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Abstract: This paper deals with the robust filtering problem for uncertain bilinear
stochastic discrete-time systems with estimation error variance constraints. The
uncertainties are allowed to be norm-bounded, and enter into both the state and
measurement matrices. We focus on the design of linear filters, such that for all
admissible parameter uncertainties, the error state of the bilinear stochastic system
is mean square bounded, and the the steady-state variance of the estimation error
of each state is not more than the individual prespecified value. It is shown that the
design of the robust filters can be carried out by solving some algebraic quadratic
matrix inequalities. In particular, we establish both the existence conditions and the
explicit expression of desired robust filters. A numerical example is included to show
the applicability of the present method. Copyright © 2002 IFAC
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1. INTRODUCTION

The well-known Kalman filtering is one of the cele-
brated H- filtering approaches widely used in vari-
ous fields of signal processing and control, see (An-
derson and Moore, 1979). This filtering approach
assumes that the system under consideration has
known dynamics described by certain well-posed
model and its disturbances are Gaussian noises
with known statistics. These assumptions limit
the application scope of the Kalman filtering tech-
nique when there are uncertainties in either the
exogenous input signals or the system model.
It has been known that the standard Kalman
filtering algorithms will generally not guarantee
satisfactory performance when there exists uncer-
tainty in the system model. This has led to the
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recent development of alternative design methods
for H,, filters and robust filters.

For uncertain stochastic systems, it is reasonable
to evaluate the filter performance in terms of mean
square error and strive for a suitable robustifica-
tion of the classical Kalman filter. Therefore, the
study of the so-called cost guaranteed filters which
minimize an easy-to-compute upper bound on the
worst performance has recently gained growing
interest, and many significant results have been
obtained, see (Geromel, 1999; Zhu et al., 2001)
and the references therein.

On the other hand, for a large class of practical
filtering problems such as the tracking of a maneu-
vering target, the filtering performance objectives
are naturally formulated as the upper bounds on
the estimation error variances, see e.g. (Skelton
and Iwasaki, 1993; Yaz and Skelton, 1991). In
this case, the steady-state error variance is not
required to be minimal, but should not be more



than a prescribed upper bound. Note that it is
usually difficult to utilize traditional methods to
deal with this class of variance-constrained filter-
ing problems. Fortunately, the error covariance
assignment (ECA) theory developed in (Yaz and
Skelton, 1991) provides an alternative and more
straightforward methodology for designing filter
gains which satisfy the above performance objec-
tives. Subsequently, the ECA theory has been ex-
tended to the sampled-data systems in (Wang, et
al., 2001), and to the parameter uncertain systems
in (Wang and Huang, 2000), respectively.

Among many practical systems, plants may be
modeled by bilinear systems (BLSs), since some
characteristics of nonlinear systems can be closely
approximated by bilinear models rather than lin-
earized models. Up to now, it has been known that
BLSs could describe many real processes in the
fields of socioeconomics, ecology, agriculture, biol-
ogy, and industry, etc., see (Mohler and Kolodziej,
1980). In particular, the observer design prob-
lem has been intensively studied in (Yaz, 1992)
for discrete-time stochastic bilinear systems (also
called “state-dependent noise systems” because
the structured parameter perturbations on the
system matrix are modeled as zero mean white
noises (Bernstein and Haddad, 1987; Skelton et
al., 1991; Yaz, 1992). However, so far, the is-
sue of variance-constrained filtering for bilinear
uncertain stochastic systems has not been fully
investigated and remains to be important.

This paper is concerned with the design of robust
filters for bilinear uncertain stochastic discrete-
time systems subjected to the upper bound con-
straints on the estimation error variance. The
purpose of the problem addressed is to design
the filters for the bilinear uncertain stochastic
discrete-time systems such that the steady-state
estimation error variances are less than the pre-
specified upper bounds. A simple, effective ma-
trix inequality approach is developed to solve this
problem. Specifically, a set of the upper bounds on
estimation error covariances that certain bilinear
error dynamic processes may obey are first pre-
sented, all filters that assign these upper bounds
to the estimation error variances are then ex-
plicitly characterized, and finally the solvability
of the assignability conditions is discussed. An
illustrative example is used to demonstrate the
effectiveness of the proposed design procedure.

