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Abstract: In this paper we present a new design methodology to achieve high performances
in the setpoint following task by means of a standard Proportional-Integral (PI) controller.
In particular, a dynamic inversion procedure is adopted to synthesize a suitable command
input to the closed-loop control system. In this way, the Pl parameters can be selected for a
load rejection purpose, as the designed command input is capable to ensure in any case that a
desired output transition is accomplished with a low rise time and a small overshoot. A salient
feature of the technique is that it does not require a complex identification phase, as a simple
first-order plus time delay (FOPTD) model of the process, which can be easily obtained by
means of an open-loop step response, suffices. & Bpdroximation is then adopted to deal

with time delays. lllustrative examples show the effectiveness of the method, which preserves
all the basic characteristics of the Pl controllers and it is therefore suitable to be applied in an
industrial environmeniCopyright © 2002 IFAC
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1. INTRODUCTION jection. In general, the PI gains are properly tune for
the latter task and the setpoint following performances

Proportional-Integral (PI) controller are undoubtedly are somehow recovered by filtering the setpoint signal
the most adopted controllers in industrial settings, be- Or by applying a setpoint weighting (Shinskey, 1996).
cause of their capability to provide satisfactory per- However, it is obvious that in any case a decreasing in
formances for a wide range of plants, despite their the performances in the setpoint following task has to
simplicity. In fact, for many processes the derivative be expected.
term of the controller is not useful and it is often In this paper we propose a new design methodology
difficult to tune, so that practitioners prefer to avoid for the attainment of high performances in both the
its use (Astom and Higglund, 2000). load rejection and the setpoint following task. In par-
Many tuning formulas have been provided in the last ticular, the proposed method aims at finding a com-
sixty years to help the operator to find suitable values mand input to the closed-loop system (in which the
of the PI parameters depending on the process dynamP! controller has been properly tuned to guarantee
ics (see (O’Dwyer, 2000) for an excellent collection the load rejection specifications) in order to perform
of them). Nevertheless, because of the clear physicala desired output transition (from a setpoint value to
meaning of the parameters, in many cases the values ofinother) with no overshoot and with a defined rise
the controller gains are selected by hand from the op-time.
erator. As a result, the controller performances heav-Basically, the technique requires the modelling of the
ily depend on the operator skilfullness and it might plantwith a first-order plus time delay (FOPTD) trans-
happen that they are far away from the optimality. fer function (which can be obtained by simply evalu-
Besides, in many situations the operator has to faceating an open-loop step response) in which the time
the dilemma to tune the controller in order to achieve delay is expressed by a Radpproximation in order
either a good setpoint following or a good load re- to have a rational expression. On this basis, the PI
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Fig. 1. Theoverall controlscheme.

controlleris tunedby ary corventionaltechniquethat
ensuresatishctoryperformances theloadrejection
task (seefor example(Zhuangand Atherton, 1993)).
Then, a desired output function to be followed in
the responseof a setpointchangeis defined as a
“transition” polynomial (Piazzi and Visioli, 2001b)
andfinally the newv commandinput to be appliedto
the closed-loopsystemis determinedby adoptinga
stabledynamicinversiontechnique(Piazziand Visi-
oli, 2001a). Notethatthiscommandnputreplaceghe
conventionalstepsignalthatis very often adoptedo
attaina new setpointvalue.

2. METHODOLOGY

The designapproachwe proposerefersto the control
schemeshawn in Figure 1, wheregoodperformances
arerequiredin therejectionof theload disturbanced
aswell asin thetransitionof the systemoutputy from
one value to another The method proposedin this
paperbasicallyreliesin finding thecommandsignalr
thatprovidesanefficient systenmoutputtransitionwith
analreadytunedPI controller

2.1 Modeling

The modelling phaseis basedon a standardopen-
loop stepresponseevaluationin orderto determine
a FOPTD model of the plant. Specifically the well-

known areamethod (Astrom and Hagglund, 1995),
which is somavhat robustto the measurementoise,
canbeadoptedo determineatransferfunctionof the

procesghatcanbewritten as:

K s
e
Ts+1

P(s) = @

To obtain a rational transfer function, it has been
chosento write the exponentialterm expressingthe
time delayasathird orderPack approximationj.e.:

s 1—-05Ls+L%%/10—L3s%/120
~ 1+0.5Ls+L2s?/10+ L3s3/120

Thechoiceof theorderof the Pade approximatiorhas
beenmotivatedby the needto have agoodapproxima-
tion in a sufficient rangeof frequenciesin this way,

the approximatedprocesgransferfunction resultsto

be:

59 K 1-05Ls+L%$?/10—153%/120
Ts+11+0.5Ls+L2s?/10+ L3s3/120°
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L/Trange 0.1-1.0 1.1-2.0
ap 1.015 1.065
by -0.957 -0.673
ap 0.667  0.687
by -0.552  -0.427

Table 1. Tuning rulesfor the minimization
of the ISTE criterionfor loadrejection.

