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Università di Siena, Italy

E-mail: {chesi,vicino}@dii.unisi.it
∗∗ Dipartimento di Sistemi e Informatica
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Abstract: The problem of estimating the domain of attraction (DA) of equilibria
of polynomial systems is considered. Specifically, the computation of the quadratic
Lyapunov function which maximizes the volume of the estimate is addressed. In order
to solve this double non-convex optimization problem, a semi-convex approach based
on Linear Matrix Inequalities (LMIs) is proposed. Moreover, for the case of odd
polynomial systems, a relaxed criterion for obtaining an effective starting candidate
of the optimal quadratic Lyapunov function is presented.
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1. INTRODUCTION

In control systems engineering it is very important
to know the domain of attraction (DA) of an equi-
librium point, that is the set of initial states from
which the system converges to the equilibrium
point itself (Khalil, 1992). Indeed, such problem
arises in both systems analysis and synthesis, in
order to guarantee stable behaviours in a certain
region of the state space. Unfortunately, it is well
known that the DA is a very complicated set, and,
in the most cases, it does not admit an exact ana-
lytic representation (Genesio et al., 1985). Also, a
point-to-point approximation of the set is almost
impossible to obtain, due to the very heavy com-
putational burden such procedure would require.

Therefore, the approximation of the DA via an
estimate of a simpler shape has become a fun-
damental issue since long time (see (Genesio et
al., 1985)). The estimate shape is described by
a Lyapunov function, generally quadratic. For a

given Lyapunov function, the computation of the
optimal estimate of the DA (that is, the largest
estimate of the selected shape) amounts to solving
a non-convex distance problem.

Within this context, a problem of primary im-
portance is the selection of the quadratic Lya-
punov function. In fact, the volume of the opti-
mal estimate strongly depends on the Lyapunov
function chosen for approximating the DA. Obvi-
ously, it would be useful to single out the function
that maximizes the volume, that is the Optimal
Quadratic Lyapunov Function (OQLF). Unfortu-
nately, the computation of the OQLF amounts to
solve a double non-convex optimization problem
(Davison and Kurak, 1971; Michel et al., 1982).

In this paper, a new technique for computing
the OQLF for polynomial systems is presented.
Specifically, we propose a Linear Matrix Inequal-
ity (LMI) approach based on convexification tech-
niques recently developed for dealing with non-
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convex distance problems (Chesi et al., 2001b;
Chesi, 2001; Chesi et al., 2001a). It is shown
how the OQLF can be computed, among all
quadratic Lyapunov functions which ensure sta-
bility of the considered equilibrium point, solving
a semi-convex optimization problem. Moreover,
in order to obtain a good starting point for the
non-convex step, a relaxed criterion is proposed
for odd polynomial systems, based on the vol-
ume maximization of the region where the time
derivative of the Lyapunov function is negative.
It is shown how its solution can be computed
via a one-parameter sequence of LMIs, that is
the computational burden required by the compu-
tation of the DA for a fixed Lyapunov function.
Simulation results show that this relaxed criterion
can provide quite satisfactory candidates for the
OQLF.

The paper is organized as follows. In Section
2 the problem formulation is given. Section 3
presents the semi-convex approach for computing
the OQLF. Section 4 illustrates the relaxed crite-
rion. Section 5 shows some numerical examples.
Finally, Section 6 reports some brief comments.

Notation:

- 0n: origin of R
n;

- R
n
0 : R

n \ {0n};
- In: identity matrix n × n;
- A′: transpose of matrix A;
- A > 0 (A ≥ 0): symmetric positive definite

(semidefinite) matrix A;
- s.t.: subject to.

2. PROBLEM FORMULATION

Without loss of generality, let us consider the
polynomial system defined as

ẋ = Ax + f̃(x),

f̃(x) =
mf∑
i=2

fi(x)
(1)

where x ∈ R
n, A is a Hurwitz matrix, and fi(x)

is a vector of homogeneous forms of degree i. It
follows that the origin is a locally asymptotically
stable equilibrium point.
Let us consider the quadratic Lyapunov function
V (P ;x) = x′Px, where P > 0 is such that the
time derivative

V̇ (P ;x) = 2x′P
(
Ax + f̃(x)

)
(2)

is locally negative definite. We refer to a such
matrix P as feasible P and call P the set of all
feasible P . In particular, P can be characterized
as

P =
{
P = P ′ ∈ R

n×n : PA + A′P = −Q,
Q > 0} .

