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Abstract: The considered problem is of varying the thickness of a beam along its
length in order to produce an optimal design which reduces the structural noise
generated into an air filled cavity by the beam vibration. The design parameter is
the thickness of that beam. We consider two models which differ only in taking or
not into account the back-pressure effects of the air on the vibration. We provide
necessary optimality conditions which guide the optimal beam design.
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1. INTRODUCTION

We are interested in reducing the noise produced
by the vibration of a beam in a given t w o dimen-
sional bounded domain where the beam is part of
the boundary. The control parameter is the thick-
ness of the beam along its length. We formulate
tw oshape optimization problems related to the
reduction of this structural noise. An existence
result is, then, pro vided under a regularization
assumption. Necessary optimality conditions are
computed using techniques of differentiation of a
min and a min-max with respect to a parameter.
This allows us to awid differentiating the state
functions. The first problem will be to modify the
spectrum in such a w ayas to avoid the audible
frequency band. This problem is reduced, due to
a monotonicity property of the spectrum, to the
maximization and, then, the differentiation of the
first eigenvalue with respect to the thikness. We
note that several authors (Zolésio, 1979; Zolésio,
1981; Myslinski, 1985) have studied the differen-
tiation properties of the first eigen valueof forth

order elliptic operators when the eigenvalue is not
simple. Our contribution, on this issue, is to give
an explicit expression of any directional derivative
by proving the existence of a minimizer in the
eigen vector subspaceX (0).

The second problem will be to minimize the acous-
tic radiated energy
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where e designates the control which is, in our
case, the thickness function, p is the air pressure
and wu is the fluid velocity, p is the mass density
at rest and c is the w avevelocity [this is the
speed of sound in the case of sound w aves|We
have indexed by e those functions which depend
on the thickness variations. If w e assume that
the sound pressure levels remain belo w150 dB,
the acoustic dynamics are modeled by the w ave
equation involving either the acoustic velocity
potential ¢ or the pressure p:



9¢
V¢ = —u and p—pat
See H.T. Banks, et al. (Banks et al., 1996).
We will prove that the acoustic energy has, not
only, directional derivatives like the first eigen-
value but also a gradient associated to the thick-
ness variations.

2. THE SYSTEM MODEL

Consider a beam of a constant unit width, of
length L (1 << L) and of a non-uniform thickness.
The transverse displacement of such a beam is de-
scribed by a one dimensional hyperbolic equation.
The location of the cross section of the beam is
determined by the coordinate x. Denote by I(x)
the moment of inertia of the beam cross-section
located at x with respect to the neutral axis; E
designates the Young’s modulus of the material.
EI(z) is the bending stiffness (or the flexural
rigidity) and I'(z), respectively e(z), are the cross-
sectional area and the thickness of the beam. The
cross-sectional area and the moment of inertia
are respectively given by I'(x) = e(z) and I(z) =
e(x)3. Thus, the variation of the thickness has an
effect on both these functions which are present in
the beam equation. This allows us to modify the

vibration of the beam to satisfy our needs. Let

e w(x,t) be the transverse displacement of the
cross-section at the time ¢,

e () be a bounded domain of R? with a smooth
boundary I' = 092 (Q will represent the
cavity) .

The boundary r= FO U Fl, 1nt(F0) N 1nt(F1) = @,
where 'y will designate the reference position of
the beam.

The first model: In the context of reducing noise
in relatively small cavities (inside automobiles for
example), it is reasonable to neglect the back-
pressure effects of the air. Therefore the coupled
system modeling the transverse beam deflection
and the air velocity potential is:
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with the following initial conditions:

w(z,0) = wy; Sw(z,0) =w; (5)
¢(x,0) = do; Ord(w,0) = ¢ (6)

Assuming the beam is fixed at both ends, then
the boundary conditions associated to the beam
equation are:

ow

w(0,t) = 8_m(0’t) =0 (7)
w(L,t) = g—:(L,t) =0 (8)

The Second model: When the effect of the vari-
ation of the air pressure on the beam vibration
must be taken into account, one has to add in the

0
beam equation the external force pa—(f. Therefore,

equation (4) must be replaced by

vele) s + 5 (B0 5 ) =00
— on FO (9)

The coupled system is then described by equations
(1)-(3) and (9) with the initial conditions (5)-(6)
and the boundary conditions corresponding to the
clamped beam (7)-(8).

For our control problem we will consider the two
models and give a different approach for each
one. For the first model, we will act on the first
eigenvalue which will effectively move the entire
spectrum due to the spectrum monotonicity prop-
erty. However for the second model, we will focus
on minimizing the acoustic radiated energy.