2.2 Tuning the PI controller

In orderto applythedynamicinversionbasednethod-
ology that will be presentedn the next, the Pl con-
troller can be tuned accordingto ary of the mary
methodsproposedn the literature or even by hand.
However, sincethe purposeof the dynamicinversion
procedureis the attainmentof high performancesn
the setpointfollowing task, disregarding of the con-
troller gains, it is sensibleto selectthe Pl parameters
aiming only at obtaininggood load rejection perfor
mances.

The PI controllertransferfunction be denotedasfol-
lows:

C(s)— Ko <1+ Tls) 3)

whereK, is theproportionalgain andT; is theintegral
time constant.Among the several tuning formulas
devised for the load rejection purpose we highlight
two of them,whichwill beemployedin theillustrative
examples(seeSection3). Thefirst is the well known
Ziegler-Nichols one (K, = 33T and T; = 3L); the
otheronehasbeenproposedn (ZhuangandAtherton,
1993) and aims at minimizing the ISTE criterion,
definedas

[oe]

I— / te(t)dt

0
wheree(t) is the systemerror (i.e. the differencebe-

tweenthe stepsetpointvalue andthe currentoutput).
To this purposeanalyticaltuningruleshave beenpro-

vided. They are:
by
o (L
KAT
1o (L\”
T TAT

where for corveniencethevaluesof a;, by, ag, by are
reportedn Tablel.

4

2.3 Output function design

As adesiredoutputfunctionthatdefinesthetransition
from asetpointvalueyp to anothery; (to beperformed
in the time intenval [0,T]) we choosea “transition”
polynomial (Piazziand Visioli, 2001), i.e a polyno-
mial function that satisfiesboundaryconditionsand
thatis parameterizedby the transitiontime 1. In the



following, without loss of generalitywe will assume
yo = 0, Formally, define

Y(t) = Copat® 4 copt? + -+ cat + o

The polynomialcoeficientscanbe uniquelyfoundby
solving the following linear system,in which bound-
ary conditionsat the endpointsof intenal [0,T] are
imposed:

yP(0) = 0; yP)(1) = 0

Theresultscanbeexpressedn closed-formasfollows
(t € [0,1)):

y(t(:r): ) e
2p+1)! _1)p-i . )
" pier i;)i!(p_i)!(zp—iJrl)thp o

The order of the polynomial can be selectedby im-
posing the order of continuity of the commandin-
put thatresultsfrom the dynamicinversionprocedure
(PiazziandVisioli, 2001b). Specifically if theplantis
modelledasa FOPTDtransferfunction (see(1)), its
relatve degreeis equalto one. Taking into account
that the relative degree of the PI1 controller is zero,
the relative degreeof the overall closed-loopsystem
is one.Thus,athird orderpolynomial(p = 1) sufiices
if a continuouscommandinput function is required.
Outsidetheinterval [0, T] the function y(t; 1) is equal
toOfort < O andequaltoy, fort > .

2.4 Determining the command input via dynamic
inversion
At this point we addresghe problemof finding the
commandsignalr(t; T) that providesthe desiredout-
put function (5). The closed-loogransferfunctionbe
denotedas

C(sP(s) _ by

T(s) ::m:%. (6)

As T(s) is nonminimumphase a stabledynamicin-
versionprocedures necessarythatis a boundedin-
put function hasto be foundin orderto producethe
desiredoutput.Denotethe setof all cause/dectfunc-
tion pairs(r(-),y(-)) associatedo T (s) by B. Now, in
orderto performthe stableinversion,we rewrite the
numeratoiof thetransferfunction (6) asfollows:

b(s) =b_(s)b(s)

whereb_(s) andb, (s) denotethe polynomialsasso-
ciatedto the zeroswith negative real partandpositive
real part respectiely (no purelyimaginaryzerosare
presenhaving chosere Pl controller(see(2) and(3)).

