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Abstract: This paper presents novel algorithms for the estimation of dynamic systems. These
new methods offer several advantages of being parameterisation free, numerically robust,
convergent to statistically optimal estimates, and applicable in a simple fashion to a wide
range of multivariable, non-linear and time varying problems. The key tool underlying the
new techniques presented here is the ‘Expectation-Maximisation’ (EM) algorithm.
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1. INTRODUCTION
In the field of system identifiction, the so-called Max-
imum Likelihood principle and its relations, such as
prediction error techniques, play a key role. There are
several reasons for this. Firstly, there is a very large
and sophisticated body of theory supporting these
methods. This allows important practical issues such
as error analysis and performance tradeoffs to be ad-
dressed. Secondly, via this latter theory, it is under-
stood that Maximum Likelihood methods are provably
statistically optimal in that they (at least asymptoti-
cally) achieve the Cramér–Rao Lower Bound. That
is, in some sense they provide the most accurate es-
timates. Finally, Maximum Likelihood type methods
provide a general framework which is applicable to a
very wide range of estimation problems.

Balancing this, it should be recognised, that despite
these features recommending the Maximum Likeli-
hood approach, it is not a panacea. As a result there are
also significant bodies of work directed towards alter-
native approaches, including non-parametric (Ljung
1999), bounded-error (Norton 1987), and state space
subspace-based estimation methodologies (van Over-
schee and Moor 1996).

Furthermore, despite the theoretical advantages of
Maximum Likelihood methods, their practical deploy-
ment is not always straightforward. This is largely due
to the non-convex optimisation problems that are often
implied. Typically, these are solved via a gradient-
based search strategy such as a Newton type method
or one of its derivatives. The success of such ap-
proaches depends on the curvature of the Maximum
Likelihood cost being optimised, and this is depen-
dent on the chosen system parameterisation. Select-
ing this can be difficult, particularly in the multi-
variable case where the cost contours resulting from
natural canonical state-space parameterisations imply
poor numerical conditioning during gradient-based
search (McKelvey 1998).
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Indeed, the possibility of avoiding these parameterisation-
based difficulties is one of the key reasons for the re-
cent intense interest in the new State Space Subspace
based System Identification (4SID) methods (van
Overschee and Moor 1996).

This paper, motivated by all these issues, presents new
methods for gradient-search free computation of Max-
imum Likelihood dynamic system estimates. These
new techniques can employ state space model struc-
tures (like 4SID methods), but they do not require
explicit parameterisation of the system matrices. Fur-
thermore, the numerical procedures involved here can
be implemented very efficiently and reliably via well
known methods such as QR decomposition. Finally,
while these new algorithms are introduced here for
the estimation of linear and time-invariant systems,
they are very simply extended to more complicated
scenarios of non-linear, time varying and missing-data
estimation problems.

The central technique employed in this paper is that
of the so-called Expectation-Maximisation (EM) al-
gorithm which, for certain classes of Maximum Like-
lihood estimation problems, has proven to be a ro-
bust alternative to gradient-based search for the esti-
mate (Dempster et al. 1977).

Despite the successful application of the these EM
methods in many other fields such as image process-
ing, speech recognition, and various problems of ap-
plied statistics such as epidemiology, their potential
utility with regard to dynamic system identification
problems, particularly those with relevance to control
applications, seems to have been largely unappreci-
ated.

2. DYNAMIC SYSTEM ESTIMATION
The estimation problems considered in this paper are
ones in which an observed discrete time data record
of N samples YN , {y1, y2, · · · , yN} is postulated
to depend causally on another data record UN ,

{u1, u2, · · · , uN}, and also upon external influences
that will be modelled here as realisations of random
variables.
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A very general way of formulating this scenario (for
finite dimensional systems) is via a state space de-
scription such as

xt = f(xt, ut, wt) (1)

yt = g(xt, ut, et). (2)

Here, yt ∈ R
p and ut ∈ R

m are the vector valued
data records just mentioned, while xt ∈ R

n is the sys-
tem state sequence, and {wt}, {et} are independent
and identically distributed vector stochastic process
such that E{wt} = 0, E{et} = 0, E{wtw

T
t } ,

Q ≥ 0 and E{ete
T
t } , R ≥ 0 where E{·} denotes

expectation over the probability space that wt and
et are defined on. Together, the unknown functions
f(·, ·, ·) and g(·, ·, ·) together with Q and R constitute
the model that is to be determined on the basis of the
data records YN and UN .