(3)

Let us define the ellipsoidal set induced by
V (P ;x),

V(P ; c) = {x ∈ R
n : x′Px ≤ c} , (4)

and the negative time derivative region,

D(P ) =
{

x ∈ R
n : V̇ (P ;x) < 0

}
∪ {0}. (5)

Then, V(P ; c) is an estimate of the domain of
attraction of the origin if V(P ; c) ⊆ D(P ). More-
over, the optimal estimate S(P ) for the selected
Lyapunov function is given by

S(P ) = V (P ; γ(P )) ,

γ(P ) = sup {c ∈ R : V(P ; c) ⊆ D(P )} .
(6)

Let us observe that the computation of γ(P )
requires the solution of a non-convex distance
problem. In fact,

γ(P ) = inf
x∈R

n
0

x′Px

s.t. V̇ (P ;x) = 0.
(7)

Finally, let us define the OQLF as the quadratic
Lyapunov function V ∗(P ∗;x) = x′P ∗x that max-
imizes the volume of the DA. Therefore,

P ∗ = argmax
P∈P

δ(P ),

δ(P ) =

√
γn(P )
det(P )

,
(8)

where δ(P ) is the volume of S(P ) up to a scale
factor depending on n.
It turns out that the computation of the OQLF
amounts to solve a double non-convex optimiza-
tion problem. In fact, the volume function δ(P )
can present local maxima in addition to the global
one δ(P ∗). Moreover, each evaluation of δ(P ) re-
quires the computation of γ(P ), that is the solu-
tion of the non-convex distance problem (7).

3. SEMI-CONVEX APPROACH FOR
COMPUTING OQLF

In this section we show how the optimal estimate
S(P ) in (6) can be computed avoiding local min-
ima, and, hence, how the OQLF can be found via
a semi-convex approach. In particular, we exploit
the convexification techniques developed in (Chesi
et al., 2001b; Chesi, 2001; Chesi et al., 2001a),
which allow us to obtain a lower bound of γ(P )
via a one-parameter sequence of LMIs (see also
(Chesi et al., 1997)). A simple test procedure is



available for assessing the tightness of such a lower
bound. Moreover, in some cases tightness can be
established a priori.

3.1 Optimal estimate of the stability region

Let us first observe that problem (7) is equivalent
to the canonical distance problem

γ(P ) = inf
x∈R

n
0

x′Px

s.t. w(P ;x) = 0,
(9)

where w(P ;x) is a locally positive definite poly-
nomial with only terms of even degree, that is
w(P ;x) =

∑m
i=0 w2i(P ;x) for suitable homoge-

neous forms w2i(P ;x) of degree 2i. In fact,

• if (1) is an odd system, that is f̃(x) is
composed only by terms of odd degree, then
the constraint function V̇ (P ;x) is composed
only by terms of even degree, and, hence,
w(P ;x) = −V̇ (P ;x) and m = (mf + 1)/2;

• otherwise, we can define the new constraint
function as w(P ;x) = V̇ (P ;x)V̇ (P ;−x). It
turns out that such polynomial has only
terms of even degree. Hence, m = mf + 1.

Our strategy consists of evaluating the constraint
function w(P ;x) on the sets

B(P ; c) = {x ∈ R
n : x′Px = c} . (10)

In fact, it turns out that

γ(P ) = sup {c > 0 : w(P ;x) > 0
∀x ∈ B(P ; c)} .

(11)

Let us define the homogeneous form of degree 2m

h(P ; c;x) =
m∑

i=0

w2i(P ;x)
(

x′Px

c

)m−i

. (12)

Then, for any c ∈ (0,+∞) we have that

w(P ;x) > 0 ∀x ∈ B(P ; c)
�

h(P ; c;x) > 0 ∀x ∈ R
n
0 .

(13)

From (11) and (13) it follows that γ(P ) can be
computed via a sequence of positivity tests on
homogeneous forms, that is

γ(P ) = sup {c > 0 : h(P ; c;x) > 0
∀x ∈ R

n
0} .

