure represents the class diagram of the 
architecture. The class Joints_Coordinator offers 
different basic methods of coordination between 
joints.  
 
The class Tool_Controller is similar to 
Joint_Controller, excepting the object to control. In 
the last case it is dedicated to the tool, implementing 
a different controller for each possible tool that could 
be managed by the robot. The same remark could be 
done for Tools_Coordinator.  
 

The process coordinator establishes the highest level 
in this architecture. Although the domain of the 
application is teleoperated service robots, there are 
several process that can be performed in an 
autonomous manner. ProcN_Coordinator 
implements one of these processes. For each one 
there should be a different Process Coordinator, 
changing in running time depending on the process.  
 
 
4.2 Concurrent tasks structuring. 
 
In any real-time concurrent system is necessary to 
establish the active objects, that is to say, the 
concurrent  tasks in the application.  During the task - 
structuring phase, the task architecture is developed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Context class diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Joint_Controller implementation diagram  
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Fig. 7. Proposed architecture class diagram 
 
As a consequence, the system is structured into 
concurrent tasks and the task interfaces and 
interconnections are defined. To help determine the 
concurrent tasks, task-structuring criteria is provided 
by COMET to assist in mapping an object-oriented 
analysis model of the system to a concurrent tasking 
architecture. For instance, depending on the 
characteristics of the I/O devices (asynchronous, 
passive, etc), one or more task will be chosen to read 
them. That is to say, if the sampling rate of two 
passive devices differs we should chose two different 
tasks, but if it is similar, it could be simplified in one 
task depending on the computational necessities of 
the system. 

 
 

5. AN APPLICATION OF THE ARCHITECTURE: 
GOYA SYSTEM 

 
Recently, the obtained architecture has been 
implemented for GOYA (Ortiz, et al., 2000) system: 
a teleoperated system for blasting applied to hull 
cleaning in ship maintenance (figure 8). The 
approach taken for the teleoperation platform is 
based on the generic architecture described by 
Alvarez, et al., (2001). In this case, the teleoperation 
platform is a O2 Silicon Graphics workstation. The 
architecture for the control unit have been 
implemented over an industrial PC with Linux.  
 
There are control systems that have not such 
stringent safety and time requirements that justify the 
use of real time operating systems. A failure in the 
system execution or time requirement sporadically 
missed does not imply an immediate threat. This is 
the case for a numb er of control applications which 
are supervised or teleoperated by human, such as 

robots for ship hull blasting. In these cases, the robot 
speed is low and in the case of failure in the 
computer control system, the operator has the ability 
for manually stopping the robot.  
 
In this case, the architecture has been implemented of 
the following manner. The Goya robot has three 
freedom degrees (xyz) and one tool. Then, four 
controllers are necessary, one for each freedom 
degree and one for the tool. In figure 7, a class 
diagram is shown with Jn_Controller and 
multiplicity 1..n; the implementation in an object 
diagram for this particular robot leads to: 
J1_Controller for the elevation platform (z-axis), 
J2_Controller for positioning arm (y-axis) and 
J3_Controller for tool positioning cart (x-axis) 
mounted on the titling head.  
 
In this robot has only one tool so the multiplicity of 
Tn_Controller will be 1: T1_Controller for the 
blasting tool. Over this joints controllers there is a 
coordinator object (Joints_Coordinator) that is 
required to coordinate movements. This abstract class 
is implemented with the appropiate procedure 
Coordinate_Joints for this robot. The 
Tools_Coordinator is not necessary in this 
application because we have only one tool, but 
finally it is  implemented to respect the architecture, 
offering the same interface to the rest of the 
application in prevention of later modifications and 
improvements of the robot and anticipating possible 
tool interchanging.  
 
The top layer is the Process_Coordinator. In this 
application, an object has implemented a state 
machine performing the automatic sequence for 
blasting a complete hull panel. The interface offered 
by Process_Coordinator is the same for any layer that 
accesses to the controllers , so every control order, 
not only coordinated ones, but even control for 
individual joints pass through the 
Process_Coordinator. The same could be said for 
Joints_Coordinator. We have created layers with the 
same interface to the upper layer.  
 
Ada 95 has been employed as programming language 
and the communication with teleoperation platform is 
based on the use of GLADE (Tardieu, et al., 2001) 
which is an implentation of DSA (Distributed System 
Annex) of Ada. 
 
 

6. CONCLUSIONS 
 
The success of reusing a reference architecture for 
teleoperation platform in several applications has 
motivated us for developing an architecture for the 
robot control unit. A key factor for a successful 
construction of software systems is the use of 
patterns in architecture design. In order to reach this 
goal, the architecture-based development process  
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Fig.8. GOYA system. 
 
proposed by Bass and Kazman (1999) have been 
followed. Furthermore, UML notation provides a 
semi-formal description that promotes rigorous 
properties verification with tool support. Besides, the 
COMET development process, based on USDP, is 
followed to analyse and design the system with the 
UML notation. 
 
Recently, the above architecture has been 
implemented for GOYA system. In this case, a real-
time operating system has not been necessary, 
although the architecture can be implemented in 
other platforms and over other operating systems.  
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