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Abstract: Some initial results on the disturbance properties of high order iterative learning
control (ILC) algorithms are presented. Of particular interest is to investigate how high
order ILC algorithms cope with measurement and load disturbances of different character.
Some results are obtained by assuming statistical properties of the involved disturbances
and deriving equations for the covariance matrix of the control error vector. The results are
illustrated by analytic derivation of the covariance matrix for a second order ILC algorithm
with a particular choice of design variables.
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1. INTRODUCTION

High order ILC algorithms have received an increas-
ing attention during the last years. Although most con-
tributions on ILC have been on the first order case,
the idea of utilizing the measurements from more than
the previous iteration has been covered in many ar-
ticles. In (Liang and Looze, 1993) two dimensional
transforms are used to analyze the behavior of the
system in both the time and the iteration directions.
In (Arimoto, 1991) the errors from previous iterations
are used in an indirect way. Chen et al. have also
investigated the use of high order ILC and the main
reference is (Chenet al., 1998), but the issue is also
discussed in (Chenet al., 1997a; Chenet al., 1997b).
High order ILC has also been covered in e.g., (Bien
and Huh, 1989), (Bien and Xu, 1998) and (Norrl¨of
and Gunnarsson, 1999). In (Norrl¨of, 2000) a frame-
work for dealing with high order ILC algorithms is
presented and some conditions for convergence are
presented. The purpose of this paper is to present
some initial results on the disturbance properties of
high order ILC algorithms. These aspects has not been

1 This work was supported by ISIS and CENIIT at Link¨opings
universitet.

addressed before for this class of ILC algorithms, as
the authors know about. It is also clear that this is a
very important aspect to study from a practical point
of view since, in real cases, disturbances will always
be present.

The paper is organized as follows. Section 2 gives an
introduction to linear iterative systems which is the
mathematical framework that will be used, and in Sec-
tion 3 the type of systems considered are described. A
framework for representing high order ILC-algorithms
is presented in Section 4, and Section 5 presents the
error equations that are obtained when the high order
algorithms are applied to the systems. The influence
of measurement and load disturbances are investigated
in Sections 6 and 7 respectively. Section 8 presents
an example and finally some conclusions are given in
Section 9.

2. LINEAR ITERATIVE SYSTEMS

To analyze the higher order ILC algorithms a system
structure called linear iterative systems will be used.
A general linear iterative system can be described by

zk+1 = Fzk + F rr (1)
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where for a first order linear iterative system

zk =
(
zk(0), . . . , zk(n− 1)

)T
(2)

and

r =
(
r(0), . . . , r(n− 1)

)T
(3)

For a high order (N th order) linear iterative system,

zk =
[
ζTk , . . . , ζ

T
k−N+1

]T
(4)

whereζk are defined as in (2).

As pointed out in (Norrl¨of, 2000) this class of systems
can be analyzed easily with standard linear discrete
time systems theory (Kailath, 1980; Rugh, 1996). Two
different measures of the size of a matrix are necessary
for this analysis. The first is the spectral radius which
is defined as,

ρ(F ) = max
i=1,... ,n

|λi(F )| (5)

whereλi(F ) is theith eigenvalue of the matrixF ∈
Rn×n. The second is the maximum singular value,
defined as,

σ̄(F ) =
√
ρ(F TF ) (6)

The maximum singular value gives a bound of the gain
of a matrix by the fact that,

‖Fx‖ ≤ σ̄(F )‖x‖
If the maximum singular value is less than one it is
clear that the norm of the result decreases every time
x is mapped byF . This is an important observation
that is used in many of the stability results for linear
iterative systems. The first result concerns bounded
input bounded output (BIBO) stability.

Theorem 1.(BIBO stability). If ρ(F ) < 1 in the lin-
ear iterative system,

zk+1 = Fzk + F rr

then the system is bounded-input, bounded-output sta-
ble.

This result is a straight-forward application of results
from linear systems theory, see e.g., (Rugh, 1996).
BIBO stability means that an inputr with bounded
norm generates a bounded outputzk for all k.

