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Abstract: In this paper, the fault diagnosis problem for a class of nonlinear multiple-
input multiple-output (MIMO) systems with uncertainty is investigated. Under some
geometric conditions, the system is transformed into two different subsystems. One is
in the generalized observer canonical form and is not affected by actuator faults, so
a nonlinear sliding mode observer for this subsystem is constructed. The other whose
states can be measured is affected by the faults. The observation scheme is then used
for actuator fault diagnosis with good accuracy. Extension to sensor fault diagnosis
is also made. Finally, a numerical example is used to illustrate the efficiency of the
proposed method.
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1. INTRODUCTION

There is an increasing demand for dynamic sys-
tems to become more safe and reliable. Fault
diagnosis including fault detection and isolation
(FDI) can help to improve plant efficiency, main-
tainability and reliability by early detection and
accommodation of system failures. The design and
analysis of FDI algorithms and their applications
have received considerable attention during the
past two decades. Fruitful results can be found
in several survey papers (Isermann, 1984; Frank,
1990) and books (Gertler, 1998; Chen and Pat-
ton, 1999).

However, most research work on FDI has been
concentrated on linear systems, and only lim-
ited results for nonlinear systems have been re-
ported, for example, see an early work (Seliger and
Frank, 1991) using unknown input observer ap-
proach, (Hammouri et al., 1999; Polycarpou and
Trunov, 2000; Jiang et al., 2001) based on non-

linear observers, (Staroswiecki and Comtet-Varga,
2001; Zhang et al., 1998) based on parity space ap-
proaches and (Cocquempot and Christophe, 2000)
on the relationship between the two methods.

Sliding mode observers are a particular class of
nonlinear observer, adapting ideas from the field
of sliding mode control (Utkin, 1992). The main
idea is to generate unbiased estimates of the
system states despite the modelling errors and
disturbance. This can be achieved by specifying
extra conditions involving the sliding surfaces on
the observer. Sliding mode observers have been
used for fault detection: Sreedhar et al (Screedhar
and Fernandez, 1993) considered the use of slid-
ing mode observer under the assumption that
full state measurements were available. Hermans
and Zarrop (Hermans and Zarrop, 1996) designed
an observer in such a way that in the presence
of a fault the sliding motion was destroyed. In
(Edwards et al., 2000), Edwards et al dealt with
observer design to maintain a sliding motion even
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in the presence of faults which are detected by
analysing the so-called equivalent output injec-
tion. Recently, some research results have been
obtained on fault diagnosis via a variable struc-
ture adaptive observer (Chen et al., 2000) and
FPRG based on sliding mode observer (Djemai
et al., 2000).

In this paper, we extend the results of fault di-
agnosis in (Jiang et al., 1999) to a class of non-
linear systems with uncertainty via sliding mode
observer. At first, under some geometric condi-
tions, the system is transformed into two different
subsystems. One is in the generalized observer
canonical form which is not affected by actuator
faults. As a generalization of the observer design
approach in (Walcott and Zak, 1988), a sliding
mode observer design is proposed for the first
subsystem. The other whose states can be mea-
sured is affected by the actuator faults. By using
the estimations of states, we can approximate the
actuator faults with certain accuracy from the
second subsystem. The proposed method can be
extended to sensor fault diagnosis.

This paper is organized as follows. Section 2 gives
geometric conditions under which the original
nonlinear system with uncertainty and actuator
fault can be transformed into a desired form. A
sliding mode observer is designed for the trans-
formed system in section 3. In section 4, actua-
tor fault estimation is investigated. Extension to
sensor fault diagnosis is discussed in section 5. A
numerical example is included in section 6.

