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1. INTRODUCTION

Over the last two decades, the basic research on
fault diagnosis, fault detection and isolation (FDI)
at general control systems have received much
attentions. The model-based approach is now re-
cognized as an important and efficient method
(Frank et al., 2000), the trends in extending that
methodology to nonlinear control systems today
are practically realized at aerospace engineering
by most modern motto in Computer Science (Ku-
rakin, 1999; Somov, 2001b):

from Artificial Intelligence to Natural Tricks.

? This work was supported by the RKA and Russian

Foundation for Basic Research (RFBR), grant 00-01-00293.

During the recent 30 years authors have been
accumulated a substantial experience (Natural
Tricks) in designing the spacecraft (SC) attitude
control systems (ACSs) with high fault-tolerance,
survivability and autonomy at the expense of
functional redundancy. The dynamic requirements
to the ACS for the communication, navigation and
geodesic SCs are:
• continuous precision 3-axis orientation of

the SC body by only minimum number of
measurements under possible ACS on-board
equipment failures, and also in executing a
SC orbit correction;

• possibility of the SC body re-orientation
for its orbit correction, as well autonomous
control of the solar array panels (SAPs)
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and each high-gain receiving-transmitting
antenna (RTA) with respect to the SC body;

• robustness to variations of the SC inertial
and rigidity characteristics under minimum
mass, size and power expenditures.

For the remote sensing SC these requirements
are expressed by rapid angular manoeuvering and
a spatial compensating motion with a variable
vector of angular rate, there are the need:
• to orient the telescope line-of-sight to a pre-

determined part of the Earth surface with the
scan in designated direction;

• to compensate an image motion at the on-
board optical telescope focal plane.

Increased requirements to such information satel-
lites (lifetime up to 10 years, exactness of spatial
rotation manoeuvers with the effective damping
of the SC flexible construction oscillations, fault
tolerance, reliability as well as to reasonable mass,
size and energy characteristics) have motivated
intensive development the moment gyrocomplex
(MGC) based on excessive number of reaction
wheels (RWs), gyrowhells (GWs) and gyrodines
(GDs) — single-gimbal control moment gyros.
Mathematical aspects of the spacecraft nonlinear
gyromoment attitude control were represented in
a number of research works (Junkins and Turner,
1986). The recent results (Schaub et al., 1998) are
based on methods of Lyapunov functions, whereas
the exact feedback linearization (EFL) technique
also was applied to this problem. This paper sug-
gests original results on nonlinear methods and
software for modeling, dynamic research, design
and simulation of the SC gyromoment robust fault
tolerant attitude control systems.

2. STATEMENT OF GENERAL PROBLEM

Let be given the nonlinear generalized controlled
object O for a time t ∈ Tt0 ≡ [t0,∞)
D+x(t) = F(x(t),u,p(t, x), γf

ν (t)), x(t0) = x0; (1)
y(t) = ψo(x(t), γf

ν (t));

zo(t) = φo(x(t), y(t),p(t, x)),
(2)

where x(t) ∈ H ⊂ Rnν ; x0 ∈ H0 ⊆ H; y(t) ∈
Rrs

ν is an output vector for measurement and
diagnosis of object’s state, and zo(t) ∈ Rrf

ν is
a vector for description of its failure conditions;
u = {uj} ∈ U ⊂ Rrc

ν is a control vector, and
p(t, x) ∈ P is the vector-function of disturbances
in class P; D+ is symbol of a right derivative with
respect to time, and γf

ν (t) ∈ Bm under Bm ≡
B×B · · ·×B, B = {0, 1} is vector of logic variables,
which are outputs of a ”fault’s” asynchronous
logic automaton (ALA) Af for its time ν ∈ N0 ≡
[0, 1, 2, . . .),

γf
ν = δf (κf

ν , l
f
ν ); κf

ν+1 =λf (κf
ν , l

f
ν ), κf

0 =κf (0), (3)

with memory, where logic vectors of object’s state
κf

ν = κf (ν) and input lfν = lf (ν) = gf (zo(tfν )),

which are used for representing fault occurrences
and damage development depending on the au-
tomaton time ν, bound up with the continuous
time as t = tfν + (τf − tfν ); τf ∈ τf

ν ≡ [tfν , t
f
ν+1),

ν ∈ N0. Moreover, lfν (t) = const∀t ∈ τf
ν and

change of the logic vector γf
ν in general case leads

to variation of dimensions for vectors x(t) and y(t)
under mappings in time moments t = tfν :

x(tfν+)=Px
ν (x(tfν−)); y(tfν+)=Py

ν (y(tfν−)).