3. SYSTEM DESCRIPTION

The system description that will be used in this paper
is given by

zk = T rr + T uuk + Twwk (7a)

yk = zk + T vvk (7b)

wherer, uk,wk andvk denote reference signal, ILC
input signal, load and measurement disturbances re-
spectively. Furthermorezk and yk denote the con-
trolled and measured output signal. The signalszk,

r, uk, wk andvk in equation (7) are represented by
vectors containing the signal values in the sampling
points as in (2).

For a time and iteration invariant and causal system the
relationship between e.g., the reference signal and the
controlled output,T r, is described by a lower diagonal
Toeplitz matrix where the elements are the impulse
coefficients. If the system is linear time variant, the
matrixT r does not become a lower triangular Toeplitz
matrix but instead a general lower triangular matrix.
The matricesT u, Tw, andT v are given in the same
way.

When analyzing the high order ILC algorithms the
effect ofuk−j+1 for j ∈ [1, N ] is necessary to study
for stability. DefiningZk as

Zk =
[
zTk z

T
k−1 . . . z

T
k−N+1

]T
(8)

andR, Uk, Y k, W k, andV k analogous to (8), the
system can be described by

Zk = TrR+ TuUk + TwW k (9)

and

Y k = Zk + TvV k (10)

In equation (9) the matrixTr is a block diagonal
matrix where theN blocks are given byT r. The other
matrices are defined similarly.

4. HIGH ORDER ILC ALGORITHMS

A generalN -th order ILC algorithm can be written
according to,

uk+1 = Hu
1uk + . . .+Hu

Nuk−N+1

+He
1ek + . . .+He

Nek−N+1
(11)

whereek is the difference between the desired output
and the measured output, i.e.

ek = r − yk (12)

The matricesHe
j andHu

j are design variables deter-
mining the properties of the ILC algorithm. Defining
Uk andEk as in (8) theN -th order ILC algorithm can
be written as

Uk+1 = HuUk +HeEk (13)

where

Hu =


Hu

1 H
u
2 . . . Hu

N

I 0 . . . 0

. . .
. . .

...
0 . . . I 0

 He =


He

1 H
e
2 . . . He

N

0 0 . . . 0
...

...
...

0 0 . . . 0


(14)

From the general theory on linear iterative systems
presented in Section 2 it is straightforward to find a
stability condition, formulated in the following corol-
lary.



Corollary 2. (Stability, disturbance free case). The sys-
tem

yk = T rr + T uuk

controlled with the ILC updating equation from (13)
is stable if the spectral radius fulfills

ρ

(
F 1 F 2 . . . FN
I 0 . . . 0

. . .
. . .

...
0 . . . I 0


)
< 1

whereF j = Hu
j −He

jT u.

This corollary is a direct application of Theorem 1
when the system and the updating formula are put on
the linear iterative systems form. How this is done will
be shown in the next section. An even stronger result
than Corollary 2 is achieved when the spectral radius
is replaced by a condition on the singular value. If
this stronger condition is fulfilled then the norm of the
difference between the current control signal and the
control signal that the ILC algorithm ultimately will
converge to is monotonously decreasing.

5. ERROR EQUATIONS

From a performance viewpoint the quantity of main
interest is the error between the desired output and the
controlled output, i.e.

εk = r − zk (15)

This is different fromek in (12) becauseek is based
upon the measured output whileεk depends on the
true output (not corrupted by measurement noise). The
size ofεk will in the next sections be calculated when
considering the impact from measurement and load
disturbances.

Now some equations necessary for analyzing the prop-
erties of the error will be presented for the high order
ILC case. Using (9) and and the ILC algorithm in (11)
the error equation is given by

Ek+1 = (I − Tr)R − TuHeEk − TuHuUk

+ TuHeTvV k − TwW k+1
(16)

Furthermore, using

A = Hu − TuHe (17)

the input signal is given by the difference equation

Uk+1 = AUk +He(I − Tr)R
−HeTwW k −HeTvV k

(18)

or equivalently

Uk+1 =


F1 F2 . . . FN
I 0 . . . 0

. . .
. . .