2. MIMO SYSTEM DESCRIPTION AND
SOME PRELIMINARIES

Consider the following affine nonlinear system
with uncertainty

ẋ = f(x) +4f(x, ξ) +
m

∑

i=1

qi(x)ui

+
d

∑

j=1

ej(x)faj (1)

y = [h1(x), · · · , hl(x), hl+1(x), · · · , hr(x)]τ (2)

where the state is x ∈ Rn, the input is u =
[u1, · · · um]τ ∈ Rm, and the output is y ∈ Rr.
The actuator fault fault is represented by fa =
[fa1, · · · , fad]τ ∈ Rd with d ≤ r < n, and the
disturbance or modelling uncertainty is denoted
by 4f(x, ξ), where ξ is a unknown parameter
vector which is bounded. Furthermore, f(·), qi(·)
(i = 1, · · · , m) and ej(·)(j = 1, · · · , d) are smooth
vector fields, and h(·) is a smooth vector function.

As a generalization of observer canonical form
(OCF) in (Marino and Tomei, 1995), the following
definition is given:

Definition 1: The generalized observer canonical
form (GOCF) of system (1) and (2) is described
as

ż =
[

0l×l 0l×(n−l)
0(n−l)×l A

]

z + γ(y, u) +
[

4F1(z, ξ)
4F2(z, ξ)

]

+
d

∑

j=1

[

ψj(z)
0(n−l)×1

]

faj (3)

y =
[

Il×l 0l×(n−l)
0(r−l)×l C

]

z (4)

where

A = diag[A1, · · · , Ar−l]

C = diag[C1, · · · , Cr−l]

with (Ai, Ci) (i = 1, · · · , r − l) being in the
observer canonical form.

Assumption 1: ρ1 = · · · = ρl = 1,
∑r

i=1 ρi = n,
and the system is locally observable, i.e.

rank{dhi(x), · · · , d(Lρi−1
f hi) : 1 ≤ i ≤ r} = n

where he relative degree ρi of hi (i = 1, · · · , r) for
the system described by (1) and (2) is defined in
(Isidori, 1995) and denoted by:

ρi = min{s | Lqj L
s−1
f hi(x) 6= 0, j = 1, · · · ,m}

Lemma 1: Under Assumption 1, there exists a
global diffeomorphism z = N(x) with N(0) = 0
and z ∈ Rn, transforming (1) and (2) into GOCF
if and only if
(i) there exist r vector fields g1, · · · , gr satisfying

LgsL
k−1
f ht = δs,tδk,ρt ,

for 1 ≤ s ≤ r, 1 ≤ k ≤ ρt, 1 ≤ t ≤ r.
such that

[adi
fgs, adj

fgt] = 0,

for 1 ≤ s, t ≤ r, 0 ≤ i ≤ ρs − l, 0 ≤ j ≤ ρt − 1.
where δs,t = 0 for s 6= t, and δs,s = 1.
(ii) the vector fields

adi
fgs, 1 ≤ s ≤ r, 0 ≤ i ≤ ρi − 1.

are complete.
(iii) [qi, adj

fgs] = 0, for 1 ≤ i ≤ m, 0 ≤ j ≤ ρs−1,
and 1 ≤ s ≤ r.
(iv) ej =

∑l
i=1 ψji(z)gi for j = 1, · · · , d.

Proof: According to (Marino and Tomei, 1995),
conditions (i), (ii) and (iii) are necessary and suffi-
cient for (1) and (2) (with 4f(x) = 0 and fa = 0)
to be transformable via a global diffeomorphism
z = N(x) into

ż =
[

0l×l 0l×(n−l)
0(n−l)×l A

]

z + γ(y, u)



y =
[

Il×l 0(r−l)×l
0(n−l)×l C

]

z

where the change of coordinates is defined by

adi
fgs = (−1)i ∂

∂zi+1
s

, 0 ≤ i ≤ ρs − 1; 1 ≤ s ≤ r.

Condition (iv) is necessary and sufficient to trans-
form ej into [ψj 0(n−l)×1]τ whose last n − l ele-
ments are zero in z-coordinates, while 4F1(z, ξ)
and 4F2(z, ξ) in (3) can be described by

4F1(z, ξ) =







L4fh1
...

L4fhl





 (5)

4F2(z, ξ) =



























L4fh(l+1)
...

L
ρ(l+1)

4f h(l+1)
...

L4fhr
...

