
TOWARDS A GENERIC SOFTWARE ARCHITECTURE FOR A SERVICE ROBOT CONTROLLER

 B. Álvarez, F. Ortiz, A. Martínez, P. Sánchez, J.A. Pastor, A. Iborra

Universidad Politécnica de Cartagena,

División de Sistemas e Ingeniería Electrónica
Campus Muralla del Mar,s/n. Cartagena, E-30202, Spain

E-mail address: Barbara.Alvarez@upct.es

Abstract: Embedded computer control systems rely on software for performing their
functions. These systems are essentially real-time systems and traditionally the research
on these systems has been focused on functionality and performance. However, quality
attributes as modifiability, portability, etc. are very important for developing high quality
computer control software. One way of rising high quality is based on the study of
software architectures. In this work, we present the followed process to obtain a reference
architecture of a robot controller for a teleoperated service robot. To achieve this goal, we
have followed an architecture-based development process using UML, a standard notation
for the design of static and dynamic properties of systems. Copyrigh 2002 IFAC.

Keywords: Architectures, computer control, robot control, teleoperation, real-time
systems.

1. INTRODUCTION

Embedded computer control systems heavily rely on
software for performing their functions. Software
manages the operations of underlying hardware and
makes possible to achieve other advanced functions
such as diagnostics, human-machine interface, etc.
However, due to the fact that there are physical
processes under control, embedded control software
differs from general-purpose software in several
aspects:

♦ It must support the execution of automatic control

algorithms as well as other related functions. This
means that the software together with hardware
must support both logical determinism and
temporal determinism. In other words, these
systems are essentially real-time systems, where a
too late completion of control task or a missed
deadline may impact control performance and
stability negatively, and may lead to total system
failure.

♦ It must be at least as dependable as mechanical
solutions. This means that careful considerations
with respect to fault avoidance and fault tolerance
at different levels of computer hierarchy are
needed.

Traditionally, the research on computer control
systems has been focused on these aspects:
functionality, performance and dependability.
However, control systems become increasingly more
complex and widely used, and other characteristics
become critical as well. Currently, quality attributes

as modifiability, portability, reusability, etc. are very
important to develop high quality computer control
software and reducing the cost of products. The
consideration of software architecture contributes to
developing high quality systems. The architectural
design is critical for the success of system
development because the qualities of large software
systems are largely determined by system structuring
(Bass, et al., 1998).

Robot teleoperation systems are a typical area of
application of control computer software (figure 1).
In particular, our work is centralized for service
robots. In these systems, an operator is in charge of
monitoring and operating the robot according to the
information provided by the teleoperation system.
This system receives commands from the operator
and performs the corresponding actions for executing
them. For this purpose, it communicates with the
remote robot control unit, which physically actuates
on the robot to move it. The robot control unit makes
some sensing from the robot in order to evaluate its
global state and sends this information to the
teleoperation system, which uses it to represent
graphically the state of the robot and ensure the
correctness of its behaviour.

Fig. 1. Teleoperated service robot system

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

u(t)

y(t)

y(k)

r(k)

u(k

Controlled
Robot

Output
functions

D/A &
Actuators

Input
functions
Sensors
& A/D

Control
functions

Mode
Switch

Control Unit

Different tools are attached to the robot so as to
perform the maintenance operations. The tools are
operated in a similar way to the robot.

In Alvarez, et al. (2001) a reference architecture for
teleoperation platforms (reused for different
applications) is described. In this work, we present
the process followed to obtain a reference
architecture for the control unit (ROC). In the next
section, basic characteristics of these applications are
described as well as desired quality attributes. In
section 3, some design aspects are commented. An
important aspect for managing software complexity
is the description of the system structures under
consideration through a formal language. As section
4 shows, we have used UML for requirements
elicitation and designing of the system architecture.
Section 5 describes a particular application of this
architecture and finally conclusions are included.