Let Tu,Tq ≤ Tu and Tr ≥ Tu are fixed sam-
pling periods of control, state measurement and
the control reconfiguration, moreover, multiplicity
conditions must be satisfied for these periods, and

xk = x(tk); tk = kTu, ts = sTq, tµ = µTr;

xf
k = FTu(xs); xf

µ = FTr (xk),
where xf

k is the value of the variable xs measured
with the sampling period Tq, which is filtered out
at the time t = tk; FTy (·) is the digital filtering
operator with the sampling period Ty, y = u, r.

Let be also given subsystem of discrete measure-
ment of the object state and digital filtering:
• for diagnostics of the object O

yd
s = ψd(ys); zdf

k = FTu
(yd

s), k, s ∈ N0; (4)

• for forming the control and its reconfiguration
yu

s = ψu(ys); yf
k = FTu

(yu
s );

zf
µ = FTr

(zdf
k ), µ, k, s ∈ N0.

(5)

Principal problems are contained in synthesis of:
• the synchronous logic automaton (SLA) Ad

with memory for the structural state diagnosis

γd
k =δd(κd

k, l
d
k); κd

k+1 =λd(κd
k, l

d
k), κd

0 =κd(t0), (6)

with logic vectors of state κd
k, input ldk = gd(zdf

k )
and output γd

k ;
• the SLA Ar, also with memory, for description
of damage’s block-keeping and reconfiguration

γr
µ =δr(κr

µ, l
r
µ); κr

µ+1 =λr(κr
µ, l

r
µ), κr

0 =κr(t0), (7)

with logic vectors of state κr
µ, input lrµ =

gr(zf
µ, γ

df
µ ), where γdf

µ =FTr
(γd

k), and output γr
µ;

• the nonlinear control law (NCL) with its recon-
figurations due to the SLA Ar routine

uk = U(x̂e k, yf
e k, yo k, γ

r
µ);

x̂e k+1 = F̂e(x̂e k, yf
e k, y

o
k,uk, γ

d
k , γ

r
µ),

x̂e 0 = x̂e(t0); k, µ ∈ N0,

(8)

where yf
e k = FTu

(ψu
e (ye s)); ye s = ψo

e(xe s, γ
d
k),

and xe s = xe(ts) ∈ Rne
µ is the state vector of a

simplified discrete object’s model

xe s+1 =Fe(xe s,uk, γ
d
k , γ

r
µ), xe 0 = xe(t0), (9)

and x̂e k =x̂e(tk)∈Rne
µ is its estimation; ne

µ≤n=
max{nν}, and yo

k is a programmed vector.

Feedback loops (4)–(9) are intended for fault-
tolerant control of the object (1)–(3).



3. SYNTHESIS OF FEEDBACK CONTROL

Applied general approach to synthesis of nonlin-
ear control systems (NCS) with a partial mea-
surement of their state is presented when their
structural state is known. Moreover, the method
of vector Lyapunov functions (VLF), which has a
strong mathematical basis for analysis of stability
and other dynamical properties of various nonlin-
ear interconnected systems with the discontinuous
right-hand side, is used in cooperation with the
EFL technique (Isidori, 1989).

Let there be given a nonlinear controlled object
D+x(t) =F(x(t),u,p(t, x)); x(t0) = x0; t ∈ Tt0 ,

where x(t)∈H⊂Rn is a state vector with an initial
condition x0∈H0⊆H; u={uj}∈U⊂Rr is a con-
trol vector, and p(t, x)∈P is the vector-function
of disturbances. Let some vector norms ρ(x)∈R l

+

and ρ0(x0) ∈ R l0
+ also be given. For any NCL

u=U(x) the closed-loop system has the form

D+x(t) = X (t, x); x(t0) = x0, (10)

where X (t, x) =F(x,U(x),p(·)),X : Tt0 × H→H
is a discontinuous operator. Assuming the exis-
tence and the non-local continuability of the right-
sided solution x(t) ≡ x(t0, x0; t) of the system (10)
for its extended definition in the aspect of physics,
the most important dynamic property is obtained,
that is ρρ0-exponential invariance of the solution
x(t)=0 under the desired γ ∈ R l

+:

(∃α ∈ R+) (∃B ∈B
l×l0
+ ) (∃δ ∈ Rl0

+) (∀ρ0(x0) < δ)

ρ(x(t)) ≤ γ+B ρ0(x0) exp(−α(t− t0)) ∀t ∈ Tt0 .