2. PROBLEM FORMULATION AND
PRELIMINARY RESULTS

Consider the following bilinear uncertain discrete-
time stochastic system

2k +1)= (A + AA)z(k)

+ Z Hiz(k)vi(k) +w(k) (1)

and the measurement equation
y(k) = (C + AC)z(k) + z(k) (2)

where z(k) € R" is the state, y(k) € RP is the
measurement output, w(k) € R” and z(k) € RP
are uncorrelated stationary zero mean white noise
sequences with respective covariances W > 0 and
Z > 0. v(k) == [vi(k) va(k) - v (k)]T € R™ is
a vector stochastic sequence satisfying Ev(k) = 0,
Ev(wT(j) = I8, 1,5 = 1,2, ,m, where £{-}
means the mathematical expectation operator.
The initial state z(0) = zo is a random vector
that is independent of w(k) and 2(k). A, H; (i =
1,2,---,m) and C are known constant matri-
ces with appropriate dimensions. The matrix A
is assumed to be Schur stable and nonsingular.
The matrices AA and AC, which may be time-
varying, represent the norm-bounded parameter
uncertainties and satisfy

AA| | M
)=l o
where F' € R*J is a real uncertain matrix with
Lebesgue measurable elements and meets

FTF<I (4)

and M, M,, N are known real constant matrices
of appropriate dimensions which specify how the
uncertain parameters in F' enter the nominal
matrices A and C. The uncertainties AA, AC
are said to be admissible if both (3) and (4) are
satisfied.

Remark 1. The kind of bilinear stochastic discrete-
time systems formulated by (1)-(2) without un-
certainties has been extensively studied in many
papers, see (Bernstein and Haddad, 1987; Skelton
et al., 1991; Yaz, 1992), and is sometimes called
the ”state-dependent noise system”. The param-
eter uncertainty structure as in (3)-(4) has been
widely used in the problems of robust control and
robust filtering of uncertain systems (Wang and
Huang 2000; Wang and Burnham 2001).

In this paper, we adopt the following linear full-
order filter

2k +1) =Gek) + Ky(k) (5)

where (k) stands for the state estimate, G and
K are filter parameters to be designed.

Define the estimation error and the estimation
error covariance, respectively, as follows

e(k) = z(k) — #(k), P(k) := E[e(k)e’ (k)].  (6)
Then, it follows from (1)-(2) and (5)-(6) that



e(k+1)=Gelk)+[(A-G—-KC)

- 2(k) + w(k) — K2(). (7)
Define
7y (k) = [i%] Ap = [A—GA—KC g} ’

Considering (1) and (7), we obtain the following
augmented system

wp(k+1) = (A + AAy + Hp)ap(k) + WEw (k),
l‘f(O) = [.T,‘U To — iIAT()]T. (11)

where wy(k) stands for a zero mean Gaussian
white noise sequence with covariance I.

Now, by taking the expectation of both sides of
(11), we have

X(k+1)=(A; + AA))X (k) (A; + AApT
+ i JiX(k)JL + W (12)

where X (k), J; and Wy are defined in (9)-(10).

We know from (Agniel and Jury, 1971) that,
if the state of the system (11) is mean square
bounded, the steady-state covariance X of the
system (11) defined by X := limy_,o X (k) exists
and satisfies the following discrete-time modified
Lyapunov equation

X = (Ap+AAD) X (Ap+AA)T+Y° JX T+ W
i=1

(13)

Remark 2. It is necessary to discuss the condi-
tions for the existence of the solution to (13). It
follows from (Agniel and Jury, 1971) that, there
exists a unique symmetric positive semi-definite
solution to (13) if and only if

p{(Af + AAf) ® (Af + AAf) + ZJi ® Ji} <1
=1

(14)

where p is the spectral radius and ® is the
Kronecker product. Furthermore, we know from
(Agniel and Jury, 1971) that the condition (14)
is equivalent to the mean square boundedness of
the state of the system (11), and hence (14) will
guarantee the convergence of X (k) in (12) to a
constant value X.

The purpose of this paper is to design the filter
parameters, G and K, such that for all admis-
sible perturbations AA and AC, the following
requirements are met simultaneously: 1) the state
of the augmented system (11) is mean square
bounded; 2) the steady-state error covariance X,
(Xee := limy_, o E[e(k)eT (k)] meets

[Xee]ii S 0—1'27 1= 1v27 o, M. (15)

where [X,.];; means the steady-state variance of
the ith error state and o7 (i = 1,2, ,n) denotes
the prespecified steady-state error estimation vari-
ance constraint on the ith state.

3. MAIN RESULTS AND PROOFS

Let us first recall the some intermediate results
which are introduced in the sequel as lemmas.

