Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

CHANGING SUPPLY RATES FOR INPUT-OUTPUT
TO STA TESTABLE DISCRETE-TIME SYSTEMS

Dina Shona Laila and Dragan Nesi ¢

The Department of Electrical and Elatronic Engineering,
The University of Melbourne, Parkville, 3010, Victoria, Australia

Abstract: We present results on changing supply rates for input-output to state stable
(IOSS) discrete-time nonlinear systems. Our results can be used to combine tw o
Lyapunov functions, none of which can be used to verify that the system has a certain
property, into a new Lyapunov function from which the property of interest can be
concluded. We present tw o applications of our results to discrete-time systems, i.e. a
LaSalle criterion for input to state stabilit y (ISS) and input to state stabilit y with

positiv e semidefinite Lppunov functions.
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1. INTRODUCTION

The Ly apune method is one of the most im-
portant and useful methods in stabilit y analysis
and design of nonlinear con trolsystems (see for
example (Khalil, 1996), (Rouche et al., 1977)).
Ly apune functions, which are the main tool in
this method, can be used to characterize various
properties of control systems, such as stabilit y,
detectability and passivity. Unfortunately, there
is no general systematic w ayof finding a Lya-
punov function for a system. Hence, methods for
constructing Lyapunov functions are of utmost
importance.

A very useful method for partially constructing
Ly apune functions w asintroduced in (Sontag
and T eel, 1995) where it was shown how it is
possible to combine t w Lyapunov functions, none
of which can be used to conclude a property of
interest, in to a new composite Lyapunov function
from which the desired property follo ws. Results in
(Sontag and Teel, 1995) apply to analysis of input
to state stabilit y (ISS) property of continuous-
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time cascade-connected systems. In (Angeli, 1999)
a similar proof technique was used to combine a
Lyapunov function whose deriv ativ eis negative
semidefinite and another Lyapunov function that
characterizes a detectability property, which is
called input-output to state stability (IOSS) (see
(Sontag and Wang, 1997)), into a new Lyapunov
function from which ISS property of a continuous-
time system follows. A discrete-time counterpart
of results in (Sontag and Teel, 1995) was presented
in (Nesi¢ and T eel, 2001b). These results w ere
useful, for instance in discrete-time bac kstepping
(Nesi¢t and Teel, 2001a) and in stabilization of
robot manipulators (Angeli, 1999).

The purpose of this paper is tw ofold. First, w e
present discrete-time counterpart of results in
(Angeli, 1999), to prove the lemma on changing
supply rates for IOSS discrete-time systems (see
Lemma 3.1) that generalizes the results of (Nesi¢
and Teel, 2001b). Second, w epose and solve the
problem in a more general framework (see Def-
inition 2.1) than in (Angeli, 1999), (Nesic¢ and
T eel, 200D), (Sontag and Teel, 1995), so that the
results in (Nesit and T eel,2001b) and discrete-
time counterparts of results in (Angeli, 1999) are
generalized. In this way, we are able to apply the



original technique of (Sontag and Teel, 1995) to
several new problems. While the statements of our
main results are very similar to (Angeli, 1999),
(Sontag and Teel, 1995), the proof technique is
notably different from the one used in continuous-
time results. It requires a judicious use of the
Mean Value Theorem (see Lemma 3.1), which is
similar to the discrete-time results of (Nesi¢ and
Teel, 2001b). We consider families of discrete-time
systems parameterized by T (sampling period),
which naturally arise when using approximate
discrete-time model to design a digital controller
for a nonlinear sampled-data system (see (Nesié et
al., 1999), (Nesi¢ and Laila, 2001)).

Our main results (Theorems 3.1 and 3.2) are
based on changing supply rates for discrete-time
IOSS systems. They present two constructions of
composite IOSS Lyapunov functions. We show the
usefulness of our results by applying them to two
different problems. In particular, we present a
LaSalle criterion for ISS property and testing ISS
via two positive semidefinite Lyapunov functions.