2. SYSTEM REQUIREMENTS

One conceptual illustration of the remote control unit
for service robot applications is given in figure 2,
partially based on a conceptual description of
automotive control systems given by Axelsson
(1999). Discrete time signals are shown with dashed
lines and continuous signals with solid lines, e.g.,
y(k) is the discrete-time value of y(t) at the sampling
instants (i.e., tk). From a functionality point of view,
software at the application level can divided into the
following functions:

♦ Motion control functions are needed in order to

actuate on the mechanical parts according to a
given reference (e.g., acceleration, speed and
position) even in the presence of unexpected
environmental disturbances. The control is
commonly based on the concept of feedback or
closed loop control. The basic operations of
feedback control include sampling, computing,
and actuating. For the ease of control design, the
states of the system under control are sampled or
discretized periodically.

♦ Discrete event control functions. These functions
are responsible for determining the sequence of
actions that should be performed to get desired
behaviours. They are often implemented as state
machines, which may run periodically or not. The
desired timing mainly depends on the discrete
dynamics under control.

♦ Mode switch function. This function is
responsible for determining and managing the
local and teleoperated system operational mode.
Inputs to the control unit come both from the
teleoperation system (teleoperated mode) and
from an operator close to the control unit (local
mode).

These functional requirements refer to requests that
can be mapped into and implemented by one or

several subsystems. Functionality itself is not
sensitive to system structures. In contrast, other
functional requirements (as performance and
reliability) are concerned with system operations and
depend on the architectural design. The
interdependence of system constituent units must be
properly structured to achieve the following non-
functional requirements or non-run-time quality
attributes:

♦ Modifiability. The system must allow making

changes such as extending capabilities for working
with several controllers for each axis of the same
robot or different robots.

♦ Portability. The system must be implemented on
different target platforms. This can be ensured
through introducing a portability layer that
encapsulates all platform specific considerations.

♦ Reusability. Different parts of the system need to
be reused for future applications. Consequently,
generic components must be separately developed
to work together.

♦ Interoperability. The system must work with
teleoperation systems. For this reason,
communication subsystems must guarantee the
completeness and the consistency of their interface
specifications.

In order to reach these functional and non-functional
requirements, an architecture-based development
process has been considered, as the next section
shows.

3. DESIGNING ARCHITECTURE

Traditionally, robotic software programs have
followed the semantics defined by control design, and
coupling and cohesion have been considered
important structuring criterions. It is easier to keep
consistency and completeness of information with a
structured design approach. In this work, coupling and
cohesion criteria (Peterson and Stanley, 1994) have
been considered for mapping functional requirements
into components.

Fig. 2. Conceptual illustration of controller.

Moreover, for domain systems, a reference
architecture represents a domain specific way of
structuring software systems through decomposing the
problems into parts and their relationships , and
mapping the decomposition results onto software units
and their interactions . It is shown that the qualities of
a software system are largely determined by its
structures. For this reason, in order to determine the
structures of the system, functional and non-functional
requirements as well as architecture styles and
patterns need to be considered. Architecture styles
denote well-known ways of structuring. This issue can
be found in the architecture-based development
process proposed by Bass and Kazman (1999). This
process is based on a top-down and iterative process
and it can be characterized by the following steps:

1. Developing subsystems for the requirements:
A set of subsystems is generated from
functional and non-functional requirements,
based on architectural styles and pattern as
well as experiences. The considered choice is
such that satisfies more requirements
simultaneously.

2. Determining an actual architecture: These
subsystems can be seen as components in a
larger subsystem. Thus, functional view is
described and transformed into a process
view based on the considerations of
parallelism.

3. Validating the solution: The architecture
solution is validated using the quality
scenarios, e.g., change scenario for
modifiability, use scenario for performance,
etc.

4. ARCHITECTURAL DESCRIPTION

One of the most important issues around software
architecture is the description of the system structures
under consideration. It is the basis for all design
activities including comprehending, communicating,
analysing, trading-off, as well as for modification,
maintenance, and reuse. Similar to other models, the
description can be based on mathematical, textual, or
graphical notations, but in order to manage the
complexity of a system, a complete architecture
description should be divided into multiple views.