A Maximum Likelihood solution to this estimation
problem requires the specification of the probability
density functions pe(·), pw(·) for the random variables
et and wt. Based on this the joint probability

p(YN , UN | f, g) (3)

which is dependent on f and g is calculated, and
known as a ‘likelihood function’. The Maximum Like-
lihood estimates of f and g are then defined as those
which maximise (3). That is, they are such that they
maximise the probability that the observed data is
consistent with the estimated model.

Typically, this process is formulated slightly dif-
ferently by proposing specific forms for f and g

that depend on some vector of parameters θ ,
[θ1, θ2, · · · , θ`]. In this case, the Maximum Likelihood
estimate based on the N observations is defined as

θ̂N , arg max
θ

p(YN , UN | θ). (4)

This method of system estimation enjoys a wide ac-
ceptance and popularity, in large part due to its well-
known and desirable properties of consistency, asymp-
totic normality and statistical efficiency that have been
established in a range of works and apply under fairly
mild regularity assumptions on f, g, wt, et

Balancing these attractive features that recommend a
Maximum Likelihood approach, there is the signifi-
cant disadvantage that the equation (4) defining the
Maximum Likelihood estimate θ̂N is, in general, a
non-convex optimisation problem. As a result, calcu-
lation of θ̂N requires some sort of numerical search
technique.

Since p(YN , UN |θ) is typically smooth, any gradient-
based search technique such as Steepest-Descent or
Newton iteration may be employed for this purpose,
and indeed this is the usual approach (Ljung 1999,
Ljung 2000a). In this case, an approximation θk for
θ̂N is repeatedly updated to a new approximation θk+1

according to

θk+1 = θk − µkJk

[
d

dθ
log p(YN , UN | θ)

∣∣∣∣
θ=θk

]
(5)

where µk is a scalar ‘step-length’ and Jk is a matrix
that may be chosen in various ways, but is often related

to the Hessian of the cost function, and hence also
related to its curvature relative to its parameterisation.

Importantly though, the search strategy (5), by way of
requiring a gradient (with respect to a parameterisa-
tion θ), in fact also forces the use of a parameterisation
of the state-space model structure (1), (2). This can
lead to important difficulties.

For example, in the case where f and g describe a lin-
ear, time invariant (LTI), and multivariable system, it
is well known that no surjective mapping exists (hence
allowing the description of all possible input-output
responses) that is also bijective and therefore ensures
that the estimate θ̂N is uniquely defined (McKelvey
1998).

Furthermore, in this same LTI case, it is also well
known that any simple parameterisation based on
canonical forms leads to problems in which Hessian-
based choices for Jk become ill-conditioned and lead
to slow convergence of the search (5).

These difficulties, combined with the fact that subspace-
based system identification methods do not require
parametrisation of the system matrices, are one of
the key features leading to the recent intense interest
in them. However, the price paid there is that it is
not yet clear what cost function is being optimised
by subspace-based estimates. As a result, the theory
supporting such approaches is still developing.

The contribution of this paper is to show how the
theoretical advantages of a Maximum Likelihood ap-
proach may be combined with the parameterisation
free advantages of a subspace-based method by em-
ploying the so-called Expectation Maximisation (EM)
algorithm.

3. THE EXPECTATION MAXIMISATION (EM)
ALGORITHM

The Expectation Maximisation (EM) algorithm is a
technique that, in certain circumstances, can be used
to compute Maximum Likelihood estimates without
resort to gradient-based search. The method arose in
the mathematical statistics community (Dempster et
al. 1977) but has found wide engineering application
in areas such as signal processing, pattern recognition
and speech recognition.

The key feature of the technique is to exploit the con-
cavity of the log function (together with the fact that
the area under a probability density function is one) so
as to guarantee iterations of non-decreasing likelihood
whilst avoiding the need to calculate derivatives of the
likelihood.

To explain these ideas, note that an essential feature
of the EM algorithm is the postulate of an unobserved
‘complete data set’ Z that contains what is actually
observed Y , plus other observations X which one
might wish were available, but in fact are not, and are
termed the ‘incomplete’ data. That is Z = (Y, X) so
that by Bayes’ rule

p(Z | Y ) =
p(Z, Y )

p(Y )
=

p(Z)

p(Y )
.

which implies that

log p(Y | θ) = log p(Z | θ) − log p(Z | Y, θ) (6)



where we note that since log x is monotonic in x, then
finding θ which maximises log p(Y | θ) is equivalent
to finding θ maximising p(Y | θ).