For the VLF υ : H → R k

+ with the components
υs(x) ≥ 0, υs(0) = 0, s = 1 : k and the norm
‖υ(x)‖=max{υs(x), s=1:k}, defined are the sca-
lar function υ(x)=max{υs(x), s=1: lk, 1≤ lk≤k}
and a lower right derivative with respect to (10):

υ′(x) = lim
δt→0+

{(υ(x + δtX (t, x))− υ(x))/δt}.

Theorem. Let there exist the VLF υ, so that:
1) (∃a ∈ Rl

+) (∀x ∈ H) ρ(x) ≤ a · υ(x);
2) (∃b ∈ Rl0

+) (∀x0 ∈ H0) ‖υ(x0)‖ ≤ 〈b, ρ0(x0)〉;
3) ∃γc ∈ R k

+ and a function ϕγ(·) exists so that
γc ≤ ϕγ(a, γ);

4) ∀ (t, x) ∈ (Tt0×H) the conditions are satisfied:
a) υ′γ(x)≤̇fc (t, υγ(x)) ≡ Pυγ(x) + f̃c(t, υγ(x));
b) Hurwitz condition for the positive matrix P;
c) Waz̆ewski condition on quasi-monotonicity

for the function f̃c(t, y);
d) Carateodory condition for the function f̃c(t, y),

bounded in each domain Ωr
c = (Tt0 × Sr

c ),
where r > 0 and Sr

c = {y ∈ Rk : ‖y‖E < r};
e) (̃fc(t, y)/‖y‖)

t∈Tt0=⇒ 0 for y → 0 uniformly
with respect to time t ∈ Tt0 ,

where υγ = υ−γc. Then solution x(t) = 0 of the
system (10) is ρρ0-exponential invariant and the
matrix B has the form B = c · abt with c ∈ R+.

Proof see for example in Somov et al. (1999a):
the basis of inequality for vector norm ρ (x(t)) is
attained by the comparison principle, using the
maximum right-sided solution xc(t)≡xc(t0, xc0; t)
of a comparison system.

There is such an important problem: by what
approach is it possible to create constructive tech-
niques for constructing the VLF υ(x) and si-
multaneous synthesis of a nonlinear control law
u = U(x) for the close-loop system (10) with given
vector norms ρ(x) and ρ0(x0) ? Recently, a pithy
technique on constructing VLF at such synthesis
has been elaborated. This method is based on a
nonlinear transformation of the NCS model and
solving the problem in two stages.

In stage 1, the right side F(·) in (10) is trans-
formed as F(·)=f(x)+G(x) u+F̃(t, x(t),u), some
principal variables in a state vector x∈H̃⊂Rñ ⊆
Rn with ñ ≤ n, x0 ∈ H̃0 ⊆ H̃ are selected and
a simplified nonlinear model of the object (10) is
presented in the form of an affine quite smooth
nonlinear control system

ẋ = F(x,u) ≡ f(x) + G(x)u ≡ f(x) +
∑

gj(x)uj ,

which is structurally synthesized by the EFL tech-
nique. In this aspect, based on the structural
analysis of given vector norms ρ(x) and ρ0(x),
and also vector-functions f(x) and gj(x), the out-
put vector-function h(x) = {hi(x)} is carefully
selected. Furthermore, the nonlinear invertible
(one-to-one) coordinate transformation z = Φ(x)
∀x ∈ Sh ⊆ H̃ with Φ(0) = 0 is analytically ob-
tained with simultaneous constructing the VLF.

Finally, bilateral component-wise inequalities for
the vectors x, z, υ(x), ρ(x), ρ0(x0) are derived, it is
most desirable to obtain the explicit form for the
nonlinear transformation x = Ψ(z), inverse with
respect to z = Φ(x), and the VLF aggregation
procedure is carried out with analysis of proxi-
mity for a singular directions in the Jacobian
[∂F(x, U(x))/∂x].

In stage 2, the problem of the NCL synthesis
for the complete model of the NCS (10), taking
rejected coordinates and nonlinearities, and also
the restriction on control, into account is solved
by the VLF-method.