Often, each architectural view includes a set of
models that describes one aspect of a system. One
well-known and widely used approach to multi-
viewed architectural description is the 4+1 View
Model of Architecture proposed by Kruchten (1995).
This model has also been adopted in the development
of Unified Modeling Language (UML) (Booch, et al.,
1998; OMG, 2001). UML has emerged as a standard
notation for conceptual modeling using the object-
oriented paradigm. Taking into account the benefits
of blending object-oriented concepts with
concurrency aspects, it is essential to successfully use

Fig. 3. Deployment diagram.

the UML notation when designing distributed and
real-time applications. The UML notation provides
several diagrams that allow us to represent static and
dynamic properties of real systems and integrate
them following the previous 4+1.

In order to obtain a reference architecture we have
followed the COMET methodology (Concurrent
Object Modeling and Architectural Design Method
with UML) proposed by Gomaa (2000). It is a design
method for concurrent applications based on the
USDP (Unified Software Development Process) and
the spiral model of Boehm. Starting from the system
Use Cases, a static and dynamic design of the classes
in the architecture can be derived until reaching the
final implementation. Our goal is to reach a reference
architecture for the design of control units in
teleoperated service robots. In this kind of systems, a
teleoperation system sends commands to the robot
control unit, which controls the electromechanical
elements composing the robot. In turn, this control
unit returns the state of the robot to the teleoperation
system. In figure 3, a possible deployment diagram
of the whole system is presented, where different
modules – nodes are included.

Fig. 4. Use Cases diagram.

Robot Use Cases
<<use case package>>

Tool Use Cases
<<use case package>>

Tool

Move Robot

Configure Controller

Request Robot
State

Stop Robot

Start Up

Robot Event
Processing

Activate Tool

Tool Event
Processing

Deactivate Tool

Request Tool State

Local OperatorTeleoperation
Operator

Set Operation
Params

Shutdown
Calibrate Robot

Robot

Operator (Teleop
System)

Change Movement
Params

ROC Use Cases
<<use case package>>

Teleoperation
System

ROC
Robot

Smart
Manipulator

Manipulator

Tool

RPC

PtP Ethernet Digital Input

Control

Digital Output

Remote
Operated
Controller

Following the development process, once the
requirements of the system are collected (functional
and no functional), we create a detailed tabular
specification of the system functionality. It is divided
into categories where attributes (as time response,
fault tolerance, etc) are included. From such
specification, the use cases of the system are
extracted (figure 4).

A system context class diagram (figure 5) is derived
from use case diagram by considering the actors and
which devices they utilize to interface with the
system. In that diagram, the ROC object is composed
of several other objects, and receives inputs from
external objects and actuates over them. Several of
these objects are device interface objects that
interface to external I/O devices, mainly the robot
sensors and actuators. It also receives inputs from the
manipulator and interacts with the teleoperation
system.

4.1 Discovering classes.

After the previous step, every Use Case is studied in
order to obtain the objects that take part in it and the
exchanging messages between objects. This is the
most complicated phase in the development process
and it needs a bug creativity effort from the designer.
Several collaboration diagrams are consequence of
this study. Once the different objects of the system
are extracted from collaboration diagrams, the classes
of the system can be proposed as a generalization of
objects.

One of the main objects composing the control unit is
the Joint_Controller, which has to implement several
methods as move_to, stop, etc. Therefore, the control
architecture is based on the class Joint_Controller,
defined as interface or abstract class (figure 6). Each
controller could be different, so it will be an
implementation of Joint_Controller, giving the same
interface to the rest of the system. It will be as many
controllers as joints the robot has, one for each joint.
Each of them implements its own control algorithm,
which could be only software or an interface to a
hardware control board. It is clear then, that if a
coordinated movement is needed, there should be a
coordinator of controllers, as shown in figure 7. This
figure represents the class diagram of the
architecture. The class Joints_Coordinator offers
different basic methods of coordination between
joints.