Lρr
4fhr



























(6)

This completes the proof. 2

Denote

z̄1
4
= [z1, · · · , zl]τ , z̄2

4
= [zl+1, · · · , zn]τ ;

ȳ1
4
= [y1, · · · , yl]τ , ȳ2

4
= [yl+1, · · · , yr]τ .

then the system (3) and (4) can be rewritten as

˙̄z1 = γ1(y, u) +4F1(z, ξ) + M(z)fa (7)

ȳ1 = z̄1 (8)
˙̄z2 = Az̄2 + γ2(y, u) +4F2(z, ξ) (9)

ȳ2 = Cz̄2 (10)

where

M(z) =







Le1h1 · · · Ledh1
... · · ·

...
Le1hl · · · Ledhl





 (11)

Assumption 2: There exist vector function B ∈
R(n−l)×(r−l), 4F̄2(z, ξ) ∈ R(n−l)×1 and scalar
functions αi(y)(i = 1, 2) such that

‖ 4F1(z, ξ) ‖≤ α1(y) (12)

4F2 = B4F̄2, ‖ 4F̄2(z, ξ) ‖≤ α2(y) (13)

Further more, C[sI − (A − KC)]−1B is strictly
positive real (SPR), where K is chosen such that
A−KC is stable.

Remark 1: The SPR requirement in the above
assumption is equivalent to the following:
For a given positive definite matrix Q > 0 ∈

R(n−l)×(n−l), there exists P > 0 ∈ R(n−l)×(n−l)

and L ∈ R(r−l)×(r−l), such that

(A−KC)τP + P (A−KC) =−Q (14)

LC = BτP (15)

Remark 2: Assumption 2 is somewhat restric-
tive. However, it can be satisfied for a class of
nonlinear systems with uncertainty, because of
some degree of freedom in designing matrices K
and Q (corresponding P ) in Eq.(14).

3. SLIDING MODE OBSERVER DESIGN

In this section, we design a sliding mode observer
for the subsystem which is not affected by any
faults.

Theorem 1: Under Assumption 2 , there exists
an exponentially convergent sliding mode observer
for the subsystem described by (9) and (10), and
the sliding mode observer is given by

d ˆ̄z2

dt
= A ˆ̄z2 + γ2(y, u) + K(ȳ2 − ˆ̄y2)

+α2(y)Bsign(Lȳ2 − L ˆ̄y2) (16)
ˆ̄y2 = C ˆ̄z2 (17)

where sign(·) denotes the usual sign vector func-
tion and L is given by (15).

Proof: Let ˜̄z2(t)
4
= z̄2(t) − ˆ̄z2. From (9), (10),(16)

and (17), the dynamic of observation error is given
by

d ˜̄z2

dt
= (A−KC) ˜̄z2(t)

+B[4F̄2 − α2(y)sign(Lȳ2 − L ˆ̄y2)] (18)

Consider the following Lyapunov function

V (t) = ( ˜̄z2)τ (t)P ˜̄z2(t) (19)

Its time derivative with respect to (18) is

V̇ (t) = ( ˜̄z2)τ [(A−KC)τP + P (A−KC)] ˜̄z2

+2( ˜̄z2)τPB

×[4F̄2 − α2(y)sign(Lȳ2 − L ˆ̄y2)] (20)

Substituting (13), (14) and (15) into (20) yields

V̇ (t)≤−[λmin(Q)] ‖ ˜̄z2 ‖2 +2 ‖ LC ˜̄z2 ‖‖ 4F̄2(z, ξ) ‖
−2α2(y) ‖ LC ˜̄z2 ‖

≤−[λmin(Q)] ‖ ˜̄z2 ‖2 (21)

Noting that

λmin(P ) ‖ ˜̄z2 ‖2≤ V ≤ λmax(P ) ‖ ˜̄z2 ‖2 (22)



one can further obtain

V̇ (t) ≤ −λmin(Q)
λmax(P )

V (t) (23)

Therefore, ˜̄z2(t) converges to zero exponentially.
This completes the proof.

Remark 3: Theorem 1 is a generalization of
sliding mode observer design in (Walcott and
Zak, 1988) to a class of nonlinear systems with
uncertainties.