2. PRELIMINARIES

The set of real numbers is denoted by R. SN
denotes the class of all smooth nondecreasing
functions ¢ : R>o — R>¢, which satisfy ¢(t) > 0
for all t > 0. A function v : R>o — Ryg is
of class G if it is continuous, nondecreasing and
zero at zero. It is of class K if it is of class G
and strictly increasing; and it is of class Ko if it
is of class K and unbounded. Functions of class
Ko are invertible. |z| denotes the l-norm of a
vector z € R", where |z| := Y., |z;|. We consider
a parameterized family of discrete-time nonlinear
systems of the following form:

Try1 = Fr(zg, ur) (1)

Yr. = hr(xr)
where x € R*,u € R™, y € RP are respectively the
state, input and output of the system. The func-
tion hr is a continuous function, with hr(0) = 0.
T is the sampling period, which parameterizes the
system and can be arbitrarily assigned. Parame-
terized discrete-time systems (1) commonly arise
when an approximate discrete-time model is used
for designing a digital controller for a nonlinear
sampled-data system. We use the following defini-
tion.

Definition 2.1. Thesystem (1) is (Vp,a, @, a, A, 0)-
input-output to state stable ((Vy,a,@,a, A, o0)-
I0SS) with measuring functions, if there exist
functions o, @, a € K, and A\, 0 € G, functions
wo : R" = RM, wg : R* = R"2, w, : R* — R"3,
wy : R* - R, w, : R™ — R*, which are zero at
zero, T* > 0 and for all T € (0,T*) there exists a
smooth function Vr : R* — R>¢ such that:

aJwa(@)]) < Vr(z) <@(lwa(z))  (2)

Vr(Fr(z,u)) — Vr(z) < —Ta(jwa(z)])
+ TA(lwa(@)]) + To(lws (w)]) ,  (3)

forallz € R, u € R™, T € (0,7*). The functions
Wa, Wg, Wa, Wx, W, are called measuring func-
tions; a, @, a, A, o are called bounding functions;
a, A, o are called supply functions; and V7 is called
an IOSS Lyapunov function. ]

Often, when all functions are clear from the con-
text, we refer to the property defined in Definition
2.1 simply as IOSS. Moreover, if the system is
I0SS with A = 0 then we say that the system
is ISS. IOSS with measuring function is quite a
general notion that covers a range of different
properties of nonlinear discrete-time systems, such
as stability, detectability, output to state stability,
etc. The reason for introducing such a general
property in Definition 2.1 is that we will apply
our results to a range of its different special cases
(see Section 4) for particular choices of bounding
functions and measuring functions. Hence, Defini-
tion 2.1 is a very compact way of defining a range
of different properties to which our results apply.

The following two lemmas and remark are used in
proving our main results (Theorems 3.1 and 3.2).

Lemma 2.1. (Sontag and Teel, 1995) Assume that
the functions 8, 8’ € K are such that 3'(s) =
O[B(s)] as s — 0". Then there exists a function
q € SN so that §'(s) < q(s)B(s), Vs>0. ]

Lemma 2.2. (Sontag and Teel, 1995) Assume that
the functions g3, 8’ € K are such that S(r) =
O[f#'(r)] as r — 4o00. Then there exists a function
g € SN so that ¢(r)g8(r) < p'(r), Vr>0. ]

Remark 1. Since for any a € K we have a(s; +
s2) < a(2s1) + a(2s2) for all s; > 0,55 > 0, then
for any a1, as € K, there exist a, @ € K such that
the following holds for all s; > 0, s, > 0:

a(sy +52) < ai(sy) +ax(s2) <a(s; +s2), (4)

where we can take a(s) := min{a; (5), @2(5)} and
a(s) := max{2a;(s), 2aa(s)}. ]

3. MAIN RESULTS

In this section, we present our main results (The-
orems 3.1 and 3.2), in which we show the con-
struction of an I0SS Lyapunov function from
two auxiliary IOSS Lyapunov functions. We first
present Lemma 3.1, which is instrumental in prov-
ing our main results. The lemma is a discrete-
time version, as well as a generalization, of the
lemma on changing supply rates for IOSS sys-
tems in (Angeli, 1999). We introduce the fol-
lowing construction that follows the one used in



(Angeli, 1999), (Sontag and Teel, 1995). Denote
Vr(Fr) := Vp(Fr(z,u)) and Vp := Vp(z). Given
an arbitrary ¢ € SN, we define:

pls) = / g(r)dr | (5)

where it is easy to see that p € Ky and p is
smooth. Suppose that we have an I0SS Lyapunov
function V7, and then consider a new composite
function p(Vr). In Lemma 3.1, we state conditions
under which the new function is also an IOSS
Lyapunov function for the system.