If a forming control is digital and a measurement
of coordinate’s state is discrete and incomplete,
then a simplified nonlinear discrete object’s model
is obtained by Taylor-Lie series (Kazantzis and
Kravaris, 1997), a nonlinear discrete observer in
the NCL is formed and its parametric synthesis is
carried out with a simultaneously (Somov, 1997)
construct a discrete sub-vector VLF.



4. SYNTHESIS OF LOGIC AUTOMATA

For the FDI a three-level logic-digital system is
generally applied on-board Russian spacecraft for
remote sensing, communication and navigation:
• on the lower level — the integral local SLAs

Ad
d with memory for automatic monitoring of

the relevant device status by measurement of
available physical variables (currents, move-
ments, rates, etc.)

• on the middle level — the local loop SLAs
Ad

c with memory for automatic monitoring
of the control loop status (the roll, yaw and
pitch channels, the SAP control loop etc.);

• on the higher ”system” level — a SLA Ad,
also with memory, for the global functional
diagnostics of the main control loop by com-
parison of outputs for normal and emergency
models of the ACS operation.

For high fail-safe operation of the ACS, maximum
employment of functional redundancy has been
provided by using the SLA to apply all the reverse
complete sets of devices or their electric circuits.

At synthesis of the diagnosis SLAs Ad
d,A

d
c and

Ad (6) and also of a damage block-keeping &
reconfiguration SLA Ar (7), the Natural Tricks
are used. They are based on both well-known
physical invariant relations (for example, general
momentum invariant for the ”SC+MGC”-system)
and engineering inventiveness, presented at a per-
fect logic-uncontraditory form.

Fig. 1. The fault-tolerant ”2-SPEED”-type
minimal-redundant scheme of the MGC

5. A MOMENT GYROCOMPLEX

For information SC it is important to minimize
the MGC mass and provide the possibility for
reconfiguration of its structure and control algo-
rithms for 2–3 possible faults in any executive
device of the MGC. The authors had been exe-
cuted multilateral analysis of schemes for con-
structing the small-mass MGC based on RWs,
various types of single- and two-gimbal GWs, the
GDs with both the gear stepping drives (GSDs)
and the moment gearless drives (MGDs) on their
precession axes, in combination with unloading
loops of accumulated angular momentum (AM)
by reaction trusters and/or a magnetic torquers
(Somov et al., 1999b).

For example, let the point O be the spacecraft
mass center and Oxyz is the body reference frame
(BRF), see Fig. 1a. In the MGC canonical refe-
rence frame Ogx

g
cy

g
cz

g
c the angular momentum

projections of the first (GD-1 & GD-2) and the
second (GD-3 & GD-4) pairs of gyrodines always
are summed up along the axis Ogx

g
c . The GD’s

neutral positions Np, p= 1 : 4 are directed at the
angles ±σ with respect to positive (for the 1st
GD’s pair) and to negative (for the 2nd GD’s
pair) directions of the axis Ogx

g
c , see Fig. 1a.

Under the MGC Z -arrangement on the spacecraft
body, when the axis Ogx

g
c is the same as the axis

Oz of BRF, the following 4 efficient (for 3-axis
spacecraft attitude control) GD configurations are
possible on the basis of only 3 active gyrodynes:
• the configurations Z-I, I=1:4 — the MGC

without GD-I, represented at the nominal
state in Fig. 1b (configurations Z-4 or Z-3)
and in Fig. 1c, ( configurations Z-2 or Z-1).

So, the ”2-SPEED”-type (Crenshaw, 1973) gyro-
complex scheme in Fig. 1a is fault-tolerant under
diagnostics of a faulted GD and the gyrocomplex
reconfiguration by some passages between config-
urations Z-I on specific logic conditions.

6. MATHEMATICAL MODELS

The BRF attitude with respect to the inertial
reference frame (IRF) is defined by quaternion
Λ = (λ0,λ),λ = (λ1, λ2, λ3). Assume that Λp(t)
is a quaternion, and ωp(t) = {ωp

i (t)} and ω̇p(t)
are angular rate and acceleration vectors of the
programmed SC body’s motion in the IRF. The
error quaternion is E = (e0, e) = Λ̃p(t)◦Λ, the
Euler’s parameters vector is E = {e0, e}, the
attitude error matrix is Ce≡C(E)=I3−2[e×]Qe,
where Qe≡Q(E)=I3e0 + [e×] with det(Qe)=e0.
Here symbols 〈·, ·〉, × , { · }, [ · ] for vectors and
[a×], (·)t for matrix are conventional denotations.