The class Tool_Controller is similar to
Joint_Controller, excepting the object to control. In
the last case it is dedicated to the tool, implementing
a different controller for each possible tool that could
be managed by the robot. The same remark could be
done for Tools_Coordinator.

The process coordinator establishes the highest level
in this architecture. Although the domain of the
application is teleoperated service robots, there are
several process that can be performed in an
autonomous manner. ProcN_Coordinator
implements one of these processes. For each one
there should be a different Process Coordinator,
changing in running time depending on the process.

4.2 Concurrent tasks structuring.

In any real-time concurrent system is necessary to
establish the active objects, that is to say, the
concurrent tasks in the application. During the task -
structuring phase, the task architecture is developed.

Fig. 5. Context class diagram.

Fig. 6. Joint_Controller implementation diagram

Joint_Controller

Joint_State : T_State

Get_State()
Stop()
Move_Forward()
Move_Backward()
Move_To()
Vary_Velocity()

<<Interface>>

J1_Controller J2_Controller Jn_Controller

Teleoperation Operator

Teleoperation System
<<external system>>

Smart Manipulator
<<external system>>

Local Operator

Digital Output Board
<<external output device>>

Network Board
<<external I/O device>>

Serial I/O board
<<external I/O devic...

Electromechanichal Manipulator
<<external system>>

Robot

Tool

ROC
<<system>>

Digital Input Board
<<external input device>>

Fig. 7. Proposed architecture class diagram

As a consequence, the system is structured into
concurrent tasks and the task interfaces and
interconnections are defined. To help determine the
concurrent tasks, task-structuring criteria is provided
by COMET to assist in mapping an object-oriented
analysis model of the system to a concurrent tasking
architecture. For instance, depending on the
characteristics of the I/O devices (asynchronous,
passive, etc), one or more task will be chosen to read
them. That is to say, if the sampling rate of two
passive devices differs we should chose two different
tasks, but if it is similar, it could be simplified in one
task depending on the computational necessities of
the system.

5. AN APPLICATION OF THE ARCHITECTURE:
GOYA SYSTEM

Recently, the obtained architecture has been
implemented for GOYA (Ortiz, et al., 2000) system:
a teleoperated system for blasting applied to hull
cleaning in ship maintenance (figure 8). The
approach taken for the teleoperation platform is
based on the generic architecture described by
Alvarez, et al., (2001). In this case, the teleoperation
platform is a O2 Silicon Graphics workstation. The
architecture for the control unit have been
implemented over an industrial PC with Linux.

There are control systems that have not such
stringent safety and time requirements that justify the
use of real time operating systems. A failure in the
system execution or time requirement sporadically
missed does not imply an immediate threat. This is
the case for a numb er of control applications which
are supervised or teleoperated by human, such as

robots for ship hull blasting. In these cases, the robot
speed is low and in the case of failure in the
computer control system, the operator has the ability
for manually stopping the robot.

In this case, the architecture has been implemented of
the following manner. The Goya robot has three
freedom degrees (xyz) and one tool. Then, four
controllers are necessary, one for each freedom
degree and one for the tool. In figure 7, a class
diagram is shown with Jn_Controller and
multiplicity 1..n; the implementation in an object
diagram for this particular robot leads to:
J1_Controller for the elevation platform (z-axis),
J2_Controller for positioning arm (y-axis) and
J3_Controller for tool positioning cart (x-axis)
mounted on the titling head.

In this robot has only one tool so the multiplicity of
Tn_Controller will be 1: T1_Controller for the
blasting tool. Over this joints controllers there is a
coordinator object (Joints_Coordinator) that is
required to coordinate movements. This abstract class
is implemented with the appropiate procedure
Coordinate_Joints for this robot. The
Tools_Coordinator is not necessary in this
application because we have only one tool, but
finally it is implemented to respect the architecture,
offering the same interface to the rest of the
application in prevention of later modifications and
improvements of the robot and anticipating possible
tool interchanging.