Lemma 3.1. Let the following conditions be satis-
fied:

(1) System (1) is (Vp,a,@,a, X, 0)-I0SS with
measuring functions wa, Wg, W, wx and we.
(2) There exist &,k € K such that £(Jwq (z)]) <
|wg(a})| and |wg(z)] < E(lwa(z)]|) for all
z € R".
Then for any ¢ € SA and p € K4 defined by
(5) there exist o', @', o', X, ¢’ such that the
system (1) is (p(Vp),a',@',a', X ,0')-I0SS with
the same measuring functions, where o/(s) = po
a(s), @(s) = poa(s), o/(s) = gqo5a0k(s) afs),
A (s) = 2q 0 0x\(s) - X(s), 0'(s) = 2q00,(s) - o(s),
and

0,(s) :
9)\(8) .

oK O

Il
Ql
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We present in Theorems 3.1 and 3.2 two construc-
tions that can be used (under different conditions
on the bounding and measuring functions) to pro-
duce a new IOSS Lyapunov function V7 from two
I0SS Lyapunov functions Vi and Vor. We note
that Theorem 3.1 is a discrete-time version, as well
as generalization, of the continuous-time results in
(Angeli, 1999), while Theorem 3.2 has appeared in
a simpler form in (Nesi¢ and Teel, 2001b), which is
a discrete-time version of (Sontag and Teel, 1995),
when A = 0, wa(2) = wga(r) = wa(z) = z, and
we(u) = u.

Theorem 3.1. Suppose that:

(1) the system (1) is (Vir,ay,@1,a1,A1,01)-
IOSS with measuring functions wy , wg,,
Way, W, , We, , Where A; = 0;

(2) the system (1) is (Var,a,, @2, as,A2,02)-
I0SS with measuring functions wg,, wa,,
Way, Wx,, We, and there exist k,,%2 € Ko,
such that the second condition of Lemma 3.1
holds;

(3) |wa, (2)] < |wq, (z)| for all z € R;

(4) limsup,_, | o Q?E:) < 400.

=

Then there exists p € Ko such that the system
(1) is (Vr,a, @, a, A, 0)-10SS with A = 0 and new

measuring functions we, Wg, Wa, ws, where
Vr =Vir + p(Var) , (8)

and the new measuring functions are wq(s) :=
|wa, (8)] + |wa, (5)|, wals) = lwa, (s)] + |wa, ()],
we(8) = |wa,(s)] and we(s) = |wy, (s)| +
|we, (s)]- u

Note that the second condition of Lemma 3.1 does
not hold for Vi in Theorem 3.1. Hence, we need
an extra condition on the bounding functions. In
the next result, we consider a stronger condition
for the Lyapunov function Vir, so that we can
relax the condition 4 of the Theorem 3.1.

Theorem 3.2. Suppose that:

(1) the system (1) is (Vir,a;,@1,a1,A1,01)-
IOSS with measuring functions wy , wg,,
Wy, Wy, , Wey, Where Ay = 0, and there exist
kq,R1 € Koo, such that the second condition
of Lemma 3.1 holds;

(2) the system (1) is (Var,a,, @, as,A2,02)-
I0SS with measuring functions wg,, wa,,
Way, Wx,, We, and there exist k,,%2 € Koo,
such that the second condition of Lemma 3.1
holds;

(3) |wa, (2)| < |wq, (z)| for all z € R™.

Then there exist p1, p2 € Ko such that the system

(1) is (Vr,a, @, a, A, 0)-10SS with A = 0 and new
measuring functions we, wg, Wa, Ws, where

Vr = pr(Vit) + p2(Var)

and the new measuring functions are wq(s)
|wa, (5)| + |wa, (5)], wals) = |wz, (s)] + |wg,(s)
wa(s) = |wa, (s)| + [wa,(s)] and we(s)
[wg, (5)] + |we, (s)].