...
0 . . . I 0

Uk +


N∑
j=1

He
j(I − Tr)

0
...
0

r

−


He

1 H
e
2 . . . He

N

0 0 . . . 0
...

...
...

0 0 . . . 0




Twwk + Tvvk
Twwk−1 + Tvvk−1

...
Twwk−N+1 + Tvvk−N+1


(19)

with F j = Hu
j − He

jT u. If it is assumed that
the matricesTu andHu commute the error equation
becomes

Ek+1 = (I −Hu)(I − Tr)R +AEk + BV k

+ (HuTwW k − TwW k+1)
(20)

with A from (17) and

B = TuHeTv (21)

Tu andHu commute when the matricesTu andHu
i

commute fori = 1, . . . , N . Although this equation
is obtained using the assumption that the matrices
Tu and Hu commute it will be the basis for the
following discussion. An obvious extension to the
results achieved below is to relax this assumption.

As a measure of the size of the errorEk the following
property will be used

Pk = E[EkETk ] (22)

In the two next sections the stationary value ofPk will
be used and denotedP .

6. MEASUREMENT DISTURBANCES

In most applications it is realistic to assume that the
load and measurement disturbances are uncorrelated,
and hence both types of disturbances could be handled
at the same time. For clarity in the presentation the
two disturbances will however be handled separately,
and in this section the influence of measurement dis-
turbances is investigated. Consider therefore equation
(20) in the case when the reference signal is zero,
i.e. R = 0, and there are no load disturbances, i.e.
W k = 0 ∀ k. The equation then becomes

Ek+1 = AEk + BV k (23)

By assuming some statistical properties of the mea-
surement disturbance the effects on the control error
can be found by computing the covariance matrix of
the error vector as in (22). In stationarityP is a block
matrix where the diagonal blocks equalE[εjεTj ] with
j = k − N + 1, . . . , k. Since it is assumed thatEk
has reached stationarity all diagonal blocks will be the
same. Introduce therefore

P = E[εkεTk ] (24)

Using e.g., a second order ILC algorithmP will be
a 2 × 2 block matrix where the two diagonal blocks



are given byP and the off-diagonal blocks represent
the quantityE[εkεTk−1]. In the next step it is assumed
that the covariance matrix of the measurement noise
vectors in each iteration is given by

Rv = E[vkvTk ] (25)

and that the measurement disturbance vectors in dif-
ferent iterations are uncorrelated. It is then possible to
introduce the covariance matrix

Rv = E[V kV
T
k ] (26)

which, using the assumptions above, is a block diago-
nal matrix with theN diagonal blocks given byRv.

Recall now the equation (23). Take both sides times its
transpose, apply the expectation operator and assume
that stationarity is reached. This gives that the covari-
ance matrix is found as the positive semi definite and
symmetric solution to the Lyapunov equation

P = APAT + BRvBT

+AE[EkV T
k ]BT + BE[V kETk ]AT

(27)

The cross terms are due to the fact that the vectors
Ek andV k are not uncorrelated. From the assumption
thatE[vkvk−j ] = 0 for all j 6= 0 and Equation (15)
it is clear thatE[EkV T

k ] is a block matrix with zeros
in and below the diagonal. This follows from the fact
thatE[εl−jvl] = 0 for j ≥ 0.

An immediate use of equation (27) is to compute the
covariance matrix for some proposed ILC algorithm.
This can be solved numerically using a standard Lya-
punov equation solver. An analytic solution can only
be expected in special cases, like the one presented in
Section 8.

7. LOAD DISTURBANCES

The influence of load disturbances are here analyzed
assuming that the reference signal is zero and that
there are no measurement disturbances. The error
equation (20) is then given by

Ek+1 = AEk + ∆k (28)

where

∆k = (HuTwW k − TwW k+1) (29)

Even though it is a standard assumption in ILC that
the operating conditions are repeatable it is realistic to
assume that there can be iteration dependent changes
in the load disturbance. This assumption motivates
the iteration index on the vectorW k. The simplest
case to analyze is however when the load disturbance
is iteration invariant, i.e.wk = wk+1 = w, which
implies

∆ = (Hu − I)TwW (30)

whereW now is iteration independent column vector
consisting of the vectorw repeatedN times. Assum-
ing Tw to be a unit matrix and using that

Hu − I =


Hu

1 − I Hu
2 . . . Hu

N

I −I . . . 0
. . .