In what follows, the thickness e will be assumed
to be bounded:

Assumption 2.1. Assume that e € L*°(0, L) with

0<eg<e(x)<e forae ze€l0,L]

This implies that
0<Ip<I(x) <I;, where Ip=c¢j/3, I, =¢}/3.

3. THE FIRST APPROACH
3.1 Spectral Analysis

Assumption 3.1. We assume the excitation is har-
monic in time with the frequency A: g¢(t) =
exp (iAt) g.

We look for solutions which are harmonic with the
same frequency as the excitation:

o(t) = exp (iIAt) p; w(t) = exp (iAt) v.

Substituting ¢, ¢ and w in the equations (1)-(4),
we obtain
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—ANye(z)v + d—2[EI($)@] =g on I'y(13)
dx? dx? 0
Notice that we can restrict our study to equation
(13). Therefore, by considering a particular solu-
tion of (13), the corresponding eigenvalue problem

can be derived:

Aw=kBo (k=) (14)
where
d2 d2w def
Acw = ] [ I(x)w] ; Be = ve(x)Idr,

and Idp, is the identity operator in L?(I'y).

Properties 3.1. For any e(.) € L>®(Ty) satistying
assumption 2.1, the linear operators A, and B,
have the following properties:

(i) Ae and B, are self-adjoint.

(ii) A, positive definite.
(ii) (€/n)r, = 0,¥€ € H3(Ty) implies n = 0.
(iv) There exists a constant ap such that

(Bev/v)r, < ap(Aev,v)r,

where (., .)r, and (. /.)r, denote respectively the
duality product between H ?(Ty) and HZ(To)
and the L?(Ty) inner product.

Proposition 3.1. The eigenvalues associated to

(14) are real, positive. Moreover, if k1, ko, - -+ , kp, - - -

are the distinct values of the eigenvalues, and if we
denote by &; the eigenvector space associated to
k;, we have the following characterization:

km+1 = min 7<A6U’U>F°
S

. meN (15
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Proof. For a proof of this result one can refer to
chapter 3 in either (Weinberger, 1974) or (Chen
and Zhou, 1993).

3.2 Shape sensitivity analysis for the first eigenvalue

To compute the derivative of the first eigenvalue
with respect to the thickness, we will use a result
of differentiation of a min with respect to a pa-
rameter, see (Delfour and Zolésio, 2001). Assume
ecint{f € L>®(0,L) s.t. eg < f(z) <e; ae. }
and consider a direction of perturbation, h, of the
thickness function e. Denoting

A(S) = Ae+sh7 B(S) = Be+sh

the functional will be, for a suitable sq,

F:]0,s0] x H2(0,L) — R

{(A(s)v, v)r,
(B(s)v/v)r,

For each s € [0, s¢], introduce

(s,v) —

f(s) = inf{F(s,x):z € X} =k(s)

X(s) Y (v e X : F(s,2) = f(s)).

Proposition 3.2. For any direction h € L*°(0, L),

the mapping s — ki (s) = k1 (e + sh) has a semi-
derivative at s = 0. More precisely, there exists
v € X(0) such that (B.v/7)r, = 1 and

L 25
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Proof. The direction h being given, there exists
so > 0 small enough so that (e + sh) satisfies
assumption 2.1 for any s € [0,s0]. X(s) # 0
for any s € [0, so] since properties 3.1 are still
satisfied.

For any v € HZ(0,L) \ {0}, the mapping

(A(s)v, v)r,

(B /o),

is differentiable in [0, so]. Indeed, using the dom-
inated convergence theorem (Rudin, 1966), we

easily prove the differentiability of s — (A(s)v/v)
and s — (B(s)v,v) and we obtain

s — F(s,v) =

0, (A(s)v, v) = /OLE(e+sh)2h <%>2 o

L
0s(B(s)v,v) = / v hv? dz.
0
Then, let Tx be the weak topology associated with
HZ(0,L) and consider a sequence {s,} CJO0, so]
which converges to 0.
To any s,,, we associate the eigenvalue

ki(sp) = 1121(f )F(sn,v)
vEHF(0,L

and an eigenvector v (s,,) satisfying:
A(sn)vi(sn) = k1(sn)B(sn)vi(sn) (16)
The vector vy (s,) can be chosen such that
(B(sn)v1(sn)/v1(sn))r, =1
Then using equation (16) we prove that for some

constant ¢, we have

2 . 2
v1(s <ec inf v s.t. vz =1
Iontsallfy <o ,_nt (i, st e =1)

All this implies that there exists a subsequence,
still denoted {s,}, k1 and v° € H3(0, L) such that

when n goes to infinity k1 (s,) — k1 and
v1(s,) = v° weakly in HZ (0, L)

In fact v° belongs to X (0) which means that it is
an eigenvector associated to ki (0) (= k1(e)). The



weak formulation of (16) converges to a similar
expression where s, ki(s,) and wv;(s,) are re-
placed respectively by 0, k; and v°. This shows
that k; is the first eigenvalue for s = 0 and that
v® € X(0). Obviously we have (B(0)v°,v%)p, = 1.
The continuity of the mapping (s,v) — 9sF(s,v)
holds when HZ([p) is endowed with its strong
topology. Finally and according to (Delfour and
Zolésio, 2001) we deduce the desired result.