As a consequence of (6), by taking expectations with
respect to probabilities defined by an approximation
of the parameters θ′, and conditional on the observed
data Y = YN , then leads to (L(θ) , log p(YN | θ))

L(θ) = E {log p(Y | θ) | Y = YN , θ = θ′}

= E {log p(Z | θ) | Y = YN , θ = θ′} −

E {log p(Z | Y, θ) | Y = YN , θ = θ′}

=Q(θ, θ′) − V(θ, θ′)

where the following definitions have clearly been
made

Q(θ, θ′) , E {log p(Z | θ) | Y = YN , θ = θ′} , (7)

V(θ, θ′) , E {log p(Z | Y, θ) | Y = YN , θ = θ′} .(8)

In this case, the difference in log-likelihood corre-
sponding to two different parameter vectors θ and θ′

may be written as

L(θ) − L(θ′) = [Q(θ, θ′) −Q(θ′, θ′)] +

[V(θ′, θ′) − V(θ, θ′)] . (9)

The key point now is the following inequality for
V(θ, θ′) that guarantees non-negativity of the second
term in (9).
Lemma 3.1.

V(θ′, θ′) ≥ V(θ, θ′)

with equality if, and only if, p(Z|Y, θ) = p(Z|Y, θ′)
for all Z.
Therefore, as a consequence of this, the decompo-
sition (9) shows that if a value for θ is found that
increases Q(θ, θ′), then this must also increase the
log-likelihood L(θ). This suggests the following algo-
rithm for iteratively updating an approximation θk of
the Maximum Likelihood estimate θ̂N , to a better one
θk+1.

(1) E Step (Compute Expectation)

Q(θ, θk) , E {log p(Z | θ) | Y = YN , θ = θk}(10)

(2) M Step (Maximise)

Compute: θk+1 = argmax
θ

Q(θ, θk) (11)

This is the the Expectation-Maximisation (EM) algo-
rithm, in which the iterative procedure (11) replaces
the gradient based one (5) as a method for finding
Maximum Likelihood estimates. The principle under-
lying it is shown in figure 1. There it is illustrated that
the function Q(θ, θk) acts as an approximant to the
likelihood L(θ) which is exact at θ = θk, and also
(locally) follows the contours of L(θ) in that L(θ)
increases in directions that Q(θ, θk) increases.

Clearly, it is only sensible to employ this approach in
cases where maximising Q(θ, θ′) is straightforward,

θk

Q(θ, θk)

θθk+1 θ̂N

L(θ)

L(θk)

Fig. 1. Illustration of the principle underlying the EM-
algorithm. The function Q(θ, θk) acts as a local
approximant of the likelihood L(θ).

and certainly easier than maximising L(θ) directly.
In turn, this will depend on what is chosen as the
incomplete data set X . As such, an EM algorithm
approach is not always appropriate, but as will now
be demonstrated, it is very suitable for a wide range of
dynamic system estimation problems of engineering
relevance.

4. APPLICATION TO LINEAR TIME INVARIANT
SYSTEMS

This section illustrates the application of the preceding
methods by deriving a new algorithm for the estima-
tion of linear, time invariant and multivariable systems
that may be represented via the following specialisa-
tion of (1), (2).

xt+1 = Axt + But + wt, (12)

yt = Cxt + Dut + et. (13)

The estimation of the system model f(xt, ut, wt) =
Axt + But + wt and g(xt, ut, et) = Cxt + Dut +
et then amounts to estimation of the constant ma-
trices A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n,
D ∈ R

p×m, Q ∈ R
n×n and R ∈ R

p×p. That is,
the collected vector of quantities to be estimated is
θ = Vec{A, B, C, D, Q, R} where the Vec{·} op-
erator creates a vector from a matrix by stacking its
columns on top of one another.

For the purpose of estimating θ, notice that if xt where
observed, then (12) and (13) would be linear regres-
sions in [A, B] and [C, D] (respectively) which could
then be very directly estimated via least-squares. This
suggests, that in the interests of defining the incom-
plete data X so that Q(θ, θ′) is simple to maximise,
then X should be taken as the unobserved state se-
quence XN , {x0, x1, . . . , xN} (hence the use of the
symbol X). That is, the complete data could be taken
as

Z , (XN , YN ).

