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Abstract: This paper presents a robust Adaptive Fuzzy Neural Controller (AFNC)
suitable for identification and control of a class of uncertain MIMO nonlinear
systems. The proposed controller has the following salient features: (1) Self-
organizing fuzzy neural structure, i.e. fuzzy control rules can be generated or
deleted automatically; (2) Online learning ability of uncertain MIMO nonlinear
systems; (3) Fast learning speed; (4) Adaptive control; (5) Robust control,
where global stability of the system is established using the Lyapunov approach.
Simulation example is included to confirm the validity and performance of the

proposed control algorithm.
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1. INTRODUCTION

Design of robust adaptive controllers suitable for
real-time control of MIMO nonlinear systems is
one of the most challenging tasks for many control
engineers, especially when the nonlinear system is
required to manoeuvre very quickly under exter-
nal disturbances. In the last few decades, intel-
ligent control using fuzzy logic and neural net-
works has undergone rapid development leading
to global stability and tracking results for reason-
ably large classes of nonlinear systems.

Fuzzy logic provides human reasoning capabil-
ities to capture uncertainties, which cannot be
described by precise mathematical models. Neural
networks offer exciting advantages such as adap-
tive learning, parallelism, fault tolerance and gen-
eralization. They have been proven to be very
powerful techniques in the discipline of system
control, especially when the controlled system
is hard to be modeled mathematically, or when

the controlled system has large uncertainties and
strong nonlinearities. Therefore, fuzzy logic and
neural networks have been greatly adopted in
model-free adaptive control of nonlinear systems
(Brown and Harris, 1994; Wang, 1997). Further-
more, a few hybrid techniques were applied to
adaptation of parameters in fuzzy and/or neural
controllers, like sliding mode control (Chang,
2001), Bayesian probability (MacKay, 1995), ge-
netic algorithms (Park et al., 1994), neuron-like
structure (Berenji and Khedkar, 1992), hybrid pi-
sigma network (Jin et al., 1995) and RBF neural
networks (Jang et al., 1997). However, it turns out
that only adjustment of parameters will not be
sufficient in many cases. For example, if the num-
ber of fuzzy rules or number of hidden layers and
neurons is very large, real-time implementation
will be difficult or impossible. More importantly,
this reduces the flexibility and numerical process-
ing capability of the controller and results in re-
dundant or inefficient computation. Therefore, the



controller structure needs to be adaptive so that
a compact fuzzy or neural control system can be
obtained. Various techniques has been attempted
to adapt fuzzy or neural control structure, such as
genetic algorithms (Jin, 1998), evolution strate-
gies (Jin et al., 1999), backpropagation network
(Nie and Linkens, 1995) and wavelets (Cannon
and Slotine, 1995). However, they have difficulties
in initialization of the control structure and the
associated parameters, and problem with either
BP or wavelets algorithm is that the learning and
adaptation speed are slow.

This motivates us to investigate adaptive learning
algorithms for constructing a fuzzy and/or neural
control system systematically and automatically.
The resulting intelligent controller must have fast
online adaptability to guarantee good real-time
control performance. In line with this objective,
we propose a new Adaptive Fuzzy Neural Con-
troller (AFNC), which is built based on a Gener-
alized Fuzzy Neural Network (G-FNN) controller
of (Gao et al., 2001) employing the Generalized
Fuzzy Neural Network (G-FNN) learning algo-
rithm. The G-FNN algorithm offers a fast online
learning algorithm, which can recruit or delete
fuzzy control rules or neurons dynamically with-
out predefinition of the structure. Its outstand-
ing computational efficiency in terms of learning
speed, adaptability and generalization has been
verified in one of our latest work (Wu et al., 2001).
In essence, the G-FNN algorithm enables the G-
FNN controller to successfully model the nonlin-
ear system dynamics and its uncertainties online.

The rest of the paper is organized as follows.
Section 2 introduces the dynamic model of a class
of MIMO nonlinear systems under consideration.
This is followed by Section 3 that describes the
design procedure of the AFNC in details. Conver-
gence of the G-FNN controller and global stabil-
ity of the closed-loop control system are proven
using the Lyapunov theory. Section 4 presents
simulation results and discussions on a two-link
robot manipulator. Finally, Section 5 concludes
the paper.

2. MIMO NONLINEAR SYSTEM DYNAMICS

The class of nth-order MIMO nonlinear sys-
tems considered in this paper, termed companion
form or controllability canonical form, is given by
(Slotine and Li, 1991):

2" =F(z) + G(z)u+D (1)
where

e u € R and z € R™ are the input and out-
put vectors of the MIMO nonlinear system
respectively. Such systems are called square

system since they have as many control in-
puts as outputs to be controlled.