. . .
...

0 . . . I −I

 (31)

the vector∆ will be zero provided that

N∑
k=1

Hu
k = I (32)

In order to have zero asymptotic error due to an itera-
tion invariant load disturbance (and reference signal) it
is necessary that condition (32) is satisfied. This result
is shown for the special case, a second order ILC al-
gorithm, in (Norrlöf, 2000) and (Bien and Huh, 1989).

When considering an iteration variant load distur-
bance some assumption concerning the properties of
the disturbance have to be made. Several different as-
sumptions are possible and the one that will be utilized
here is that the load disturbance consists of one itera-
tion invariant term and one randomly varying term, i.e.

wk = w + δw,k (33)

where the random vectorsδw,k from different itera-
tions are uncorrelated. Furthermore it is assumed that

E[δw,kδTw,k] = Rδ (34)

This implies

W k = W + ∆w,k (35)

where∆w,k =
[
δTw,k δ

T
w,k−1 . . . δ

T
w,k−N+1

]T
and

R∆,w = E[∆w,k∆T
w,k] (36)

is a block diagonal matrix havingRδ as diagonal
elements. Equation (35) implies that, provided that
(32) is satisfied,

∆k = HuTw∆w,k − Tw∆w,k+1 (37)

The covariance matrix of∆k is now given by

R∆ =HuTwR∆,w(HuTw)T (38)

+ TwR∆,wT Tw + cross terms (39)

where the cross terms occur due to the fact that∆w,k

and∆w,k+1 are correlated. When e.g.N = 2

E[∆w,k∆T
w,k+1] =

[
0 Rδ
0 0

]
and the cross terms are in this case given by

−HuTw
[
0 Rδ
0 0

]
T Tw − Tw

[
0 0
Rδ 0

]
(HuTw)T (40)

Similar to (27) an equation for the covariance of the
errorEk is given by

P = APAT +R∆

+AE[Ek∆T
k ] + E[∆kETk ]AT

(41)

which can be solved once the cross terms have been
decided.



8. EXAMPLE

To illustrate the derived expressions this section will
contain an example dealing with a second order ILC-
algorithm. Consider therefore a problem where the
matrixT u is invertible such that the design variables
He

i = µiT
−1
u i = 1, 2 can be used. Furthermore

the matricesHu
1 = r · I andHu

2 = (1 − r) · I are
chosen. The choice ofHu

1 andHu
2 is motivated by

the condition in equation (32). It can be notice that
a first order ILC algorithm is obtained as the special
caser = 1 andµ2 = 0. The design variables imply

A = Hu − TuHe =
(

(r − µ1) · I (1− r − µ2) · I
I 0

)
(42)

The aim is now to investigate how the choice of the
design variablesµ1, µ2 andr affects the properties of
the second order ILC algorithm.

8.1 Stability

A first requirement on the design variables is that the
algorithm is stable, and the condition for this is, see
Corollary 2 thatρ(A) < 1. Using the rule, see for
example (Kailath, 1980), for determinants of block
matrices

det
(
A D
C B

)
= detA · det(B − CA−1D) (43)

it is found that the eigenvalues ofA are determined by
the equation

λ2 + (µ1 − r)λ + (r + µ2 − 1) = 0 (44)

It is difficult to get immediate insight into how the
roots depend on the design variables, and therefore the
special caseµ1 = µ2 = µ is treated. Figure 1 shows
a plot of how the maximum eigenvalue ofA depends
onµ andr.
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Fig. 1. Maximum eigenvalue ofA as function ofµ and
r.

The plot verifies the observation in (44) that all the
all eigenvalues are placed in the origin for the choice
µ = r = 0.5. From a pure transient viewpoint this is a
desirable choice. Note that this is also achieved for all
designs whereµ1 = r andr + µ2 = 1.