According to (10), the expection step of the EM-
algorithm then requires the calculation of

Q(θ, θ′) = E {log pθ(XN , YN ) | Y = YN , θ = θ′}

which in turn, as in all Maximum Likelihood estima-
tion scenarios, requires the specification of the prob-
ability density functions governing the random dis-



turbances wt and et. Here we will assume these are
Gaussian as follows

wt ∼ N (0, Q), et ∼ N (0, R) (14)

which then allows the computation of Q(θ, θ′) via the
following Lemma.

Lemma 4.1. For the model structure (12), (13) and the
Gaussian assumptions (14) the function −2Q(θ, θ′)
defined in (7) may be computed as

log |P0|+N log |Q|+N log |R|+

Tr
{
P−1

0

[
(x̂0|N−µ)(x̂0|N−µ)T +P0

]}
+

Tr
{
Q−1

[
Φ−Ψ[A, B]T −[A, B]ΨT +[A, B]Γ[A, B]T

]}
+

Tr
{
R−1

[
Ω−Λ[C, D]T −[C, D]ΛT +[C, D]Π[C, D]T

]}

(15)

with the following definitions applying

x̂t|N , E {xt | YN , θ′} , zt ,

[
xt

ut

]
, (16)

Λ ,

N∑

t=1

yt E
{
zT

t | YN , θ′
}

, Ω ,

N∑

t=1

yt yT
t

Π ,

N∑

t=1

E
{
zt zT

t | YN , θ′
}

, Φ ,

N∑

t=1

E
{
xt xT

t | YN , θ′
}

Ψ,

N∑

t=1

E
{
xt zT

t−1 |YN , θ′
}

, Γ,

N∑

t=1

E
{
zt−1 zT

t−1 |YN , θ′
}

and where it has been assumed that the initial distribu-
tion on x0 is

x0 ∼ N (µ, P0). (17)

This takes care of the Expectation step (10). The
particular choice X = XN = {x0, · · · , xN} of
the incomplete data that is made here then allows
the Maximisation step (11) to be achieved via the
expressions of the following Lemma.

Lemma 4.2. The function Q(θ, θ′) defined in (15) of
Lemma 4.1 is maximised (−2 logQ(θ, θ′) is min-
imised) by the choices

[A, B] = ΨΓ−1, [C, D] = ΛΦ−1, (18)

Q = N−1(Φ − ΨΓ−1ΨT ), R = N−1(Ω − ΛΠ−1ΛT )(19)

µ = E {x0 | YN , θ′} , P0 = E
{
xt−1 xT

t−1 | YN , θ′
}

(20)

There are several points to note here. Firstly, the com-
putations (18) for updating of the estimates of the sys-
tem matrices A, B, C, D may, via their relationship to
least-squares solutions, be computed in very efficient
and numerically robust fashions.

Secondly, note that the estimate (19) for Q is positive
semi-definite by construction since it is a Schur com-
plement of

N∑

t=1

Eθ′

{[
zt

zt−1

] [
zT

t zT
t−1

]}
≥ 0.

A similar argument indicates that the estimate update
(19) is also guaranteed to always yield an R ≥ 0.

Finally, Lemma 4.2 indicates the the implementation
of the Maximisation step of the EM-algorithm for the
lineary time-invariant scenario requires the computa-
tion of the quantities x̂t|N = E {xt | YN , θ′} and

E
{
xtx

T
t | YN , θ′

}
, E

{
xtx

T
t−1 | YN , θ′

}
(21)

which are essential to the definition of Λ, Π, Φ, Ψ and
Γ.

4.1 Computation of Conditional Expectations
In the case considered in this paper where the distribu-
tions on the random components et and wt are Gaus-
sian, then recursive expressions exist for the compu-
tation of the quantities in (21), as specified in the
following Lemma.