—~~
=)
~—

4. APPLICATIONS
4.1 Application 1: a LaSalle criterion for ISS

We present an application of Theorem 3.1 which
is novel. The application illustrates a discrete-time
version of the continuous-time result presented
in (Angeli, 1999). The results of (Angeli, 1999)
were useful in PD control of robot manipulators.
Consider the system (1). Let T* > 0 be given, and
for all T € (0,7*) the following conditions hold:

(1) the system (1) is (Vir,ay,@1,a1,A1,01)-
IOSS with measuring functions w, () =
wg, () = T, wa, () = M(z) =Y, wo, (v) = u,
and \; = 0;

(2) the system (1) is (Var,aq,, @2, a2, A2,09
I0SS with measuring functions wg, ()

~—

Wa,(T) = Wa,(7) = =, wy, () = h(z) =y
and w,,(u) = wu; the second condition of
Lemma 3.1 holds since wy, (z) = wg, () =
Was, (T);



(3) |’LU)\2 (:L’)| = |wo;\1 EZ'))| = h(m) =y, Vr € Rn;

(4) limsup,_, | o o) < oo

Hence, all conditions of Theorem 3.1 hold. Then,
applying Theorem 3.1 and defining the new I0SS
Lyapunov function Vi as in (23), we obtain that
there exist a, @, a, o such that

alz]) < Vr < a(|z]) (10)
Vr(Fr) = Vr < =Toflz]) + To(lul) . (11)

Therefore, the system (1) is IOSS with measuring
functions wy(r) = wg(r) = wa(r) = z and
wy(u) = u, where A = 0. By Definition 3.2 and
Lemma 3.5 of (Jiang and Wang, 2001), we can
conclude that the system (1) is ISS. Note that the
property of IOSS with measuring functions stated
in conditions 1 and 2 are respectively referred to
in (Angeli, 1999) as quasi input to state stability
(qISS) and IOSS properties.

4.2 Application 2: Positive semidefinite input to
state stable (ISS) Lyapunov functions

This application deals with systems with positive
semidefinite Lyapunov functions. It is motivated
by the work on stability with positive semidefinite
Lyapunov functions by (Grizzle and Kang, 2001),
(Iggidr et al., 1996). Consider the system (1). Let
T* > 0 be given, and for all T € (0,7*) the
following conditions hold:

(1) the system (1) is (Vir,qq,@1,aq,A1,01)-

IOSS with measuring functions wy (), wg, (),

Wa, (T), We, (u) = uw, where A\; = 0 and
Wg (x)| is positive semidefinite, and there
exist k;,k1 € K, such that the second con-
dition of Lemma 3.1 holds;

(2) the system (1) is (Var,a,, @2, a9, A2, 09)-

IOSS with measuring functions wy, (), wg, (),

Was, (T), Wi, (T), Wy, (u) = u, where |w22 (:r)|
is positive semidefinite, and there exist k,, kK2 €
Koo, such that the second condition of Lemma
3.1 holds;

(3) [wr, ()] < wa, ()], Vo € R,

(4) there exists Ka,Ka, ka € Koo, such that
ha(le) < |wg, @)] + |wa, (@), Kallzl) >
|wa, (2)] + |wa, (2)] and kq(|2]) < Jwa, ()| +
|wa, (2)|, Y € R™.

Hence, all conditions of Theorem 3.2 hold. Then,
applying Theorem 3.2 and define the new Lya-
punov function Vr as in (32), we obtain

aora(lz]) < a|wa, ()] + [wa, (2)]) < Vr
< o(|wa, (2)] + Jws, (2)|) S @0 ra(lz]) ,  (12)
Vr(Fr) =Vr < To(ju]) = Ta(jwa, ()]
+ [wa, (2)]) (13)
< To(lu]) = Taoka(|z])

Therefore, the system (1) is IOSS with measuring
functions wa(z) = wa(z) = wa(z) = z, we(u) =

u, where A = 0. A special case of this application
is the case of cascade-connected systems:

g1 = Fr(ze, zx)

14
Zp+1 = Gr(zg, ug) , (14)

which has been presented in (Ne§i¢ and Teel,
2001b) to prove ISS property of a cascade-
connection of two ISS discrete-time systems. In
this case, denote the states of the overall system
as 7 := (z7 2T)T, & € R, we have

(1) the Lyapunov function Vir with measuring
functions wy (%) = wg, () = wa, () = z,
wy, () = z and o1 =0, so that k;, &1 exist;

(2) the Lyapunov function Vor with measuring
functions wy, (%) = wg,(Z) = wa, (T) = 2,
Wo, (u) = u and A2 = 0, so that k,, K2 exist;

(3) |wx, (#)] = |wa, ()| = 2, VI € R";

(4) Ka,Kka ka € Koo exist, since |w21 (5:)| +
|wa, (#)] = |wa, (2)] + |wa, (#)] = [wa, (B)] +
|wa, (2)] = || + |2] = |].