4. ACTUATOR FAULT DIAGNOSIS

For our result, we need to make the following
assumption:

Assumption 3: rank M(z) = d, where M(z)
is defined in (11).

From the subsystem described by (7) and (8), one
can obtain

˙̄y1(t) = γ1(y(t), u(t)) +4F1(z, ξ)

+M(z(t))fa(t) (24)

Using the estimation ˆ̄z2 for z̄2 , we can estimate
the actuator/component fault as

f̂a(t) = (M̂τM̂)−1M̂τ (t)

×[ ˙̄y1(t)− γ1(y(t), u(t))] (25)

where M̂(t)
4
= M(ȳ1(t), ˆ̄z2(t)).

Let N(t)
4
= (MτM)−1Mτ (ȳ1(t), z̄2(t)), N̂(t)

4
=

(MτM)−1Mτ (ȳ1(t), ˆ̄z2(t), one has

fa(t)− f̂a(t) = (N(t)− N̂(t))

×[ ˙̄y1(t)− γ1(y(t), u(t))−4F1(z, ξ)]

−N̂(t)4F1(z, ξ) (26)

Note that actuator faults are not involved in
estimation of z̄2. Hence N̂(t) → N(t) if ˆ̄z2(t) →
z̄2(t). If fa(t) is uniformly bounded, then for a
arbitrarily given ε > 0, there exists t0 such that
for t > t0

‖ fa(t)− f̂a(t) ‖≤ ε + ‖ N̂(t))4F1(z, ξ) ‖(27)

On the other hand, from (12), one can get

‖ N̂(t)4F1(z, ξ) ‖≤ α1

√

λmax(N̂τ N̂) (28)

Therefore

‖ fa(t)− f̂a(t) ‖≤ α1

√

λmax(N̂τ N̂) + ε (29)

Remark 4: From (29), it can be seen that the
estimation error of the fault is bounded, which

can be used as the threshold for actuator fault
detection. Furthermore, we can obtain the accu-
rate estimation of the fault if α1 = 0 (it means
that the original nonlinear system can be partially
decoupled from the uncertainty).

Remark 5: The good feature of our method is
that it not only enables the actuator fault detec-
tion, but also provides the shape (amplitudes) of
actuator faults, which is very useful for fault ac-
commodation such as application to aircraft flight
control systems (Ochi and Kanai, 1991). Besides
this, it is easy to implement as the design is based
on the reduced-order observer.

Remark 6: Calculation of the output derivative
is required to estimate the fault. Because of the
presence of noise in practice, it is not easy to
compute the signal derivative. Evaluating out-
put derivative from noisy signals can be done
using either observer or specific algorithms, which
have been extensively investigated, for example in
(Dierckx, 1993), and used for analytic redundancy
based FDI of nonlinear systems in (Staroswiecki
and Comtet-Varga, 2001).

Remark 7: In (Jiang et al., 2001), adaptive
observer-based fault diagnosis was investigated for
a class of nonlinear systems with unknown con-
stant parameters. Comparatively, the proposed
approach in this paper works for nonlinear sys-
tems with time-varying uncertainties whose norm
bounds are available.

5. DISCUSSION ON SENSOR FAULT
DIAGNOSIS

In this section, we consider sensor fault diagnosis
using similar methods as in section 3 and section
4.

Consider the following nonlinear system with un-
certainty and sensor faults

ẋ = f(x) +4f(x, ξ) +
m

∑

i=1

qi(x)ui (30)

y = h(x) +
d

∑

j=1

ej(x)fsj (31)

where the sensor fault vector is fs = [fs1, · · · , fsd] ∈
Rd with d ≤ r, other notations are the same as in
section 2.

Similar to Definition 1, the robust observer canon-
ical form (GOCF) for the system described by (30)
and (31) is defined as follows:

Definition 2: GOCF of the system (30) and (31)
is described as



ż =
[

0l×l 0l×(n−l)
0(n−l)×l A

]

z + γ(y, u)

+
[

4F1(z, ξ)
4F2(z, ξ)

]

(32)

y =
[

Il×l 0l×(n−l)
0(r−l)×l C

]

z

+
d

∑

j=1

[

ψj(z)
0(r−l)×1

]

fsj (33)

with (A,C) being an observable pair.