The top layer is the Process_Coordinator. In this
application, an object has implemented a state
machine performing the automatic sequence for
blasting a complete hull panel. The interface offered
by Process_Coordinator is the same for any layer that
accesses to the controllers , so every control order,
not only coordinated ones, but even control for
individual joints pass through the
Process_Coordinator. The same could be said for
Joints_Coordinator. We have created layers with the
same interface to the upper layer.

Ada 95 has been employed as programming language
and the communication with teleoperation platform is
based on the use of GLADE (Tardieu, et al., 2001)
which is an implentation of DSA (Distributed System
Annex) of Ada.

6. CONCLUSIONS

The success of reusing a reference architecture for
teleoperation platform in several applications has
motivated us for developing an architecture for the
robot control unit. A key factor for a successful
construction of software systems is the use of
patterns in architecture design. In order to reach this
goal, the architecture-based development process

Jn_Controller

Write_Actuators

Write()

(from Global)

<<output device interface>>
Read_Sensors

Read()

(from Global)

<<input device interface>>

Tn_Controller

Joints_Coordinator

Joints_State : T_State

Get_State()
Coordinate_Joints()

1..n

1

1..n

1

Tools_Coordinator

Tools_State : T_State

Get_State()
Coordinate_Tools()

1..n

1

1..n

1

ProcN_Coordinator

Fig.8. GOYA system.

proposed by Bass and Kazman (1999) have been
followed. Furthermore, UML notation provides a
semi-formal description that promotes rigorous
properties verification with tool support. Besides, the
COMET development process, based on USDP, is
followed to analyse and design the system with the
UML notation.

Recently, the above architecture has been
implemented for GOYA system. In this case, a real-
time operating system has not been necessary,
although the architecture can be implemented in
other platforms and over other operating systems.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish
Government and European Union Programmes for
Research: Electrical Power Research Program
(project PIE-041049), Technological Actuation in
Industry (PAUTA projects 753/95 and 53/96),
EUREKA-MAINE program (TRON-EU1565), and
GOYA (CICYT-FEDER 1FD97-0823).

REFERENCES

Alvarez B., A. Iborra, A. Alonso and J.A. de la
Puente (2001). Reference architecture for robot
teleoperation: Development details and practical use.
Control Engineering Practice, vol.9, pp.395-402.

Axelsson, J (1999). Holistic object-oriented
modelling of distributed automotive real-time control
applications. In: Proceedings 2nd IEEE International
Symposium on Object-Oriented Real-Time
Distributed Computing.
Bass,L., P. Clements, and R. Kazman (1998).
Software Architecture in Practice, Addison-Wesley.
ISBN 0-201-19930-3.

Bass L., and R. Kazman (1998). Architecture-Based
Development. Technical Report, Carnegie Mellon
University, CMU/SEI-99-TR-007.

Booch, G., I. Jacobson, and J. Rumbaugh (1998).
The Unified Modeling Language User Guide,
Addison-Wesley Pub Co.

Gomaa, H.(2000).,Designing Concurrent,
Distributed, and Real-Time Applications with UML,
Addison-Wesley Object Technology Series (Booch,
Jacobson, Rumbaugh), ISBN 0-201-65793-7

Kruchten, P.B (1995). The 4+1 View Model of
Architecture. IEEE Software, vol.12, issue:6, pp. 42-
50. ISSN: 0740-7459.

OMG (2001) Object Management Group. OMG
Unified Modeling Language Specification (version
1.4), 2001. http://www.omg.org

Ortiz, F., A. Iborra, F. Marin, B. Álvarez, and J.M.
Fernandez (2000) GOYA - A teleoperated system for
blasting applied to ships maintenance. In: 3rd
International Conference on Climbing and Walking
Robots, Spain.

Peterson, A.S. and Jay L. Stanley Jr (1994). Mapping
a Domain Model and Architecture to a Generic
Design. Technical report, Carnegie Mellon
University (CMU) .

Tardieu Pautet, Lauren and Samuel (2001). GLADE
user´s guide. Technical report version 3.14a. ACT.