Hence, by substitution to (12), (13) we obtain ISS
characterization for the system (14).

5. PROOF OF MAIN RESULTS

In this section, we provide the proof of Theorems
3.1 and 3.2. Due to limited space, we only provide
the sketch of the proof of Lemma 3.1. Readers are
referred to (Laila and Negi¢, 2001) for complete
results and proofs.

Sketch of proof of Lemma 3.1 Suppose that
all conditions in Lemma 3.1 are satisfied. From

the Mean Value Theorem and the fact that ¢(-) =

d2(.) is nondecreasing, it follows that

ds
pla) = p(b) < gl@)a—tl, Va>0,b>0. (15)
We also use (2) and (3) to arrive at
Vr > max{a(|wg (2)]), Ta(Jwa (2)])
—To(jws(w)]) = TA(wa(x))}  (16)

Vr(Fr) < a(jws()])
+T"0(|wo (W)]) + T*A(lwa(@)]) - (17)

Let T € (0,7*), where T* > 0 comes from the first
condition of the lemma. The proof is carried out
by considering the following three cases, where in
each of them we consider the sub-cases Vr(Fr) <
%VT and VT(FT) > %VT:

Case 1: A(jwx (#)]) + o (w)]) < Sa(wa()])
Using the fact that ¢ € SN, (16) and the second
condition of the Lemma, then

p(Vr(Fr)) — p(Vr)

18
<Ly Laonllua@l)-alua@l) .

Case 2: A(wx(2)]) + o(lw, (W) > a(jwa(@)])
and A(Jwa(@)]) > o(|w, (u)])



Using (2), the fact that ¢ € SN, (16), the
second condition of the Lemma, A(|lwx(z)|) >
+a(Jwq (z)) and (7), then

p(Vr(Fr)) — p(Vr)
< 2Tqo Ox(Jwa(z)]) - A(Jwa(@)])
T

1
~ 540 500 &(jwa(@)]) - aljwa(@)]) -

(19)

Case 3: A(jun(2)]) + o(lw, (@) > La(lwa (@)
and A (2)]) < o(Jwo ()]

Using (2), the fact that ¢ € SN, (16), the
second condition of the Lemma, o(|w,(u)]) >
+a(Jwq (z)|) and (6), then

p(Vr(Fr)) — p(Vr)
< 2Tqo0 0, (|ws(u)]) - o(|ws (u)])
T

1
— 540 500 &(jwa(@)]) - aljwa(@)]) -

(20)

We obtain through these three cases that the
following holds:

p(Vr(Fr)) — p(Vr(2))
< T (240 0, (jws (w)]) - o (fs ()]
(21)
+2 0 6 (|wa(@)]) - Alwa(2)])

1 1
- J1° a0 alwa(@))) - allwa@))] .
which completes the proof of Lemma 3.1. [ |

Proof of Theorem 3.1 Let all conditions of the
theorem be satisfied. Let 77 > 0 and 75 > 0
respectively come from conditions 1 and 2, and
define T := min{T}", T }. Consider arbitrary T’ €
(0,T*). Let Vir, a1, o1 come from the condition
1 and Vo, as, Ag, 0 come from the condition 2.
Define ¢ as:

. : a1 (s)
= inf —————— . 22
i) = S R (22)
Notice that ¢ is by definition a nondecreasing func-
tion. Condition 4 of the theorem implies ¢(r) > 0
for all » > 0. Let ¢(s) :==qgo 0;21 (s), where 6, is
defined in (7). By using ¢ to obtain p via (5), we

define Vr as:

Vrp :=Vir + p(VQT) . (23)

We claim that the system (1) is (Vr, @, @, a, A, 0)-
IOSS with A = 0 and the measuring functions
given in the statement of Theorem 3.1.

It follows from the definition of V7 that
a; (|wa, ()]) + p o ay(|wa, (2)]) < Vr
<@ (|lwg, (z)]) + poa(lwg,(z)]) . (24)
By Remark 1, there exist o, @ € K such that
a(|wa, ()] + |wa, (2)]) < Vr
<a(|wg, (2)] + |wa,(z)]) . (25)

In particular, we can take a(s; + s2) := a4 (s1) +
poay(s2) and @(sy + s2) 1= @1(s1) + p o @2(s2).