Lemma 1. (Wang et al. 1992) Let a positive scalar
e > 0 and a positive definite matrix Q¢ > 0 be
such that NfoNfT < el. Then

(Ap + AANQs(Af + AAHT
<Ap(Qf' —e 'NfNp) TAT +eMpM{ (16)
holds for all perturbations AA and AC.
Lemma 2. For a given negative definite matrix

IT <0 (IT € R**™), there always exists a matrix
L € R™P (p < n) such that I1 + LLT < 0.

For technical convenience, we define the following
additional notation:

.= (Pt - INTN) AT,

i=1

+eMiM)® (17)
C:=C+eMyMId",
r:=¢ (P —e 'NTN)" (& 17, (18)
R:=Z+eM,MJ

+ M MITM MY + CP O, (19)

m
O:.= A\PQC\’T + 8M1M2T + S(W + Z HlleZT
i=1

+eM MM, M. (20)



Now we are in a position to establish our main
results in this paper.

Theorem 1. Assume that there exist a positive
scalar € > 0 such that the following two quadratic
matrix inequalities

AP, AT — P, + APLNT(eI — NP,NT)~!
NP AT + MM

m
+ W+ HPH <0 (21)
i=1

M:=AP,AT — P, —OR™'OT

+ (W + > H;PH +eMM{)T

i=1

m

i=1

m
+W+> HPH] +eMiM] <0 (22)
i=1
respectively have positive definite solutions P; >
0 (NPLNT < eI) and P, > 0. Moreover, Let
L € R (p < n) be an arbitrary matrix
satisfying II + LLT < 0 (see Lemma 2), and
U € RP*P be an arbitrary orthogonal matrix
(i.e., UUT = I). Then, the filter (5) with the
parameters determined by

K=OR '+ LUR™'? G=A4-KC (23

will be such that, for all admissible perturbations
AA and AC, 1) the state of the augmented system
(11) is mean square bounded; 2) the steady-state
error covariance X, meets X.. < Ps.

Proof. Since A is assumed to be nonsingular, ®~!
exists and the definitions (17)-(20) are meaning-
ful. We set Py := Block — diag(Py, P»). Then, by
means of Lemma 1, the definitions (17)-(20), it is
easily verified that

(Ay + AAp)Pr(Ap + AAp)T

—Pr+ Y L gl + Wy
i=1
< Ap(P;t - eT'NfNy)~' AT
+eMM} — P+ JiPpJ! + Wy

i=1

Wy Uyy
=Y = 24

|:\I/'1T2 \IJ22:| ( )
where

Uy = AP —e INTN)1AT — Py

m
+eMiM{ + W + Y H;PH, (25)

i=1

Vy=AP ' = 'NTN)" (4 -G - KO)T
+eMy (M, — KM,y)T
m
+W+> H;PH, (26)
i=1
Uy =GPGT — P+ (A— G - KC)
(Pt = 'NTN)TH A -G - KCO)T
+e(M; — KMs)(M;, — KMy)T + W
+Y H;P\H + KZK". (27)
=1
It follows immediately from the matrix inverse
lemma that
(Pt —e INTN)!
=P, + P NT(el - NPNT)"INP,

and then the inequality (21) implies that ¥1; < 0.

To continue, by resorting to the definitions of fT,
C, II, and the expression G = A— KC in (23), we
can rewrite (27) as follows

Uy = APAT — P+ (W + > H;PHT
i=1
m
+eMMIT(W + Y H;P\H]
=1
=1
+eMiMT — K0T —0KT + KRKT

=APAT — Py + (W + Y HPH

i=1

+eMyMIT(W + Y H;PH]

=1
=1
+eMM! —OR'OT + (KR'/?
_ @R—I/Q)(KRI/Q _ @R_1/2)T
=TI+ (KR'/? —©R'/?)
(KRY? —@R'V/*)T. (28)

Noticing the expression of K = OR~' 4+ LUR™'/?
in (23) and the fact of UUT = I, we obtain

(KR'? —OR™'?)(KR'? —QR~Y*T = LLT.

Thus, it follows from (28), the definition of the
matrix L (L € R"*?) and the inequality (22) that
Wy =T+ LLT < 0.

Moreover, substituting G = 4 — KC into (26)
immediately yields ¥15 = 0. To this end, we arrive
at the conclusion that ¥ < 0. Therefore, it follows
from (24) that



(Af + AAp)Pr(Af + AAp)T

—Pr+ > JiPpJ =W+ <0 (29)

i=1

which leads to (14). As discussed in Remark 2,
we know that the state of the augmented system
(11) is mean square bounded, and there exists a
symmetric positive semi-definite solution to (13).
This proves the first conclusion of this theorem.