Z
Z
° 7z = € R™" is the state vector of
Z(n;l)
the system.

e F(z) €¢ R and G(z) € R™*™ represent
smooth nonlinearities of the dynamic system.

e D € R™ is an unknown function represent-
ing system uncertainties and external distur-
bances.

Since we require that the MIMO nonlinear system
(1) is controllable, the input gain G(z) needs to
be invertible for all z € U, C R™". Functions F,
G and D are assumed to be bounded.

3. ADAPTIVE FUZZY NEURAL
IDENTIFICATION OF NONLINEAR
SYSTEMS

In the context of using Generalized Fuzzy Neural
Networks (G-FNN) directly for nonlinear control,
G-FNN is viewed as a means of system identifi-
cation, or even a framework for knowledge repre-
sentation. The knowledge about system dynamics
and mapping characteristics are implicitly stored
within the network. In this section, adaptive fuzzy
neural identification of MIMO nonlinear systems
using G-FNN is elaborated ' .

Inverse modelling of dynamical systems plays a
crucial role in a range of control problems, which
will become apparent in the next section. In
this paper, direct modelling of system’s inverse
dynamics by the G-FNN as illustrated in Figure
1, is attempted. It can be easily derived from (1)
that the inverse dynamics of the nonlinear system
is given by:

u(z) = G(z) [z ~F(z) - D] = Q(z) (2)

where vector z = e Rm(n+1) The G-

7(™)
FNN is trained to obtain an estimate of the
inverse dynamics, Q, i.e. the one-to-one mapping
relationship from z to u. This is achieved by
applying the G-FNN learning algorithm, which is
able to determine the appropriate structure and
parameters of a fuzzy neural system to estimate
the mapping relationship.

The resulting G-FNN can therefore be used to es-
timate the input signal ug_ gy of the nonlinear
system given the desired output vector z. From
(3) (Wu et al., 2001) and (2), the output of the
G-FNN can be shown to be

1 Detailed description of G-FNN architecture and G-FNN
learning algorithm can be referred to (Wu et al., 2001).



Fig. 1. G-FNN inverse modelling of a nonlinear
system

ue_rnn(EW) =Q@EZW) =W'e3zZ) (3)

The optimal parameter W* for a given regressor
vector ®(Z) is defined as follows:

W* = argmin[sup [|2(z) - QZW)[]] (4)
zeU.

According to the universal approximation theo-
rem, there exists W* such that €(z|W*) can
approximate €2(z) as close as possible (Chang,
2001). In this paper, we assume that the approx-
imation error is negligible, and therefore (2) can
be approximated by the G-FNN as follows:

w(@) = ug_pyn(EWY) = WIdEZ) (5

4. ADAPTIVE FUZZY NEURAL CONTROL
OF NONLINEAR SYSTEMS

4.1 Adaptive Fuzzy Neural Control Structure

The objective of this paper is to design a robust
Adaptive Fuzzy Neural Controller (AFNC) for a
class of MIMO nonlinear systems in companion
form (1), which guarantees boundedness of all
closed-loop variables and tracking of a given de-
sired signal z4(t). We define the tracking error e
and the tracking error vector e as follows:

e
é
e=z5—z€cRN", e=

e R™ (6)
e(n;l)
If the parameters of the plant dynamics are well
known, the perfect control law u* can be designed

by the well-known feedback linearization method
(Slotine and Li, 1991) as follows:

u' =G(z) '[zy) - F(z) -D+Ke] (7)
=u(zZy) + G(z) 'Ke (8)

z
where the vector zg = [ (_n)] e R+ and
Zq

the matrix K = [K” K, 1 Kl] c pmxmn

which contains real numbers. Substituting (7) into
(1) yields

e™ +Kie" V4. +K,e=0 (9)

which implies that the tracking error will converge
to zero with proper choice of K. This can be
done by choosing K such that all roots of the
polynomial s” + Kys" ' 4+ ... + K, = 0 are in
the open left-half plane.

However, external disturbances and unmodeled
dynamics represented by D are unknown in prac-
tice. Therefore, we cannot implement the perfect
control law. To circumvent this problem, the G-
FNN is proposed to generate an optimal control
law to approximate the perfect control law. The
executed perfect control law is obtained by sub-
stituting (5) into (8) and it is given by

ut = W7®(z,) + G(z) 'Ke (10)

The configuration of our proposed robust AFNC
system is depicted in Figure 2. The G-FNN con-
troller is connected in parallel with the PD-like
controller to generate a compensated control sig-
nal. The control law of the AFNC is given by

u. = W'd(z,) + Ke (11)

Fig. 2. Adaptive Fuzzy Neural Control Structure

In other words, the G-FNN controller is formed in
such a way that it captures the inverse dynamic of
the controlled system, i.e. the mapping relation-
ship from z to u.. This is achieved by applying the
G-FNN learning algorithm, which is able to de-
termine the appropriate structure and parameters
of a fuzzy neural system to estimate the desired
mapping relationship. Its online learning ability
enables parameters of the G-FNN, like ¢;;, o0y
and W (0), to be obtained during real-time control
of the plant. After the initial value of the weight
vector W(0) is obtained from the G-FNN learning
algorithm, W is further adjusted and obtained by
the adaptive law derived in Section 4.2. This is
to compensate for modeling errors of the G-FNN
learning algorithm and fulfill stability requirement
of the entire control system. The stability of the
AFNC system is proven in Section 4.3.



