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Abstract: A novel formulation for the problem of optimal controller order reduction
for con tinuous-timelinear systems is presented. The H2 or the H1-norms of the
error realization betw een the full and the reduced order controlled systems are used
as optimization criteria. Linear matrix inequality optimization problems provide the
upper and the low er bounds required for the branch and bound algorithm used to solve
the order reduction problem. The convergence in �nite time to the global optimum is
assured. An example illustrates the results.
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1. INTRODUCTION

The problem of model reduction has been deeply
investigated in the last three decades. As a mat-
ter of fact, a low order model which accurately
represents a higher order plant can be very use-
ful for analysis and synthesis of con trol systems.
Moreover, low order con trollers can be easily
implemented in practical situations (Joshi and
Kelkar, 1998).

In the literature, there are several model reduction
methods such as the truncated balanced realiza-
tion (Moore, 1981) and the Hankel normmodel re-
duction (Glover, 1984). Essentially , these methods
eliminate less signi�cant states (those associated
to small singular values) to obtain the reduced
order system.
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More recently, the H2 and the H1-norms of the
transfer function realization of the error betw een
the reduced and the original system have been
used as optimization criteria for model reduc-
tion. These problems can be formulated in terms
of Linear Matrix Inequalities (LMIs) with some
coupling variables, being solved by means of it-
erativ e procedures with no con vergenceassured
(Assun�c~ao and Peres, 1999b), (Helmersson, 1994),
(Valentin and Duc, 1997). Only very recently a
global optimization approach based on a branch-
and-bound algorithm has been proposed to solve
the H2-norm model reduction problem (Assun�c~ao
and Peres, 1999a).

On the other hand, LMI and other optimization
methods have been extensively used to design
optimal and robust con trollerswith several dif-
feren t performance speci�cations (Boyd and Bar-
ratt, 1991). However, the resulting optimal con-
troller order can sometimes be very high (in most
cases the controller order is equal or higher than
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the order of the plant). It would be of great impor-
tance and enormous practical interest to obtain a
similar controller (representing minor losses in the
closed-loop performance) with lower order. Stan-
dard model reduction techniques could be used to
provide a low order model to the controller, but no
guarantee can be done with respect to the overall
performance of the controlled system.

In this paper, the problem of controller order
reduction is formulated in terms of the optimal be-
havior of the closed-loop controlled system. First,
it is assumed that a (possibly higher order) con-
troller has been previously determined to cope
with the design speci�cations. Then, the low order
controller is obtained through an optimization
procedure which minimizes the H2 or the H1-
norms of the transfer function realization of the
error between the full order controlled system and
the reduced order one. The optimization problem
is formulated in the state space representation by
means of Bilinear Matrix Inequalities (BMIs), be-
ing solved by a branch-and-bound algorithm. This
class of global optimization methods has been
used in control system problems ((VanAntwerp et
al., 1997), (VanAntwerp and Braatz, 2000)) and
in BMI optimization problems involving scalar
variables (Goh et al., 1994). Although exhibit-
ing sometimes slow convergence, the branch-and-
bound algorithm attains the global optimum in
�nite time. The main idea is to divide itera-
tively the parameter space while lower and up-
per bounds to the objective function are derived
from convex LMI optimization problems (this al-
gorithm has been applied for model reduction
purposes in (Assun�c~ao and Peres, 1999a)). An
example illustrates the proposed method.

2. PROBLEM STATEMENT

Consider the following linear time-invariant sys-
tem

_x(t) = Ax(t) +B1w(t) +B2u(t)
y(t) = C1x(t) +Du(t)
z(t) = C2x(t)

(1)

with A 2 R
n�n

, B1 2 R
n�r

, B2 2 R
n�m

,

C1 2 R
s�n

, D 2 R
s�m

and C2 2 R
p�n

. It
is assumed that a k-order linear controller has
been determined to cope with some design speci-
�cations. The controller state space realization is
given by
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with A
k
2 R

k�k

, B
k
2 R

k�p

and C
k
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.
The closed-loop system (assumed asymptotically

stable) composed by the controller connected to
the plant is given by
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being denoted as
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The controller order reduction problem can be
formulated as follows. Given the system (1) and
the full order controller (2) (that is, the closed-
loop matrices A

f
, B

f
and C

f
), �nd a r-order

controller (r < k) with the state space realization
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r
x
r
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r
z(t)
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r
x
k
(t)

(5)

where A
r
2 R

r�r

, B
r
2 R

r�p

and C
r
2 R

m�r

such that the closed-loop system feedback by the
reduced order controller given by

2
64

A B2Cr B1

B
r
C2 A

r
0

C1 DC
r

0

3
75 (6)

exhibits a dynamical behavior as close as possible
to the original one.

In terms of the norms of the transfer function error
realization, the problem can be formulated as: �nd
matrices (A

r
; B

r
; C

r
) such that theH2 or theH1-

norms of the transfer function
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is minimized. The above transfer function repre-
sents the di�erence between the full order and the
reduced order controlled systems (see the block
diagram in �gure 1).