Furthermore, subtract (13) from (29) to give
(Af + AAp)(Pr = X)(As + AAf)T = (P = X)

+> TP = X) I =0 <0 (30)
i=1

which indicates again from Remark 2 that P —
X > 0 and therefore X, = [X]22 < [Pfla2 = Po.
This completes the proof of this theorem.

Remark 3. It is clear from Theorem 1 that, if
the quadratic matrix inequalities (21)(22) respec-
tively have positive definite solutions Py, Py (P»
meets [Py < 07, i=1,2,---,n), then the filter
(5) determined by (23) will be such that: 1) the
augmented system (11) is mean square bounded;
and 2) [Xeeli < [P < 02, i = 1,2,--- ,n.
Hence, the design task of variance-constrained
robust filtering for the uncertain bilinear systems
will be accomplished. Note that the existence of
a positive definite solution to (21) implies the

asymptotical Schur stability of the system matrix
A.

Remark 4. In practical applications, we can solve
the quadratic matrix inequalities (QMIs) (21)(22)
subjected to the constraints [P]; < o7 (i =
1,2,---,n), and then obtain the expected fil-
ter parameters immediately from (23). When we
deal with the QMIs (21)(22), the local numeri-
cal searching algorithms suggested in (Beran and
Grigoriadis, 1996; Geromel et al., 1993) are very
effective for a relatively low-order model. The
detailed discussion on the solving algorithms for
QMTI’s can be found in (Saberi et al., 1995).

Remark 5. It should be pointed out that, in the
present design procedure of robust filters for bilin-
ear systems, there exists much ezxplicit freedom,
such as the choices of the the free parameters
L (L satisfies I + LLT < 0), the orthogonal
matrix U, etc. This remaining freedom provides
the possibility for considering more performance
constraints (e.g., the transient requirement and
reliability behavior on the filtering process) which
requires further investigations. Note that in (Li
et al., 1999), a similar freedom on an arbitrary
orthogonal matrix in the parameterization of the
set of filters was successfully employed to mini-
mize the Hy norm of the filtering error transfer

function by solving an unconstrained parametric
optimization problem over the set of filters.

4. A NUMERICAL EXAMPLE

Consider a bilinear discrete-time uncertain stochas-
tic system (1)-(2) with parameters as follows

0.8 0.05
A= [—0.08 —0.5}’ ¢=[10],

0.01 0 0.02 0
Hl_[ 0 0.01}’ HQ_[ 0 0.02]’

0.08
M, = [0_06} , My =01, N=/[0505],
0.01 0
W= [ , 0_01} ., Z =0.0164.

The goal of this example is to design the robust
filter (5) such that 1) the augmented system
(11) is mean square bounded; and 2) the steady-
state error covariance X, meets [X |11 < 0? =
0.5, [Xee]gg S O'% =1.2.

Choosing ¢ = 0.5, we can obtain a positive definite
solution to QMI (21), and subsequently ®, A,C, T,
as follows

p _ [ 0.0410 —0.0006
171 -0.0006 0.0174 |’

&= 0.0335 —0.0032
~ 10.0007 —0.0088 |’

1.2029 —-0.3712
0.0194 —1.8813 |’

[1.4468 —1.4175],
r— [40.2445 26.0997}

A=
C=
26.0997 232.2372

Then, solve the QMI (22) to give

p, | 04271 —0.1484
271 -0.1484 1.1617 |-

It is easily seen that [P]; < o? (i = 1,2) and
the constraints (15) are satisfied. Next, select the
parameter L which meets I + LLT < 0 ( II is
defined in (22)) as L = [0.0800 0.1000]7. Then,
for the two cases of U = 1 and U = —1, we obtain
the corresponding desired filter parameters from
(23), respectively, as follows

Casel: U=1, K= [0.4812} ’

0.9643

[ 0.5068 0.3108 ]
| —1.3758 —0.5144 |

0.4002
0.8631 |’
[ 0.6240 0.1960 ]
| —1.2293 —0.6579 | °

It is not difficult to test that the prescribed
performance objectives are all realized.

G =

Case2: U = -1, K:[

G =




5. CONCLUSIONS

We have studied the robust filtering problem for
uncertain bilinear stochastic discrete-time sys-
tems with estimation error variance constraints.
Attention has focused on the design of a linear
filter, such that for all admissible parameter un-
certainties, the error state of the bilinear stochas-
tic system is mean square bounded, and the the
steady-state variance of the estimation error of
each state is not more than the individual prespec-
ified value. We have established both the existence
conditions and the explicit expression of desired
robust filters, in terms of the positive solutions
to two quadratic matrix inequalities. A numerical
example has been used to show the usefulness of
the theory developed.
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