Lemma 4.3. For the system (12), (13) and with the
definition x̂t|N , E {xt | YN , θ′} together with

Pt|s , E
{
(x̂t|s−xt)(x̂t|s−xt)

T |Ys

}
, St , Pt|tA

T P−1

t+1|t

then the first two quantities in equation (21) may be
computed via the (reverse time) recursions

x̂t|N = x̂t|t + St

[
x̂t+1|N − But − Ax̂t|t

]
(22)

Pt|N = Pt|t + St

[
Pt+1|N − Pt+1|t

]
ST

t , (23)

E
{
xtx

T
t | YN , θ′

}
= Pt|N + x̂t|N x̂T

t|N (24)

where the quantities x̂t|t, Pt|t, Pt|t−1 involved in these
expressions are pre-computed from the (forward in
time) Kalman Filter recursions

Pt|t−1 = APt−1|t−1A
T + Q (25)

Kt = Pt|t−1C
T

(
CPt|t−1C

T + R
)−1

(26)

Pt|t = Pt|t−1 − KtCPt|t−1 (27)

x̂t|t−1 = Ax̂t−1|t−1 + But−1 (28)

x̂t|t = x̂t|t−1 + Kt

(
yt − Dut − Cx̂t|t−1

)
(29)

which are initialised at

x̂0|0 = µ, P0|0 = P0

and where the system matrices A, B, C, D, Q, R used
in (25)- (23) are those corresponding to θ′. The final
quantity E{xtx

T
t−1 | YN , θ′} in (21) may be computed

via the (reverse time) recursions

Mt|N = Pt|tS
T
t−1 + St(Mt+1|N − APt|t)S

T
t−1(30)

E
{
xtx

T
t−1 | YN , θ′

}
= Mt|N + x̂t|N x̂T

t−1|N (31)

where

Mt|N , E
{
(x̂t|s − xt)(x̂t−1|s − xt−1)

T |YN , θ′
}



EM-based algorithm for Maximum Likelihood estimation

(1) Initialise estimates at θk = [A, B, C, D, Q, R].
For example, a subspace-based estimation
method could be employed.

(2) Using the system specification θk =
[A, B, C, D, Q, R], run the Run Kalman-Filter
recursions (25)-(29) followed by the Kalman
Smoother (type) recursions (22), (23), (32) (30)
in order to compute the quantities defined in
Lemma 4.2.

(3) Maximise Q(θ, θk) over θ via the choices (18)
and (19) in order to provide an improved estimate
θk+1.

(4) Return to step 2 and repeat until termination.

Algorithm 1. EM-based Estimation Algorithm

and (30) is initialised at

MN|N = (I − KNC)APN−1|N−1. (32)

4.2 Estimation Algorithm
The previous developments may now be summarised
in the estimation procedure defined in 1.

At the risk of over-emphasis, the key point of the
above algorithm for finding Maximum Likelihood es-
timates is that, in contrast to the more common gradi-
ent based approach, no parameterisation of the state-
space model structure (12), (13) is required.

Notice too, that from a computational point of view,
the above algorithm is comparable to a gradient based
approach in that the Recursive Kalman Smoothing
operations take the place of the recursive filtering
operations necessary for gradient computation.

Finally, on the issue of judging convergence, and
hence terminating the above iterative search, an imme-
diately obvious strategy is to monitor the likelihood
function p(y1, · · · , yN |θk), and when its rate of in-
crease drops below a threshold, convergence can be
declared. This is the method used in the simulation
examples of the following section.

5. SIMULATION EXAMPLE
This section provides two brief simulation examples in
order to illustrate the utility of the EM-algorithm ap-
proach to Maximum–Likelihood estimation proposed
in this paper.

In both cases, the observed data is generated according
to a system

yt = G(q)ut + et

with G(q) given by



0.0355q + 0.02465

(q − 0.3679)(q − 0.9084)

0.2364q + 0.1038

(q − 0.1353)(q − 0.6065)

0.07601q + 0.05447

(q − 0.4966)(q − 0.7408)

0.1087q + 0.07286

(q − 0.4493)(q − 0.6703)




and ut is an i.i.d. zero mean and unit variance Gaus-
sian process while et is also i.i.d. zero mean and Gaus-
sian, but has variance E{e2

t} = σ2 = 0.01.

For this scenario, N = 200 data samples were
collected and Maximum–Likelihood estimates were
computed via the EM-algorithm described in this pa-
per and initialised with the starting estimate

G(q) =




0.1

(q − 0.5)2
0.1

(q − 0.7)2

0.1

(q − 0.6)2
0.1

(q − 0.4)2


 .