(14)

In order to perform such tests, let us introduce
the Square Matricial Representation (SMR) of
h(P ; c;x):

h(P ; c;x) = x{m}′H(P ; c)x{m} ∀x ∈ R
n, (15)

where the entries of vector x{m} ∈ R
d are a base of

the homogeneous forms of degree m and H(P ; c)
is a suitable matrix. The dimension d is given by

d = σ(n,m) =
(

n + m − 1
n − 1

)
. (16)

It is straightforward to verify that any homo-
geneous form of even degree can be represented
by SMR. Let us observe that, for a fixed base
x{m}, the matrix H(P ; c) introduced in (15) is not
unique. Indeed, let us introduce the following set:

L =
{

L = L′ ∈ R
d×d : x{m}′Lx{m} = 0

∀x ∈ R
n} .

(17)

It turns out that L is a linear space of dimension

dL =
1
2
d(d + 1) − σ(n, 2m). (18)

Let H(P ; c) be any matrix satisfying (15) and
define

H(P ; c;α) = H(P ; c) + L(α), (19)

where α ∈ R
dL is a free parameter vector and

L(α) : R
dL → L is a linear parameterization of

set L. Then, the complete SMR of h(P ; c;x) is
given by

h(P ; c;x) = x{m}′H(P ; c;α)x{m}

∀α ∈ R
dL ∀x ∈ R

n.
(20)

Let us introduce the quantity

cη(P ) = sup {c̃ : η(P ; c) > 0 ∀c ∈ (0, c̃]} ,(21)

where

η(P ; c) = max
t∈R,α∈R

dL
t

s.t. H(P ; c;α) − tId > 0.
(22)

It turns out that

cη(P ) ≤ γ(P ). (23)

Therefore, cη(P ) is a lower bound of γ(P ) and it
can be computed via a one-parameter sequence of
convex LMI optimizations (see (22)).

We point out that tightness of cη(P ) is strictly
related to the property of positive homogeneous
forms to be represented as the sum of squares of
homogeneous forms (Hardy et al., 1988). Indeed,
it has been proved that cη(P ) is tight if and only
if the homogeneous form h(P ; c;x) satisfies this
property for all c ∈ (0, γ(P )) (Chesi, 2001). For
the cases n = 2,∀m and n = 3,m = 2 such
property is guaranteed a priori. For the other
cases, extensive numerical proofs have shown that



the lower bound is almost always tight, except for
ad hoc examples (Chesi et al., 2001a). Moreover,
tightness of cη(P ) can be checked as follows:

cη(P ) = γ(P )
�

∃x ∈ R
n : x{m} ∈ ker [H(P ; cη;αη)] ,

(24)

where αη is the optimizing vector of (22). Such
test can be performed solving a system of degree
equal to the dimension of the found null space
minus one. This means that for regular cases, in
which the null space has dimension one, the test
has an immediate solution. Obviously, if the lower
bound should be discovered to be not tight, a
standard optimization can be performed starting
from the found point. This largely helps to find
the global minimum avoiding local ones (Chesi et
al., 2001a).

3.2 Computation of the OQLF

Exploiting the convexification technique previ-
ously described, γ(P ), and hence δ(P ), can be
computed avoiding local optimal solutions. This
lead us to formulate a semi-convex approach for
computing the OQLF. In fact, let us introduce
a parameterization of set P in (3) through the
function

F (Q) = F (Q)′ : F (Q)A + A′F (Q) = −Q (25)

where Q is any symmetric positive definite matrix.
Moreover, since δ(P ) is not affected by a positive
scale factor on P , that is

δ(P ) = δ(aP ) ∀a ∈ R, a > 0, (26)

and P depends linearly on Q (see (3)), the feasible
set of matrices Q can be reduced by imposing a
scale constraint, for example Q1,1 = 1. Therefore,
let us define the set

Q =
{
Q ∈ R

n×n : Q > 0, Q1,1 = 1
}

(27)

of dimension (n2 + n − 2)/2. Then, problem (8)
can be equivalently rewritten as

P ∗ = F (Q∗),
Q∗ = argmax

Q∈Q
δ (F (Q)) ,

δ (F (Q)) =

√
γn (F (Q))
det (F (Q))

(28)

where, for each Q ∈ Q, γ (F (Q)) is computed
using the technique presented in Section 3.1.
We point out that the complete SMR (20) can
be systematically computed as shown in (Chesi,
2001). Moreover, the function L(α) has to be
computed once only, lightening the computational
burden of problem (28).