4.2 Convergence Analysis of AFNC

From (1), (10) and (11), the system tracking error
equation can be shown to be

é=Ae+ B’ —u,) (12)
0 I 0 O 0
0 0 0 0
A= : : I B = :
0 0 oo I 0
K, -K, .. K, G(z)
Substituting (10) and (11) into (12), we have
é=Ae+B[(W* - W)"®(z,)] (13)
0 I 0
0 0 0
A= : : K :
0 0 I
-G(2)K, -G2)K,-1 ... -G(z2)K;

Equation (13) shows that only W need to be
further adjusted to minimize the tracking error.
The adaptive law of W is designed as follows:

w; = kde’ Pb;

i=1...m (14)

where W = [w; wa...wy,], B=[b1 ba...by],
Kk is a positive constant, m is the number of
input variables of the nonlinear system or number
of output variables of the G-FNN, i.e. each w;
is a column vector associated with each output
variable, and P is a symmetric positive definite
matrix that satisfies the following relationship:

PA +ATP =-Q (15)

where Q is a symmetric positive definite matrix
and is selected by the user. To guarantee stability
of the control system, the G-FNN must converge,
which requires the parameters of the G-FNN to
be bounded. (3) (Wu et al., 2001) shows that the
outputs of the G-FNN are bounded if the weights
W are bounded. Define the constraint set I' for
W as follows:

L = {|lwil| < [[w:(0)I[}

i=1...m (16)

where ||.|| denotes two-norm of a vector. Accord-
ing to the projection algorithm (Wang, 1997), the
adaptation law (14) can be modified as follows:

k®e’ Pb;
if (|[wil] < |[lw;(0)[])
or
(Iwill = [[w:i(0)]| and w ®e” Pb; < 0)(17)
T
WiW; T
r(I— )®e’ Pb;
[[w[?

if (||w;|] = [|w:(0)|] and wiT@QTPbZ- > 0)

W, =

Concerning the boundedness of the weights of the
G-FNN, we have

Theorem 4.1. If the initial values of the weights
w;(0) € T, the adaptation law (17) guarantees
Wz(t) el Vit > 0.

Proof: Consider the following Lyapunov function

1
T
Vo = -w; wy

: (18)

Taking the derivative of the Lyapunov function
with respect to time

Vy = wlw; (19)

When (||w;|| = [|wi(0)|| and w] ®e’Pb; < 0),
Vp < 0 Thus, it can be guaranteed that ||w;|| <
[Iwi(0)]]. When (|[w;]| = [|w;(0)|| and w; ®e”Pb; >
0), Vs = 0. Thus, ||w;|| < ||w;(0)|| is also guaran-
teed. Since the initial value ||w;|| < ||w;(0)|] using
the LLS method discussed in Appendix A.2, W is

bounded by the constraint set I for all ¢ > 0. O

4.8 Stability Analysis of AFNC

Concerning the stability of the closed-loop system,
we have the following theorem

Theorem 4.2. Consider the MIMO nonlinear dy-
namic system represented by (1). If the robust
control law of (11) and the adaptive law of (17)
are applied, asymptotic stability is guaranteed.

Proof: We consider the following Lyapunov func-
tion candidate, which is based on (13),

V(t) = 2e"Pe + %m_ltr[(w* ~W)T (W — W]

¢
(20)
Taking the derivative of the Lyapunov function in

(20) and using (13) and (15), we have

: 1 1 :
V(t)=-&"Pe+ QQTPQ — k(W = W)TW)

2
=- %QTQQ +e"PB(W*
—W)T'd — xHr[(W* — W)TW] (21)
Under condition 1 of (17), (21) becomes
V(t) = —%gTQg +e"PB(W* —W)T®
—trle’ PB(W* — W)T @]
= —%QTQQ <0 (22)



Under condition 2 of (17) and assuming that
w;i € T', (21) becomes

- Z[a - %)w?@gTPbi] (23)

*\T
Since w; € I" and 1 — (‘rlzﬂ)ill‘;w >0

V(t) < *%QTQQ <0 (24)