The results of this estimation experiment are shown
in figure 2. On the left, the relationship between ini-
tial and EM-derived ML estimates is shown together
with the true response. On the right, the evolution of
the log mean-square cost N−1

∑N

t=1

(
yt − Cx̂t|t−1

)2

is shown as the EM-algorithm iteration progresses.
Clearly, the algorithm converges to estimates close to
the true system.

In relation to this simulation, the previous section has
raised the possibility of initialising the EM iterations
with a subspace-based method, and the results of this
strategy for the experimental conditions just outlined
are shown in figure 3. There, Overschee and DeMoor’s
N4SID variant (van Overschee and Moor 1996) of the
general class of subspace-based methods is used to
provide the initial estimate shown as the dash-dot line.
The EM-algorithm of this paper is then used to refine
this to be closer to the Maximum Likelihood estimate,
with concomitant cost function evolution shown in
the right hand diagram of figure 3 and final estimate
shown as the dashed line on the left in 3, together
(again) with the true system shown as a solid line.

Clearly, the final estimate is significantly improved
from the initial subspace-based one, and the key point
is that this is achieved in a very simple manner by
the parameterisation free method proposed here, while
it would be very difficult to implement using a more
standard gradient based method that imposed a param-
eterisation.
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Fig. 2. EM-algorithm computed ML estimates. Left
figure shows initial estimates as dash-dot line,
true systems as solid lines, and EM-derived ML
estimates as dashed lines. Right figure shows the
evolution of the means square cost as the EM-
algorithm is iterated.

6. ERRORS IN VARIABLES
The prediction-error methods presented in (Ljung
1999) and embodied in the pre-eminent software
package (Ljung 2000a) have become a dominant force
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Fig. 3. Same scenario as previous figure but with
initial estimate being found via a subspace-based
method.

in the science of system identifiation. Although the
structure of this framework is very general, it is typ-
ically applied by means of a θ-parameterised model
structure

yt = Gθ(q)ut + Hθ(q)et (33)

and associated steady state Kalman-Filter innovations

εt(θ) = H−1

θ (q) [yt − Gθ(q)ut] .

However, note that the state-space model structure
(12),(13) is more general than the steady state one (33)
by virtue of the state disturbance wt ∼ N (0, Q).

One benefit of this generality arises in the common
case where there are noise corruptions νt ∼ N (0, Σ)
on the observed input (the so-called ‘Errors in Vari-
ables’ scenario) as follows

xt+1 = Axt + B(ut + νt) + wt (34)

yt = Cxt + Dut + et. (35)

However, this is equivalent to the model structure (12),
(13) with {wt} i.i.d. and wt ∼ N (0, BΣBT + Q).

Therefore, the model structure (12), (13) is able to en-
compass the errors in variables scenario (34), (35) and
hence the estimation scheme in algorithm 1 applies to
such problems without any modification.

At the same time, translating (34), (35) to transfer
function form with G1(q) = C(qI − A)−1B + D,
G2(q) = C(qI −A)−1B, wt = 0 implies innovations
associated with the model structure (33) of

εt(θ) = H−1

θ [G1 − Gθut] + H−1

θ [G2νt + et]

implying coupling between estimates of noise model
and dynamics model parameters, which is well known
to lead to possible estimate bias (Ljung 1999).

To illustrate these observations, consider the previous
multivariable simulation example repeated but with
input measurement noise corruptions of the form νt ∼
N (0, 0.01I). The results of applying the EM based
procedure of this paper are then shown in figure 4,
and clearly show the efficacy of the approach, in
contrast with the bias problems associated with using
the model structure (33).
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Fig. 4. EM-algorithm applied to Errors-in-Variables
problem. Line labellings are as for previous fig-
ures save that the outer dash-dot nyquist plots on
the left represent estimates obtained by fitting an
Output-Error Prediction-Error Model structure.

7. CONCLUSIONS

The contribution of this paper was to suggest a novel,
EM-algorithm based approach to Maximum Likeli-
hood estimation of dynamic systems. The key fea-
tures recommending the approach are that it avoids the
need for a particular parameterisation of a state-space
model structure, and it is simple to implement.

Although this method is novel in the context consid-
ered here, the EM-algorithm itself is quite old, be-
ing very well known in (for example) the speech-
recognition community as the Baum–Welch method
for Hidden Markov Model estimation.

This paper represents only a very preliminary study of
this whole topic, and there is much more that needs to
be studied in terms of (again, only for example) con-
vergence analysis and extension to more sophisticated
model structures
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