4. RELAXED SOLUTION VIA LMIS FOR
ODD SYSTEMS

In this section a relaxed criterion for computing an
initial candidate of the OQLF for odd polynomial
systems is proposed. Our aim is to find, along
with a moderate computational burden, an effec-
tive starting point for initializing the optimization
procedure in (28).
Our criterion consists of finding the matrix P
which maximizes the volume of an ellipsoid of
fixed shape whose border is included in the nega-
tive time derivative region D(P ) in (5). This crite-
rion is based on the idea that, for obtaining a large
optimal estimate of the DA, a good strategy is to
enlarge D(P ), which clearly bounds the optimal
estimate itself. Obviously, this criterion is relaxed
with respect to (28), since the volume is measured
via an a priori selected ellipsoidal shape, instead
of the unknown one defined by the OQLF, and
since we are requiring that only the border of the
ellipsoid is included in D(P ).
Let us select the ellipsoidal shape for measuring
the volume of the region where the time derivative
is negative as V(U ; c), where U ∈ R

n×n is a given
symmetric positive definite matrix. Then, the re-
laxed criterion above described can be formulated
as

max
P∈P

β(P ),

β(P ) = sup {c : B(U ; c) ⊆ D(P )} ,
(29)

where B(U ; c) is the border of the ellipsoid
V(U ; c), whose volume is given by√

β(P )n

det(U)
.

In order to check the inclusion of B(U ; c) in D(P ),
let us introduce the homogeneous form of degree
2m

g(U ;P ; c;x) =
m∑

i=0

w2i(P ;x)
(

x′Ux

c

)m−i

. (30)

Then, for any P > 0 and c ∈ (0,+∞) we have
that

B(U ; c) ⊆ D(P )
�

w(P ;x) > 0 ∀x ∈ B(U ; c)
�

g(U ;P ; c;x) > 0 ∀x ∈ R
n
0 .

(31)

Therefore, our criterion amounts to maximizing c
subject to the following condition:

∃P ∈ P : g(U ;P ; c;x) > 0 ∀x ∈ R
n
0 . (32)



Let us introduce the complete SMR of g(U ;P ; c;x),

g(U ;P ; c;x) = x{m}′G(U ;P ; c;α)x{m}

∀α ∈ R
dL ∀x ∈ R

n.
(33)

Following the strategy described in Section 3.1 for
the computation of γ(P ), we relax condition (32)
substituting it with

∃P ∈ P, α ∈ R
dL : G(U ;P ; c;α) > 0. (34)

Let us observe that condition (34) can be checked
with one convex LMI optimization. Indeed, let us
introduce the function

µ(U ; c) = max
Q∈Rn×n,t∈R,α∈R

dL
t

s.t.
{

G(U ;F (Q); c;α) − tId > 0
Q ∈ Q

(35)

where G(U ;F (Q); c;α) depends linearly on the
unknowns Q and α. Then, condition (34) is sat-
isfied if and only if µ(U ; c) > 0. Hence, let us
introduce the quantity

cµ = sup {c : µ(U ; c) > 0} (36)

and let Q̂ be the optimizing matrix Q of problem
(35) for c = cµ. We define the solution of our
relaxed criterion as

P̂ = F (Q̂). (37)

Let us observe that P̂ can be computed via a one-
parameter sequence of convex LMI optimizations,
that is about the same computational burden re-
quired by each evaluation of the volume function
δ(P ). More specifically, P̂ requires the optimiza-
tions (35) in dL + n(n + 1)/2 parameters, and
δ(P ) requires the optimizations (22) in dL + 1
parameters.