Under the conditions in Lemma 1, the nonlinear
system in the sensor fault case can be transformed
into GOCF described by (32) and (33), which can
be rewritten as

˙̄z1 = γ1(y, u) +4F1(z, ξ) (34)

ȳ1 = z̄1 + D(z)fs (35)
˙̄z2 = Az̄2 + γ2(y, u) +4F2(z, ξ) (36)

ȳ2 = Cz̄2 (37)

It is assumed that D(z) in Eq.(35) is of full column
rank.

From (35), we estimate the sensor fault as

f̂s(t) = (D̂T D̂)−1D̂T (t)[ȳ1(t)− ˆ̄z1(t)] (38)

where D̂(t) = D( ˆ̄z1(t), ˆ̄z2(t)), ˆ̄z1(t) is derived
from (34) in which 4F1 is replaced by some
value chosen according to some specific problem
statement (e.g. 4F1 = 0), while ˆ̄z2(t) can be
obtained from (36) and (37), using the same
method as described in (14) and (15).

6. AN ILLUSTRATIVE EXAMPLE

Consider the following nonlinear system with un-
certainty

ẋ1 = −2x1x3 + 2x2fa

ẋ2 = x1 + 2x2
2x3 + 3x2

2cos(x1)ξ(t)
ẋ3 = x2 + u− fa

+ (x2 − 3x2x3)cos(x1)ξ(t)
y1 = x2

y2 = x3































(39)

where ξ(t) ∈ [0, 1] represents uncertain parame-
ter, fa stands for the actuator fault in the system.

It is easy to check that all the assumptions in
Theorem 1 hold. In fact, the relative degree are
ρ1 = 2, ρ2 = 1.

The transformation z = N(x) is described as

z1 = x2
z2 = x1 + 2x2x3

z3 = x3







(40)

Under this transformation, the nonlinear system
(39) is changed into the following GOCF

ż1 = z2 − 2y1y2 + 2y2
1y2

+ 3z2
1cos(z2 − 2z1z3)ξ(t)

ż2 = 2y2
1 + 4y2

1y2
2 + 2y1u

+ 2z2
1cos(z2 − 2z1z3)ξ(t)

y1 = z1























(41)

ż3 = y1 + u− fa

+ (z1 − 3z1z3)cos(z2 − 2z1z3)ξ(t)
y2 = z3







(42)

Note that the subsystem (41) can be written as

[

ż1

ż2

]

=
[

0 1
0 0

] [

z1

z2

]

+
[

−2y1y2 + 2y2
1y2

2y2
1 + 4y2

1y2
2 + 2y1u

]

+
[

3z2
1

2z2
1

]

cos(z2 − 2z1z3)ξ(t) (43)

y1 = [1 0]
[

z1

z2

]

(44)

Furthermore, one may choose

K = [−4 − 4]τ , Q =
[

8 1
1 4

]

Then

Ā =
[

0 1
0 0

]

+ [−4− 4]τ [1 0] =
[

−4 1
−4 0

]

The positive definite matrix P can be solved from
equations (14) and (15):

P =
[

3 −2
−2 3

]

, L = 5.

Thus, by simple calculation one can obtain

α1 =| y1 − 3y1y2 |, B = [3 2]τ ,

4F̄2 = z2
1cos(z2 − 2z1z3)ξ(t), α2 = y2

1

According to Theorem 1, there exists a sliding
mode observer given by (16) and (17). In the
simulation, ξ(t) = rand, the sampling period is
0.01s, the actuator fault considered is created as
follows

fa(t) =
{

0 for 0 ≤ t ≤ 2
sin(πt) for 2 < t ≤ 8 (45)

Figure 1-2 show the response of the observer and
estimation of the actuator fault as described by
(45) when there is sensor noise corrupting the
system. It can be seen that good estimation of
the actuator fault can be achieved even in the
presence of disturbance and noise. .
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