The BRF attitude with respect to the orbital
reference frame (ORF) is defined by quaternion
Λo = Λ̃o(t)◦Λ, where Λo is known quaternion
of the ORF attitude with respect to the IRF,



and also by vector of Euler’s parameters Eo,
moreover the matrix Co

e = C(Eo). For a fixed
position of flexible structures on the SC body with
some simplifying assumptions and for t ∈ Tt0 =
[t0,+∞) a SC angular motion model appears as:

Λ̇=Λ◦ω/2;Ao{ω̇, q̈, β̈, Ω̇}={Fω,Fq,Fβ,Fh},(11)

Fω =Mg − ω×G+Mo
d+Qo;Mg =−Ḣ=−Ahβ̇;

Fq ={−aq
jj((δ

q/π)Ωq
j q̇j+(Ωq

j)
2qj)+Qq

j(ω, q̇j , qj)};

Fβ = Ahω + Mg
c + Mg

d + Mg
b + Mg

f + Qg(·);

Fh = Mh
c + Mh

d + Mh
f + Qh(·); Mh

c =Mh+Mha;

Ao=


Jo Dq Dg Dh

Dt
q Aq 0 0

Dt
g 0 Ag 0

Dt
h 0 0 Ah

;

Mg
c =Mg+Mgd+Mga;

G = Go + Dqq̇ + Dgβ̇;
Go = Jo ω + H (β);
Ah = [∂H (β) / ∂β] ;

H = {Hp}; Ω = {Ωp}; β = {βp}; ω = {ωi};
q={qj}; Hp(βp)=Hphp; H(β) =

∑
Hp(βp),

where torques Mg
d and Mh

d of a physical damping,
and also the electro-magnetic damper (EMD)
torques Mg

dp(k
g
d, β̇p) with gain kg

d are nonlinear
continuous functions; vectors of the rolling friction
torques in bearings on the gyro-rotor (GR) axes
Mh

f and on GD’s precession axes Mg
f , and also in

general case the torque’s vector Mg
b describing the

influence of limiting supports on GD’s precession
axes, are nonlinear discontinuous functions.

The components of the MGC control vectors Mg
c

and Mh
c with regard for the possible faults in

electric circuits of MGDs or GSDs as well as the
EMDs on the GD precession axes, and also that
of the electric drives on the GD’s rotor axes and
arresters (cages) are described by hybrid functions

Mx
p =

2∑
l=1

γfxl
p (ν) γrxl

p (µ) ax
p i

xl
p , (12)

where x=g, gd, ga, h, ha, coordinates γyxl
p , y=f, r

are logic variables γyxl
p ∈ {0, 1}; γyx1

p ∧γyx2
p = 0;

γyx1
p ∨γyx2

p = 1, p=1:4; ixl
p are the control currents

and currents at the GD electro-magnetic arresters
in main (l = 1) and in reserve (l = 2) circuits.

The functions γfxl
p (ν) are outputs of an ALA

Af with memory used for representing fault oc-
currences and damage development depending on
the automaton time ν ∈ N0. Functions γrxl

k (µ)
are outputs of a SLA Ar, also with memory, for
description of damage’s or fault’s block-keeping
and the reconfiguration sequence depending on
the automaton time µ ∈ N0. The currents in GD’s
control circuits igl

p (t) for γrgl
p = 1 and ihl

p (t) for
γrhl

p = 1 are proportional to GD’s digital control
voltages ux

p(t) = Zh[Sat(Qntr(ux
pk, b

x
u), Bx

u),Tu],
where ux

pk, x = g, h are the outputs of NCLs on
the GDs precession and GRs axes, and functions
Sat(x, a) and Qntr(x, a) are general-usage ones,
while the holder model with the period Tu is of
the type: y(t) = Zh[xk,Tu] = xk ∀t∈ [tk, tk+1).

Fig. 2. Main singular sets of ”2-SPEED” scheme

7. THE MGC ADJUSTMENT
Within precession theory of control moment gyros
for Hp =hg =const the MGC’s AM vector is such:

H(β) = hgh(β); h(β) ≡
∑

hp(βp) = {x, y, z},
x = x12 + x34; y = y1 + y2; z = −(z3 + z4); xp = cβp

;
yp =sβp

; zp =sβp
; x12 =x1+x2; x34 =x3+x4.