8.2 Measurement disturbances

The design variables selected above and an assump-
tion thatTv equals the identity matrix imply that

B = TuHeTv =
(
µ1 · I µ2 · I

0 0

)
(45)

The cross term in the equation for the covariance
matrix contains the factor

E[EkV T
k ] = E

[
εkv

T
k εkv

T
k−1

εk−1v
T
k εk−1v

T
k−1

]
(46)

Using equation (20) it is found that all elements,
exceptE[εkvTk−1], are zero. For the non-zero element
equation (20) gives, assumingRv = I, that

E[εkvTk−1] = T uH
e
1T vRv = µ1 · I (47)

Due to these assumptions all blocks in the block
matrices involved will be diagonal and for solution of
equation (27) one can assignP to consist of diagonal
block matrices. Solving (27) under these conditions
gives

P =
r(µ1 + µ2)− µ2(µ1 − µ2)

(µ1 − µ2 − 2r)(r + µ2 − 2)
· I (48)

In the special caser = 0.5 andµ1 = µ2 = µ one gets

P =
µ

1.5− µ · I (49)

The covariance is a decreasing function ofµ which
means that a decreasing gain inHe gives a reduced
magnitude of the error. This is a logical result but it has
to be remembered that the choice ofµ also affects the
transient properties of the ILC algorithm. In Figure 1 it
is seen that usingr = 0.5 the choiceµ = 0.5 gives the
best transient properties, which yieldsP = 0.5·I. This
can be compared to the covariance matrix obtained for
a first order method, i.e.r = 1 andµ2 = 0, which is
given by

P =
µ1

2− µ1
(50)

Choosingµ1 = 1 which corresponds to the fastest
possible transient behavior the resulting covariance is
P = I. Using the second order algorithm hence gives
a reduction of the covariance matrix of the error.

8.3 Load disturbances

Recall now equation (41). In order to solve it for the
particular design variables studied here the involved
matrices have to be derived. The matrixA, which was
determined earlier in this section, is given by equation
(42). For the type of load disturbances defined by
equation (33) one gets

∆k =
(
rδw,k + (1 − r)δw,k−1 − δw,k+1

0

)
(51)

using equation (37). This implies

E[∆k∆T
k ] =

(
(r2 + (1− r)2 + 1) · I 0

0 0

)
(52)



where it has been assumed thatRδ = I. The cross
terms in (41), e.g. the term

AE[Ek∆T
k ] (53)

are somewhat more complicated to compute in this
case. After some calculations one obtains

E[Ek∆T
k ] =

(
(µ1(1− r) − r) · I 0

(r − 1) · I 0

)
(54)

Multiplying this matrix withA all terms in equation
(41) are derived. Analogous to the measurement dis-
turbance case one can assignP to be a block matrix
containing diagonal matrices. Solving for the diagonal
blockP this finally leads to

P =
2(µ2 + µ1(r − 1)− rµ2 − (r − 2)r)

(µ1 − µ2 − 2r)(r + µ2 − 2)
· I (55)

In order to get some intuitive insight into the proper-
ties of this matrix it is assumed, similarly to the study
of measurement disturbances, thatr = 0.5, µ1 =
µ2 = µ. This gives

P =
1.5

1.5− µ · I (56)

Also in this case it is advantageous to use a smallµ in
order to makeP small. Since the iteration varying part
of the load disturbance is independent between the
iterations this variation can not be tracked by the ILC
algorithm. It is therefore better to keep the updating
gain low. Also here there has to be a trade off between
the transient properties and the disturbance rejection.
Finally it should be noted that these conclusion con-
cerning load disturbances are highly dependent on the
particular assumption on the variations of the load
disturbances.

9. CONCLUSIONS

Some initial results concerning the disturbance prop-
erties of high order ILC algorithms have been derived.
This has resulted in some fairly general expressions
for the covariance matrix of the control error obtained
when a high order ILC algorithm is used for control
of a linear time invariant system. While the general
expressions are primarily suited for numerical evalu-
ation a second order example has been evaluated an-
alytically. The obtained expression clearly shows the
trade off between transient properties and disturbance
rejection.
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