(20), (22) and (24) show that V(¢)
V(t) < 0. Furthermore, (22) shows the V (t) = 0 if
and only if € = 0, and (23) implies that V(t) = 0
if and only if V(¢) = 0. Therefore, global stability
is guaranteed by the Lyapunov theorem. By using
Barbalat’s lemma (Slotine and Li, 1991), it can be
shown that e(t) — 0 as t — co. As a result, the
control system is asymptotically stable. Moreover,
the tracking error of the system will converge to
Zero. (N

v
o
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o

5. SIMULATION STUDIES

In this simulation example, we verify the validity
of the proposed AFNC design on tracking control
of a two-link robot manipulator depicted in Figure
3. The dynamic equation of the manipulator used
in (Slotine and Li, 1991) is given by

d=-M(q) 'Q(q,q) + M(q)~'7

—M(q) "'y (25)
where
M(q)11 = a1 + 2a3 cos gz + 2a4 sin g2
M(q)12 = az + ag cos g2 + a4 sin go
M(q)21 = az + a3 cos gz + a4 sin gz
M(q)22 = a2

Q(q,dq)1 = —(azsinga — a4 cos q2)41G2
— (a3 singz — a4 cos g2)(g1 + 42)g2
Q(q,q)2 = (assings — ay cos ¢2)4;
ay =T, +mql? + I, +mel? +m.l3
ag = I, +mel?,
a3 = Melilee cOS Op
ag = Melilee sin e
where M is the 2 x 2 inertia matrix of the manipu-
lator, Q is the 2 x 1 vector of centrifugal, Coriolis,
friction forces and gravity, 7 is the 2 x 1 vector
of input torque generated by the joint motor, q,

q and q are 2 x 1 vectors of output link accelera-
tion, velocity and position respectively, and 74 is

the 2 x 1 vector of unknown terms arising from
unmodeled dynamics and external disturbance, .

Fig. 3. Articulated Two-Link Robot Manipulator

Parameters of the two-link planar manipulator
used for the simulation are: mass of link 1, m; =
1kg; length of link 1, L; = 1m; mass of link 2
and payload, m. = 2kg; angle of payload with
respect to link 2, . = 30°; centroidal moment of
inertia of link 1, I; = 0.12kgm?; length of CG
of link 1 from the axis of rotation, L.y = 0.5m;
centroidal moment of inertia of link 2 and payload,
I, = 0.25kgm?; length of CG of link 2 and
payload from the axis of rotation, L.. = 0.6m.
Initial conditions are chosen as ¢ = ¢2 = 0 rad,
1 = 42 = 0 rad/sec and §; = o = 0 rad/sec?.
The desired trajectory is an ellipse in g1 — g2 plane
not starting from the initial position with q41 =
1.5sin(27t) rad and qgo = 0.7 cos(27t) rad. In a
real system, there always exist uncertainties and
disturbances. Hence, we deliberately introduce
disturbances 741 = 100sin(27t) Nm and 742 =
50sin(27t) Nm, which are comparable to the
control torques of the robot manipulator. The
gains of the PD-like controller are selected as
Ko = diag[25,25] and Ky = diag[7,7].

ws J%u

Fig. 5. Gaussian Fuzzy Membership Functions
w.r.t Input Training Variable



bl
——
Ihel

.
:
.
‘

Fig. 6. Norm of the Weight Vectors w; and wo for
AFNC
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Fig. 7. Control Responses for the 2-Link Manipu-
lator using AFNC

Using the G-FNN learning algorithm, the fuzzy
neural structure and parameters are generated
simultaneously and automatically. In this simula-
tion, a total of six fuzzy rules are generated online
as shown in Figure 4. The corresponding Gaussian
fuzzy membership functions were obtained with
respect to the input training variables as shown in
Figure 5. It can be seen that the membership func-
tions are evenly distributed over the input training
interval. This is in line with the aspiration of
“local representation” in fuzzy logic. The weight
vectors ||w1]|| and ||wz|| are bounded throughout
the control process as shown in Figure 6 even with
online structure and parameter learning. Figure 7
shows control responses using AFNC. The results
clearly demonstrate that the two links were able to
track the desired trajectories from third trial on-
wards. It should be highlighted that for g2, whose
initial position was set to be 100% error from the
desired initial link position, i.e. ¢2(0) = 0, the
link was still able to catch up with the desired
trajectory very fast without any overshoot.

6. CONCLUSIONS

In this paper, an adaptive fuzzy neural con-
trol scheme for a class of nonlinear systems was
proposed and its adaptive capability to handle
modeling errors and external disturbances was
demonstrated. The error convergence rate with
the AFNC was found to be fast. Asymptotic sta-
bility of the control system is established using
Lyapunov approach. Computer simulation studies
of a two-link robot manipulator the flexibility,
adaptation and tracking performance of the pro-
posed AFNC.
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