5. EXAMPLES

In this section we present some examples of the
proposed technique. More specifically, the matri-
ces P̂ and P ∗ and the corresponding optimal DA
estimates are computed. Matrix P̂ is computed
as in (35)-(37) with U = F (In). Matrix P∗ is
calculated solving (28) from the initial solution
Q = −P̂A − A′P̂ with a simplex algorithm that
evaluates the function δ (F (Q)) using the convex-
ification approach described in Section 3.1.
Moreover, we have iterated the computation of
P̂ setting U , at each step, equal to the matrix
P̂ obtained at the previous step. The matrix so
obtained after i iterations has been denoted by

P̂ (i).
The following systems have been considered:

(S1)

{
ẋ1 = x2,

ẋ2 = −2x1 − 3x2 + x2
1x2

(S2)

{
ẋ1 = x2,

ẋ2 = −4x1 − 5x2 − x3
1 + x3

2

(S3)

{
ẋ1 = 4x2 + x3

1,

ẋ2 = −12x1 − 16x2 − 4x3
2

(S4)

{
ẋ1 = −x1 − 2x2 + x2

1x2,

ẋ2 = x1 − x2 − x3
2

(S5)

{
ẋ1 = −2x1 + x2 + x3

1 + x5
2,

ẋ2 = −x1 − x2 + x2
1x

3
2

(S6)




ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −4x1 − 3x2 − 2x3 + 0.1x3
1

+x2
1x2 + x2

1x3

(S7)




ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −4x1 − 3x2 − 2x3 + x2
1x2 + x2

1x3

For all these systems the lower bound cη(P ) is
tight a priori, being n = 2 in systems S1–S5 and
n = 3,m = 2 in S6–S7 (see Section 3.1), and,
hence, γ(P ) = cη(P ).
Table 1 shows the results obtained for these sys-
tems. The quantity n∗ denotes the number of

system δ(P̂ ) δ(P ∗) δ(P̂ (i))

S1 8.35 10.21
n∗ = 239

10.21
i = 16

S2 1.63 2.99.
n∗ = 218

2.35
i = 7

S3 7.31 8.69
n∗ = 184

7.97
i = 7

S4 3.29 7.00
n∗ = 215

6.83
i = 4

S5 1.24 1.97
n∗ = 125

1.88
i = 4

S6 6.02 7.84

n∗ = 378

7.68

i = 10
S7 6.07 7.65

n∗ = 416
7.68
i = 11

Table 1. Volumes provided by P̂ , P ∗ and
P̂ (i) for systems S1–S7.

evaluations of the volume function δ(P ) required
for computing P ∗ in (28).
As we can see, the relaxed criterion provides a
good trade-off of accuracy and computational bur-
den. In fact, few iterations yield a quite good
approximation P̂ (i) of P ∗ in many cases (really,
in system S1 the relaxed criterion provides the
OQLF in 16 iterations only). Such approximation
P̂ (i) can be used like initialization of problem (28)
for computing P ∗, since it is expected that a bet-
ter starting solution avoids local maxima. Indeed,



let us consider system S7. The found P ∗ (416
evaluations of function δ(P )) is a local maxima,
as shown by P̂ (11) (11 computations of cµ and
11 evaluations of δ(P )), which provides a larger
volume. Initializing (28) with P̂ (11) we find the
global maximum at 7.78.
As a final remark, we would like to underline the
importance of using the convex method described
in Section 3.1 for evaluating function δ (F (Q))
in (28). In fact, problem (7) can present local
minima, especially if the Lyapunov function is
close to the OQLF, as shown in Fig. 1 where the
optimal estimates of the DA provided by P̂ and
P ∗ are illustrated. It is obvious that, if a local
minimum is found in (7) instead of the global one,
the computation of P ∗ totally fails.
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Fig. 1. Systems S1–S5. Optimal estimates of
the domain of attraction given by P ∗ (solid
line) and P̂ (dotted line), and constraint set
V̇ (P ∗;x) = 0 (thick solid line).

6. CONCLUSION

A semi-convex approach for computing the quadratic
Lyapunov function which maximizes the volume

of the domain of attraction estimate for poly-
nomial systems, has been presented. For a fixed
Lyapunov function, the proposed technique allows
one to compute, via a sequence of Linear Matrix
Inequalities (LMIs), the optimal estimate avoiding
local minima. This is a necessary step of any pro-
cedure for computing optimal quadratic Lyapunov
functions (OQLFs). Moreover, a relaxed criterion
has been presented for odd polynomial systems,
which provides candidates for the OQLF via a
one-parameter sequence of convex LMI optimiza-
tions. Simulation results have shown that these
candidates are very effective starting points for
the computation of the OQLF.
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