Moreover, using (22), condition 3 of the theorem
and let a), 5,0} come from Lemma 3.1, the
dissipation inequality for V7 becomes:

Vr(Fr) —Vr
< T o1 (wa, (W) + o4 (s, (1))
— as (jwa, (@)]) + Xy (|wa, (@)
~ a(jwas (@)))] (26)
< T o1 (wa, (W) + o4 (s, (1))

o1 ([, () )Ao (|, ()
T T (o, @)

— a1 (W, (2)]) = b ([was (@)])] -

(x

Since
A2(|wa, (2)])
L+ X2 (Jwa, (2)])

by monotonicity of ¢ and using Remark 1, there
exist a € Ko and o € K so that we can write

<1,

Vr(Fr) = Vr < =To(|wa, (z)] + [was, (2)])
+ To(|we, (W)] + wo, (uw)]) - (27)

In particular, we can take a(s; +s2) := af(s2) and
o(s1 + s2) := o1(s1) + 05(s2). This completes the
proof of Theorem 3.1. ]

Proof of Theorem 3.2 Let all conditions of the
theorem be satisfied. Let 77" > 0 and 75 > 0
respectively come from conditions 1 and 2, and
define T* := min{7}, Ty }. Consider arbitrary T' €
(0,T*). Let Vir, a1, o1 come from the condition
1 and Vop, as, A2, 02 come from the condition 2.
Define a function o} € Ko as follows

' L al(s)
@i (s) = {/\2(3) for large s.

for small s, (28)

It is clear that &f(s) = Olay(s)] for s — 07.
Hence, by Lemma 2.1 there exists ¢ € SN
such that ¢i(s) - ai(s) > «f(s). Further, define
a function A, € K:

Ay(s) = 50 (s) (29)

1
2
and it is clear that Ay(s) = O[Ay(s)] for s = +o0.
Then by Lemma 2.2, there exists ¢ € SN such

that g2(s) - Aa(s) < Ay(s). Let

wls) =43 om 00’ (29)  (30)
B() = 3320 0,1(5) (1)

Hence, by using ¢1, g2 to obtain py, ps € Ko, via
(5), we define Vr as:

Vr == p1(Vit) + p2(Var) , (32)

Using condition 3 of the theorem, we claim that
the system (1) is (Vp, a, @, a, A, 0)-I0SS with A =
0 and the measuring functions given in the state-
ment of Theorem 3.2.



It follows from the definition of Vi that

proa(|wa, (2)]) + p2 0 ay(|wa, ()|) < Vi
< pro @ (|wg, (2)]) + p2 0 W (|wg, (2)]) - (33)
By Remark 1, there exist a,@ € K, such that

o|wa, ()| + Jwy, (x)]) < Vi
<a(|lwg, ()| + [wa, (z)]) . (34)

In particular, we can take a(s; + s2) := p1 o
a;(81) +p200,(s2) and @(s1 +82) := proday(s1)+
p2 0@ (s2). Also, from the choice of p; and ps, by
Lemma 3.1 we have the new supply functions for
p1(ViT) and p2(Var) are respectively of, of and
ab, Ny, ob. Then by condition 3 of the theorem
and using (29), we have

Vr(Fr) —Vr
< Toy(Jwo, (w)]) + o5 ([we, (w)]) (35)

— (e () = 504 (1w, ()]

Finally, using Remark 1, there exist ¢ € K and
a € Ko that

Vi (Fr) = Ve < T [o(jwg, (u)] + [we, (u))
— a(jwa, (0)] + [was (0)))] - (36)

In particular, we can take a(sy + s2) 1= Laf(s1) +
ab(se) and o(sy + s2) = oi(s1) + 05(s2). This
completes the proof of Theorem 3.2. [ |

6. CONCLUSIONS

We have presented results on changing supply
rates for discrete-time I0SS systems. The results
are important for a range of problems in analysis
and controller design for discrete-time systems,
such as a LaSalle criterion for ISS and testing
ISS via positive semidefinite Lyapunov functions.
We have generalized our results and have shown a
practical application in (Laila and Nesi¢, 2001).
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