Now, considetheinversesystenof (6) whosetransfer
functioncanbewritten as:

T(s) !

whereyp andy; arerealconstantandHg(s), astrictly
properrationalfunction,representthezerodynamics.
This canbeuniquelydecomposedccordingto

c(s) d(s)
b-(s)  b.(s)

wherec(s) andd(s) are suitablepolynomials.Being
L theLaplacetransformoperatoydefine:

= Yo+ Y15+ Ho(9)

Ho(s) = Hy (8) +Hg () =

No (t) = L [Hy (9)]
ng(t) == £ Hg (9)]
Y(sT) = LIy(t;1)]

Theunstableeferencdunctionr,(t; 1) thatcauseshe
desiredoutput function y(t;T) can be simply deter
minedas:

ry(t;T) = ]

L7YT(9) 7Y (s1)
t

)+ [ ng (= vy
0

= yoy(t; 1) +yay P (t; T

t
+ s
0
Thus,we have that (ry(t; 1), y(t; 1)) € B andnotethat
ru(t;t) =0 if t € (—,0) andry(t;T) is unbounded
over [0, ) dueto theunstablezerodynamics(asso-
ciatedto Hy (s)).
Theunstablemodesassociateavith b, (s) bedenoted

by m(t), i =1,...,w. Then,thefollowing lemmare-
sults:

()

y(v;T)dv t € (—o0,+00).

Lemma 1. There exists real constantsk; € R, i =
0,...,wthatdependn positive time parameter such
that,fort >t

t
)av=ko(T ki(t
O/r] y(v;T)dv = +Z

Proof. Consideringhatt > T we canrewrite theinte-
gral of theabore Lemmaasfollows:

g (t—V)y(v; 1)dv —
(®)

n<v-waW+/n Vyidv.

O O .

As it is known ng(t), the impulse responseof the
unstablezero dynamicscan be expressedasa linear
combinationof themodesm(t):

No (t) = aamy(t) + - -+ cwm(t) )



wherea; € R,i=1,...,wareappropriateoeficients.
Taking into accountthe analytic expressionof the
transition polynomial y(t; 1) it then follows that the
integral fg ng (t —Vv)y(v;T)dv is a linear combination
of the modesm;(t) andits coeficients dependon .
On the other hand,examining the integral [ nJ (t —
v)y1dv we analogouslydeducehatit canbeexpressed
asalinearcombinationof themodesm;(t) plusacon-
stantaddendTherefore py virtue of (8) thestatement
of Lemmal follows. O
At this point, taking into accountLemmal we can
definethefollowing function:

re(t;T) == —iki(r)m(t) t € (—o, ). (10)

Thefollowing lemmaresults:

Lemma 2. Beingrc(t;T) thefunctiondefinedin (10),
we have

(re(t;1),0) € B VTER.

Proof. By examination of the differential equation
associatedo the systemdescribedby the transfer
functionG(s) = (b_(s)b.(s))/a(s) it follows thatthe
pair (rc(t; 1), 0) satisfiesthis equationover (—oo, +o).
O

Finally, we candefine the following function, which
performthe exactstableinversion:

r(t;T) =ry(t;T) +re(t;1) t € (—00,+).  (11)

Thefollowing propositioncanthereforebe stated.

Proposition 3. Thefunctionfunctionr (t; 1) definedin
(11) is boundedover (—o,+0) and(r (t; 1), y(t; 1)) €
B.

Proof. Taking into accountLemma?, it is evidently
(r(t;1),y(t;1)) € B by virtue of linear superposition.
Ontheotherhand r(t; 1) is, by constructionpounded
becauseof the exact cancellationof all the unstable
modesappearingn ry(t;T) (seeLemmal anddefini-
tion (10)). O
Summarizing the determinedfunctionr (t; 1) exactly
solves the stableinversion problemfor a family of
outputfunctions,which dependon the free transition
time 1. This transitiontime canbe arbitrarily selected
by the userdependingon the requiredperformances
andon the saturatiorevel of the actuator

Actually, from apracticalpointof view, in orderto use
thesynthesizedunction(11)it isnecessaro truncate
it, resultingthereforein anapproximategeneratiorof
the desiredoutputy(t; T). This canbe donewith arbi-
trarily precisiongivenary coupleof smallparameters
€0 > 0andg; > 0. Indeed,compute

to:=max{t’' cR:|r(t;1)| <go Vt € (—oo,t']}

anddefine

ts :=min{0,to}.

Similarly, compute

tri=min{t' € R: |r(t;1%) —y1| <& Vte [t/ 00)}

Hencetheapproximateeferencesignalto beactually
usedis

0 for t <tg
rt;t") for ts <t <t¢
V1 for t > t;.

Fa(t;1%) :=

Notethatts depend®nt andit mightoccurthatts < 0,
resultingin the so-called“preactioncontrol” (Marro
andPiazzi,1996).

3. ILLUSTRATIVE EXAMPLES
3.1 FOPTD system

As a first example we considera FOPTD system,
namely:

1 —5s
e
10s+1

P(s) =

ThePlI controllergainshave beenselectedy applying
the Ziegler-Nichols formulas. It resultsK, = 2 and
T; = 15.02. The systemoutputhasto performa tran-
sition from O to y; = 1. We fixed the transitiontime
T = 20. Consequentlythe desiredoutputfunction,ac-
cordingto (5) with p=1is:

2 3
y(t) = —ﬁt3+ ﬁtz.