3.8 Euwistence and necessary optimality condition

It is known, see (Baranger and Temam, 1975),
that there is no existence result corresponding
to the maximization of the first eigenvalue only
under the boundedness assumption 2.1. A regular-
ization term must be added. So the cost functional
will be:

RIPNIE
max {k(0) = Sllelfiney ] (D)

where € > 0 is arbitrarily small and U,q = {e €
H'([p);0 < ep <e(z) < e in Lo}

Proposition 3.3. The maximization problem (17)
has at least one solution.

The proof is based on classical boundedness argu-
ments.

Proposition 3.4. Let &(.) be a solution of (17). For
any h € H'(I'g), we have

€
Qb (&)~ S(E /M)y <O (1)
where ((./.))m1(r,) denotes the inner product in

HY(To).

This result is an immediate consequence of propo-
sition 3.2.

4. SECOND APPROACH

In this section, we take into account the air back-
pressure effects on the beam vibration.
Assuming the beam is clamped at both ends, a
weak formulation of our system is:

f)(Hl)/ H1 +/QpV¢> Vfdl‘dy
0%w 0%w 8%y

+7(e(95)W, 1, + ny EI(UC)W@

/ 8tn— fdm—/rogndm

This formulation suggests introducing the spaces
H = L*(Q) x L*(Ty) and V = H*(Q) x H3(Ty)
where L?(Q) = {¢ € L*(), [, £dwdy = 0} and
H'(Q) = H'Y(Q) N L2(R). The inner product
associated to each space: ® = (¢, w), ¥ = (§,n)

(@, ¥)m = (/) + (w/n)r,
0*w 0%

(@, B)y = (V6/VE) + (5 /=,

where ( /) is the inner product in L*(Q); | |, | Ir,
will denote respectively the norm in L*(Q2) and
L2(To).

Theorem 4.1. Assume g € L?(0,T; L?(T'y)),
D9 = (Po,wp) € V and ®1 = (¢1,w1) € H. There
exists a unique ® = (¢,w) € L*(0,T;V) solution

d®
of (1)-(3) and (9) such that — 0 € L*(0,T; H).
For a proof one can refer to (Lions, 1971).

4.1 Acoustic energy minimization

We are interested in minimizing the radiated
acoustic energy in the cavity Q with respect to the
thickness. Expressing the air pressure and velocity
in terms of the potential velocity field, the acoustic
energy, for a given thickness e(), becomes

() difp/ / 1 8¢e

We have the following existence result.

2 + |V, |? dvdt

Proposition 4.1. For any arbitrarily small ¢ > 0,
there exists € solution of

. 8 2
in (@) + glellinwn} (19

4.2 Shape sensitivity analysis

To obtain information on the way to modify the
thickness in order to minimize the acoustic energy,
we need to compute the derivative of the cost
functional with respect to the thickness. For that
purpose we introduce the Lagrangian £ associated
to our cost functional. If we denote respectively by
W, Hy and Hp the spaces

((6.w) € L2(0,T},V) / (22, D

dt’ dt
{(¢,w) € W/ (¢, w)(0) = @0, (0r¢, Ow)(0) = 1}
and

{&m) e W /&(T)
Then

L(e; (¢, w); (&,m) = J(¢) + Lie; (¢, w); (§,m))

—-) € L*([0,T], H)},

= 0&(T) = n(T) = 9y(T') = 0}.



where L : Hy x Hr — R, L(e; (¢, w); (€, 7))

0? 0?
= [ 22 e + e S e

+/OTp(vqb/Vf) +E <I( )?) 120/212)“ “

According to the previous notations, we have

Lemma 4.1. The acoustic energy associated to a
given thickness function e(.) has the following
expression

J(pe) = —inf — sup Lle;(¢,w); (& n)) (21)

(¢,w)€Ho (¢,n)eH

Assume e € int{f € L*(0,L) s.t. eg < f(z) <
e1 a.e. } and let h be a direction of perturbation
and sgp > 0 be small enough such that ey < e +
sh < ey, Vs € [0, sg]. Define the mapping

jle+sh) = e

inf  sup  L(e+ sh; (¢, w); (§,m)  (22)
(¢,w)€Ho (¢,n)eHy
Therefore, as formulated, we have a saddle point
to differentiate with respect to a parameter. To do
so, the mapping