The MGC scheme have a lot of singular sets, main
sets are presented in Fig. 2. The distribution law
of normed AM h(β) between GD’s pairs

fρ(β) = (x̃1 − x̃2) + ρ (x̃1 · x̃2 − 1) = 0,
with x̃1 = x12/qy; x̃2 = x34/qz; qs =

√
4− s2,

s=y, z, at ”right-sided differential relay-hysteresis”
tuning due to D+fρ(β) = Φρ(fρ(β),h(β)), see
Somov (2001a), for the MGC’s AM vector ensures
its belonging to the imaginary singular sets only
at separate time moments, and bijectively con-
nects the vector Mg with vectors β and β̇.

8. SPACECRAFT CONTROL LAW
If the error ω̃ in the angular rate vector ω is
defined as ω̃ = ω −Ceω

p(t), and the MGC’s
required control torque vector Mg is formed as
Mg=ω×Go+Jo(Ceω̇

p(t)−[ω×]Ceω
p(t)+m̃), then

the simplest normed nonlinear model of the SC
attitude error dynamics is as follows

ė0 = −〈e, ω̃〉/2; ė = Qe ω̃/2; ˙̃ω = m̃, (13)

for which the EFL synthesis results in the NCL
m̃(E, ω̃) = −A0 · e · Sgn(e0)−A1 · ω̃, (14)

where A0 =((2a∗0− ω̃2/2)/e0)I3; A1 =a∗1I3−Reω,
Sgn(e0)=(1, if e0≥0)∨(−1, if e0<0), and matrix
Reω = 〈e, ω̃〉Qe[e×]/(2e0). Moreover, the closed-
loop nonlinear system (13), (14) is transformed to
a simplest linear system for the SC spatial attitude
control. Simultaneously constructing the VLF’s
components using the Vandermonde matrix is
analytically executed, the VLF’s structure υ(x) =
υ(E, ω̃) has become known, and for obtaining the
inverse transformation x = Ψ(z) in the explicit
form it is sufficient to use the analytic inverse of
matrix Qe (Somov et al., 1999b).



As result of the SC ACS (11) synthesis with
the MGC scheme in Fig. 1a for the command
order vector Eo

ck and the measured vector Eo f
k ,

the attitude error vector Eε
k = {ε0k, εk}, matrix

Af
hk = Ah(Hf

k,β
f
k) and control vector ug

k are
computed by relations

ε0k =eo f
0ke

o
c0k + 〈eo f

k , eo
ck〉; βσf

pk =βf
pk + (−1)p−1σ;

εk = Q(Eo
ck) eo f

k − eo f
0k eo

ck; εk = −2εk;

Sσf
hpk = Hf

pk sinβσf
pk; Cσf

hpk = Hf
pk cosβσf

pk;

Af
hk =

−Cσf
h3k −Cσf

h4k 0 0
0 0 Cσf

h1k Cσf
h2k

−Sσf
h1k −Sσf

h2 Sσf
h3k Sσf

h4k

 ;

wg
k =wg

k−1+kg(εk + agεk−1); ωo f
ok =C(Eo f

k )ωo;

ug
k = −(Af

hk) (wg
k + ωo f

ok), k ∈ N0, (15)

where kg, ag are the constant scalar parameters.

Digital NCL (15) is universal for given MGC type,
it provides the precise 3-axis attitude control of
the SC body at the MGC reconfiguration, it is
robust with respect to an accumulated AM of the
”SC+MGC”-system and to variations of the SC
inertial and rigidity characteristics. Operability
of this NCL for large torque disturbances arising
at the SC orbit correction as well as for spatial
control of the SC body, flexible SAPs and RTAs,
has been investigated.

9. SOFTWARE AND SIMULATION

The developed methods for dynamic research and
design of robust fault-tolerant ACS had been
implemented in the software system DYNAMICS
and in well-known MatlabTM. Some simulation
results for the SC gyromoment ACS (11) see in
Somov (2001a).

10. CONCLUSIONS

Contemporary nonlinear methods for design of ro-
bust fault-tolerant control systems applied at Rus-
sian information spacecraft (Kozlov et al., 1999;
Batrenev et al., 1999), were presented. Designing
such spacecraft ACSs have been conducted, in-
cluding international projects: Ikar (Somov et al.,
2001a) and Sesat (Somov et al., 2001b). Flight ex-
ploitation these ACSs have proved high efficiency
of principles and methods employed for providing
a robust fault-tolerant operation.
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