In the sequel, the problems of optimal H2 and
H1-norms controller order reduction are formu-
lated in terms of coupled LMIs. For details con-
cerning the state space computation of H2 and
H1-norms via LMIs and also about Schur's com-
plement see, for instance, (Boyd et al., 1994) and
(Palhares et al., 1997).
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Fig. 1. Error between the full order and the
reduced order controlled systems.

3. H2-NORM CONTROLLER ORDER
REDUCTION

TheH2-norm of a state space realization ( ~A; ~B; ~C)
can be calculated through the following optimiza-
tion problem:

� = min Tr (R)

s.t.

�
R ~CP

P ~C 0 P

�
� 0

�
~AP + P ~A0 ~B

~B0 �I

�
� 0 (8)

P > 0

Partitioning matrix P 2 R
(n+k+n+r)�(n+k+n+r)

as follows
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2
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with P11 2 R
(n+k)�(n+k)

, P22 2 R
n�n

, P33 2

R
r�r

and taking into account the de�nition of
( ~A; ~B; ~C) in (7), one gets
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where � denote symmetric element.

For a �xed order r, the variables of the prob-
lem are: A

r
, B

r
, C

r
and the submatrices of P

and R. There are several bilinear terms in the
above BMIs such as DC
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C2P23, Ar

P33 and their trans-
poses. Although some previous algebraic manipu-
lations could simplify or even discard a few cou-
pling variables, a branch and bound algorithm
(very similar to the one proposed in (Assun�c~ao
and Peres, 1999a) for model reduction) can be
applied to solve the problem. Note that the objec-
tive function Tr(R) depends on the optimization
variables (A

r
; B

r
; C

r
; P;R) which belong to the

parameter space denoted by Q. If A
r
, B

r
and C

r

are given, � = min Tr(R) under the constraints
of (10) equals the H2-norm square of the error
transfer function realization (7).

4. H1-NORM CONTROLLER ORDER
REDUCTION

The H1-norm of a transfer function with a state
space realization ( ~A; ~B; ~C) is given by 
 and can
be computed through the following optimization
procedure:
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P > 0

where P 2 R
(n+k+n+r)�(n+k+n+r)

is partitioned
as in (9). Taking into account the de�nition of the
error transfer function (7) and the submatrices of
P , the equation (11) can be rewritten as
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As in the H2-norm case, there are several bilinear
products in the above optimization procedure,
which could perhaps be avoided by previous al-
gebraic manipulation. Nevertheless, the branch
and bound algorithm proposed in (Assun�c~ao and
Peres, 1999a) can be applied to solve the problem.

5. THE BRANCH AND BOUND ALGORITHM

Branch and bound algorithms are global opti-
mization techniques that can be applied to NP-
hard problems, �nding the global minimum of a

possibly nonconvex function f : R
l

! R over
an l-dimensional rectangle Q. The rectangle is
iteratively gridded until the global optimum is
attained within a given � precision. As discussed in
(Goh et al., 1994), the branch and bound method
can be viewed as a clever way of gridding that uses
upper and lower bounds to progressively re�ne the
areas of interest (thus avoiding the need of an
extensive grid covering the entire domain). The
procedure ends when the di�erence between the
upper and the lower bounds is less than �.

A branch and bound algorithm for this kind of
problem has been presented in (Assun�c~ao and
Peres, 1999a), with a discussion about the con-
vergence issues. Details concerning branch and
bound algorithms can be found in (Ryoo and
Sahinidis, 1995).

The determination of upper and lower bounds can
be achieved through LMI (convex) optimization
problems, in both H2 and H1 cases.

5.1 Upper bound

Consider the controller order reduction problems
presented in sections 3 and 4. An upper bound to
the error between the original controlled system
and the reduced order one can be obtained by
�xing A

r
= Â

r
, B

r
= B̂

r
and C

r
= Ĉ

r
, that is,

imposing a constraint on Q such that
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It is important to stress that if the triple
(A

r
; B

r
; C

r
) is �xed, problems (10) and (12) are

LMI optimization problems which can be eÆ-
ciently solved by means of polynomial type pro-
cedures (Gahinet et al., 1995).

5.2 Lower bound

A relaxation technique can be used to provide
a lower bound �

L
to the transfer function error

realization. This can be done by simply creating
new variables W1 = C

r
P
0

13, W2 = C
r
P
0
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C
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r
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r
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r
in problems (10) and (12). Clearly, the

optimal solution �
L
of the relaxed problems is

such that

�(Ar;Br;Cr)2Q � �
L

(14)

As in the upper bound case, the above LMI
optimization problem can be eÆciently solved in
polynomial time.

5.3 Construction of Q

The controller order reduction problems presented
in sections 3 and 4 do not impose natural con-
straints to the variables (which are in fact the
elements of matrices A

r
, B

r
, C

r
, R, P , W

j
, j =

1; : : : ; 9). The hyperectangleQ can be constructed
by solving 2N

t
LMI optimization problems, where

N
t
is the total number of variables. Denoting by

x 2 R
Nt the vector of all variables, solve:

min x
i

s.t. the relaxed LMIs hold

i = 1; : : : ; N
t

max x
i

s.t. the relaxed LMIs hold

i = 1; : : : ; N
t

As a result,

x
min

i
� x

i
� x

max

i
; x

i
the ith element of x;

is obtained.