)Y e+ shs)

must satisfy hypothesis of a result due originally
to R. Correa and A. Seeger (Correa and Seeger,
1985). Let the real number so > 0, the sets X and
Y and the functional F : [0,s9] x X XY — R be
given. For each s € [0, so] define

s) = inf sup F'(s;x,
f(s) Jf sup (s;2,9)

s — L(s

and the sets

X(s) ={z" € X: SlelgF(S;ws,y) = f(s)}

Y(s,z) ={y° €Y : F(s;x,y°) = sup F(s;z,y)}

yey
Similarly, define

I(s) = sup 1nf F(s;z,y)
yey 2€X

and the sets Y (s) and X (s,y). Finally let
S(s) ={(z,y) € X XY : f(s) = F(s; 2, y) = (s)}
The cited result can be applied, in our case, with

F=L,X=H,,Y =Hy, and f(s) = j(e+ sh)
Lemma 4.2. For any s € [0, so], S(s) # 0.
For a saddle-point existence hypothesis, see I.

Ekeland and R. Temam (Ekeland and Temamn,
1976).

Remark 4.1. If ((¢,w),(£,7)) € Ho x Hr is a
saddle point of £ if and only if V(&,n) € Hy and
V(¢,W) S Wo.

Lis: (6,1), (€,)) = 0 (23)
_ T
L) G+ [ i = 9
T
[ & [ v @)

where Wy = {(¢,w) € W /9p(0) = 0:¢(0) =
w(0) = 0,w(0) = 0}.

The first identity is the state system (1)-(3) and
(9). The second one is the associated adjoint
system which can be rewritten as follows

1 0%¢

S5 —~AE=24¢ in 0 (26)
€ 0i
g—f; =0 on I'; (28)
el Zd+ 2 (B03l) e
-I-p% =0 on Iy

with the following boundary conditions satisfied
by 7

on

7(0,t) = —(0,t) =0 (30)

o
AL = D11 =0 (1)

Lemma 4.3. For any (¢,w) € Hy and (§,n) € Hy,
the mapping s — L(s; (¢, w), (§,n)) is differen-
tiable on [0, so] and we have

8w

T
0.L(5:(6.0). (€.1)) = | 2@ g e
T 2w 2
+/0 E ((e+sh)2(:v)h( )‘f;xz,/gx2)F dt

Moreover the mapping

(57 (¢; ’IU), (67 77)) — asﬁ(s’ (¢; ’IU), (67 77))

is continuous in the strong topology of W.

Lemma 4.4. For any sequence {s,}, s, — 0,
there exists ((¢°,w?), (€°,17°)) € Hy x Hy and a
subsequence (still denoted {s,}) such that

((lsn: wn) — (¢07 wO)
strongly in W

(&nynn) — (507770)
and ((¢°,w"), (€°,7°)) is a saddle point for s = 0.



Proof. For each s,,, we associate
((¢n, wn), (€n,mn)) € Ho x Hyp solution of

L(s; (¢n,wn), (§,m) =0 V(&) € Hr

T
L(s; (6, w), (€ns ) + /0 (o) 1)1y =

T 8 " 8
/0 . g; 8_f>_p(v¢n/v¢)dtw¢,w>ewo

Since (e + sph) converges strongly, in L*°(Iy), to
e, we can prove using the same arguments as in
the proof of the existence result 4.1 that there
exists a subsequence, still denoted (¢, w, ), which
converges strongly, in Hy, to (¢°,w®). The fact
that (¢,,, w,,) is bounded in Hy implies the bound-
edness of (&,,n,) in Hyp. Hence, the weak con-
vergence, in Hr, to (£°,7°) is obtained. Also the
strong convergence can be derived. Using these
convergence properties, it is easy to prove that
((#°,wY), (£%,1°)) is a saddle point for s = 0.

The lemmas 4.2 to 4.4 allow us to justify the
following differentiation result. We denote by G.,
the L!(T) function defined by

T ow o7 . 02w %))
et = [ |5 5+ PO g g
where ((¢, ), (£,7)) € Ho x Hy solution of (23)-
(25).

Proposition 4.2. The mapping s — j(e+sh) has
a derivative at s = 0 denoted dj(e; h):

dj(e;h) = Gz h(x) dxdt (32)

To

Now, we are able to formulate a necessary op-
timality condition for the minimization problem
(19).

Proposition 4.3. Assume € to be a solution of
(19). Then

Ge(x) h(z) dz + (e, h)) = 0, Yh € H* (L)
B (33)

Conclusion: The expression for the directional
derivatives with respect to the design parameter,
namely the thickness of the beam, of the first
eigenvalue of problem (14) and of the radiated
acoustic energy (21) shows that, from the design
point of view, the two approaches considered seem
to have equivalent structures.
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