By consideringhe Pade approximationsothat

~ 1

B(s) 1—2.5s+ 25/10s° — 125/12053

"~ 105+ 11+ 255+ 25/1082+ 125/12083

and by applying the dynamicinversionprocedureto
theresultingclosed-loopsystem(with g =1 = 104)

we obtainedthe input commandfunction shavn in

Figure2 in which it is evidentthe resultingpreaction
time ts = —10s (notethat, for corvenience the time
axishasbeenproperlyshiftedin orderto havets = 0).

The obtainedsystemoutputis reportedin Figure 3

with the correspondingontrolsignal.

It appearshatthe useof the designeccommandnput
function allows to perform a fast transition with a
very smallovershootTheimprovementachiezedwith

respectto the standardtechniquein which a step
setpointsignal is appliedto the closed-loopsystem
is evident by evaluating the systemoutput and the
control signal in this case,which are depictedin

Figure3 aswell. It canbe easilyseenthatthe settling
time, aswell asthe controleffort, is muchhigherthan
with the dynamicinversionbasedmethodology
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Fig. 2. Theoptimalreferenceeommandnput function
for the FOPTDsystem.

3.2 High order system

In orderto evaluatethe effectivenessof the new ap-
proachin thepresencef aroughapproximatiorof the
systemdynamics we considerthe high-orderprocess
(Astrom andHagglund,200()

First,we modelledthe proceswith a FOPTDtransfer
function,by meansf theareamethodyieldingK =1,
T =3.03andL=4.96,i.e.:

B(s) — 1  1-248s+2465*—1.028°
© 3.03s+11+248s+2.4682 +1.025

Then, we tuned the PI controller by meansof the
Ziegler-Nichols formulas (it resultsK, = 0.61 and
T; = 14.90) and we applied the dynamic inversion
basedmethodology The time to performa transition
from 0 to 1 has beenselectedas the settling time
(at 2%) of the open-loopsystem,which is equalto
14.82sThedeterminedcommandnputfunction(with
€0 — €1 — 1073) is shovn in Figure4. The preaction
time is ts = —8.9s. The correspondingystemoutput
andcontrolsignalarereportedn Figure5.
Analogouslywe alsoappliedthetuningmethodbased
on the minimization of the ISTE criterion (it results
Kp = 0.76 andT; = 14.81). With the samevalueof t
asbeforewe determinedhe commandnput function
showvn in Figure 6 (the preactiontime is ts — 9s).
Systemoutputandcontrolsignalareplottedin Figure
7. To better evaluatethe significanceof the results,
in Figure 8 it is plotted the systemoutputwith both
the P1 tuningmethodsvhena stepsignalis appliedto
the setpointat timet = 0 andto theload attimet =
200s.It appearshatthenew approactoutperformghe
classicone,disregardingthe factthat differenttuning
methodgwhich producesery differentperformances
in thesetpointfollowing andin theloadrejectiontask)
areadopted.
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Fig. 3. Thesystenoutputandthecontrolsignalfor the

FOPTD system(dynamicinversionand classic

approach).
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Fig. 4. The optimal commandinput function for the
high ordersystem(Z-N tuning).
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Fig. 5. The systemoutputand the control signal for
the high ordersystem(Z-N tuning).
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Fig. 6. The optimal commandinput function for the
high ordersystem(ISTE tuning).
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Fig. 7. The systemoutputand the control signal for
thehigh ordersystem(ISTE tuning).
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Fig. 8. The systemoutputfor the high-ordersystem
(classicapproach).

4. CONCLUSIONS

In this paperwe have presenteda new approach,
basedon dynamicinversion,for the improvementof
the setpointfollowing task of a Pl controller It has
beenshawvn that the control schemesin which the
proposedechniqueis adoptedoutperformthe classic
ones disrggardingthe tuning methodemployedto set
the Pl parameterandthe factthatthe processs sim-
ply modelledwith a FOPTDtransferfunction. In this
way, boththeloadrejectionandthesetpointfollowing
requirementsan be satisfied.As the dynamicinver-
sionprocedurds appliedto the standarctlosed-loop,
schemethe know-how in the generaluse of the Pl
controlleris fully retainedandthereforethe approach
appeargo be suitableto be usedin industrial ervi-
ronment,wherethe operatorcan setthe free design
parameter to dealwith actuatorconstraints.
Futurework will be devotedto extendthe technique
to PID controllerandto theadoptionof morecomple
identificationmethodto improve the performances.
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