5.4 Convergence Analysis

A branch and bound algorithm minimizes � if
there exist two functions �

L
and �

U
over the

region Q such that

C1. �
L
yields a lower bound and �

U
an upper

bound on �, i.e.

�
L
� � � �

U

for every hyperectangle Q.



C2. Let Size(Q) denote the length of the longest
side of the hyperectangle Q, then as Size(Q) !
0, �

U
(Q) � �

L
(Q) ! 0 uniformly, i.e. 8 � > 0

9 Æ > 0, such that,

Size(Q) � Æ ) �
U
(Q)��

L
(Q) � �

As it can be veri�ed, �
U

and �
L

previously
de�ned ful�l conditionsC1 andC2. ConditionC1
follows immediately from equations (13) and (14);
if the largest side ofQ is iteratively reduced by the
algorithm, C2 is also satis�ed. With C1 and C2,
the algorithm converges to the global optimum in
a �nite time (see (Balakrishnan et al., 1991)).

The branch and bound algorithm proposed here
involves the construction of a search tree with LMI
optimization problems at each node. Although
the LMIs are eÆciently solved, the manipulation
of the hyperectangle Q requires some heuristic
which is expected to reduce the total number of
calculations to solve the problem, compared to
an exhaustive gridding of the parameter domain.
In the following, the algorithm is presented (see
(Balakrishnan and Boyd, 1992) for details con-
cerning general branch and bound algorithms).

5.5 The Algorithm

In the following description, k stands for the itera-
tion index, L

k
denotes the list of active rectangles

at k iteration, Q
i
is the ith rectangle belonging to

the list L
k
(subdivision of the initial rectangle Q),

�
Lk

the lower bound, �
Uk

the upper bound at the
end of k iterations, and � > 0 is a �xed precision.

1. Set: k = 0, L0 = fQg, L0 = �
L
(Q), U0 =

�
U
(Q).

2. Repeat f
R1. pick Q

i
2 L

k
such that �

L
(Q

i
) = L

k
;

R2. split Q
i
along one of its longest edges into

Q
I
and Q

II
;

R3. L
k+1 := (L

k
� fQ

i
g)

S
fQ

I
;Q

II
g;

R4. L
k+1 := min

Qi2Lk+1
�
L
(Q

i
);

R5. U
k+1 := min

Qi2Lk+1
�
U
(Q

i
);

R6. k := k + 1.
g until U

k
� L

k
< �.

Note that, at step R3, the rectangle Q
i
from steps

R1 and R2 is removed from the list L
k
, while the

two new partitions Q
I
and Q

II
are added. New

minimal lower and upper bounds are obtained at
steps R4 and R5, respectively. At each iteration,
a pruning can be done by eliminating from list L

k

the rectangles Q
i
2 L

k
that satisfy

�
L
(Q

i
) > U

k

thus reducing the storage requirements. The re-
quirement that the rectangles are splited along
their longest edges assures a uniform bound to the

condition number of the rectangles in the partition
(see (Balakrishnan and Boyd, 1992) for details).

6. NUMERICAL EXAMPLE

To illustrate the controller order reduction me-
thod 2 proposed in the paper, an example is
presented. It consists on the optimal H2-norm
controller order reduction of a third order system
given by

G(s) =
9

s3 + 6s2 + 11s+ 6

feedback by a third order controller

C(s) =
20:8

s3 + 15s2 + 74s+ 120

yielding the following closed-loop transfer func-
tion

H(s)=
9s3 + 135s2 + 666s+ 1080

s6+21s5+175s4+735s3+1623:99s2+:::

:::+ 1763:99s+ 907:2

The aim is to obtain a �rst order model (i.e. r = 1)
for the controller such that the H2 norm of the
error between the full order closed-loop system
and the system feedback by the reduced order
controller is minimized.

The reduced controller determined by the branch
and bound method proposed is

C
r
(s) =

0:6054

s+ 3:3075

The algorithm required 105 iterations to reduce
the H2-norm of the error to 2:92� 10�2.

The closed-loop system feedback with the reduced
order controller is given by

H
r
(s) =

9s+ 29:76

s4 + 9:31s3 + 30:84s2 + 42:38s+ 25:29

Figure 2 shows the impulse responses of both
closed-loop con�gurations. It can be noted that
the system feedback by the reduced order con-
troller performs as good as the full order con-
trolled one.

7. CONCLUSION

The problem of controller order reduction has
been formulated in terms of the closed-loop sys-
tem behavior. A branch and bound algorithm

2 The branch and bound algorithm has been implemented

using the software LMI Control Toolbox (Gahinet et al.,

1995).
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Fig. 2. Impulse responses of the full order
controlled system (solid) and the system
feedback by the reduced order controller
(dashed).

has been applied to the solve the problem using
as criteria the H2 or the H1-norms of the er-
ror transfer function. The global optimal solution
(with a given � accuracy) is achieved in a �nite
number of iterations.
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