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Abstract: In this paper we present a new design methodology to achieve high performances
in the setpoint following task by means of a standard Proportional-Integral (PI) controller.
In particular, a dynamic inversion procedure is adopted to synthesize a suitable command
input to the closed-loop control system. In this way, the PI parameters can be selected for a
load rejection purpose, as the designed command input is capable to ensure in any case that a
desired output transition is accomplished with a low rise time and a small overshoot. A salient
feature of the technique is that it does not require a complex identification phase, as a simple
first-order plus time delay (FOPTD) model of the process, which can be easily obtained by
means of an open-loop step response, suffices. A Padé approximation is then adopted to deal
with time delays. Illustrative examples show the effectiveness of the method, which preserves
all the basic characteristics of the PI controllers and it is therefore suitable to be applied in an
industrial environment.Copyright c

�
2002 IFAC
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1. INTRODUCTION

Proportional-Integral (PI) controller are undoubtedly
the most adopted controllers in industrial settings, be-
cause of their capability to provide satisfactory per-
formances for a wide range of plants, despite their
simplicity. In fact, for many processes the derivative
term of the controller is not useful and it is often
difficult to tune, so that practitioners prefer to avoid
its use (Astr̈om and Ḧagglund, 2000b).
Many tuning formulas have been provided in the last
sixty years to help the operator to find suitable values
of the PI parameters depending on the process dynam-
ics (see (O’Dwyer, 2000) for an excellent collection
of them). Nevertheless, because of the clear physical
meaning of the parameters, in many cases the values of
the controller gains are selected by hand from the op-
erator. As a result, the controller performances heav-
ily depend on the operator skilfullness and it might
happen that they are far away from the optimality.
Besides, in many situations the operator has to face
the dilemma to tune the controller in order to achieve
either a good setpoint following or a good load re-

jection. In general, the PI gains are properly tune for
the latter task and the setpoint following performances
are somehow recovered by filtering the setpoint signal
or by applying a setpoint weighting (Shinskey, 1996).
However, it is obvious that in any case a decreasing in
the performances in the setpoint following task has to
be expected.
In this paper we propose a new design methodology
for the attainment of high performances in both the
load rejection and the setpoint following task. In par-
ticular, the proposed method aims at finding a com-
mand input to the closed-loop system (in which the
PI controller has been properly tuned to guarantee
the load rejection specifications) in order to perform
a desired output transition (from a setpoint value to
another) with no overshoot and with a defined rise
time.
Basically, the technique requires the modelling of the
plant with a first-order plus time delay (FOPTD) trans-
fer function (which can be obtained by simply evalu-
ating an open-loop step response) in which the time
delay is expressed by a Padé approximation in order
to have a rational expression. On this basis, the PI
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Fig. 1. Theoverall controlscheme.

controlleris tunedby any conventionaltechniquethat
ensuressatisfactoryperformancesin theloadrejection
task(seefor example(ZhuangandAtherton,1993)).
Then, a desiredoutput function to be followed in
the responseof a setpoint changeis defined as a
“transition” polynomial (Piazzi and Visioli, 2001b)
and finally the new commandinput to be appliedto
the closed-loopsystemis determinedby adoptinga
stabledynamicinversiontechnique(PiazziandVisi-
oli, 2001a). Notethatthiscommandinputreplacesthe
conventionalstepsignalthat is very often adoptedto
attainanew setpointvalue.

2. METHODOLOGY

Thedesignapproachwe proposerefersto thecontrol
schemeshown in Figure1, wheregoodperformances
arerequiredin therejectionof the loaddisturbanced
aswell asin thetransitionof thesystemoutputy from
one value to another. The methodproposedin this
paperbasicallyreliesin finding thecommandsignalr
thatprovidesanefficient systemoutputtransitionwith
analreadytunedPI controller.

2.1 Modeling

The modelling phaseis basedon a standardopen-
loop step responseevaluation in order to determine
a FOPTD model of the plant. Specifically, the well-
known areamethod(Aström and Hägglund,1995),
which is somewhat robust to the measurementnoise,
canbeadoptedto determinea transferfunctionof the
processthatcanbewrittenas:

P � s ��� K
T s � 1

e � Ls (1)

To obtain a rational transfer function, it has been
chosento write the exponentialterm expressingthe
timedelayasa third orderPad́e approximation,i.e.:

e � Ls �� 1 	 0 
 5Ls � L2s2 � 10 	 L3s3 � 120
1 � 0 
 5Ls � L2s2 � 10 � L3s3 � 120

Thechoiceof theorderof thePad́eapproximationhas
beenmotivatedby theneedto haveagoodapproxima-
tion in a sufficient rangeof frequencies.In this way,
the approximatedprocesstransferfunction resultsto
be:

P̃ � s � �� K
T s � 1

1 	 0 
 5Ls � L2s2 � 10 	 L3s3 � 120
1 � 0 
 5Ls � L2s2 � 10 � L3s3 � 120


 (2)

L � T range 0.1-1.0 1.1-2.0
a1 1.015 1.065
b1 -0.957 -0.673
a2 0.667 0.687
b2 -0.552 -0.427

Table1. Tuning rulesfor theminimization
of theISTEcriterionfor loadrejection.

2.2 Tuning the PI controller

In orderto applythedynamicinversionbasedmethod-
ology that will be presentedin the next, the PI con-
troller can be tuned accordingto any of the many
methodsproposedin the literatureor even by hand.
However, sincethepurposeof thedynamicinversion
procedureis the attainmentof high performancesin
the setpointfollowing task,disregarding of the con-
troller gains,it is sensibleto selectthePI parameters
aiming only at obtaininggood load rejectionperfor-
mances.
ThePI controllertransferfunctionbedenotedasfol-
lows:

C � s �
� Kp

�
1 � 1

Tis � (3)

whereKp is theproportionalgainandTi is theintegral
time constant.Among the several tuning formulas
devised for the load rejectionpurpose,we highlight
two of them,whichwill beemployedin theillustrative
examples(seeSection3). The first is thewell known
Ziegler-Nichols one (Kp � 0 � 9T

KL and Ti � 3L); the
otheronehasbeenproposedin (ZhuangandAtherton,
1993) and aims at minimizing the ISTE criterion,
definedas

J � ∞�
0

te � t � dt

wheree � t � is the systemerror (i.e. the differencebe-
tweenthestepsetpointvalueandthecurrentoutput).
To thispurpose,analyticaltuningruleshavebeenpro-
vided.They are:

Kp � a1

K

�
L
T � b1

1
Ti
� a2

T

�
L
T � b2

(4)

where,for convenience,thevaluesof a1, b1, a2, b2 are
reportedin Table1.

2.3 Output function design

As adesiredoutputfunctionthatdefinesthetransition
from asetpointvaluey0 to anothery1 (to beperformed
in the time interval �0 � τ � ) we choosea “transition”
polynomial(PiazziandVisioli, 2001b), i.e a polyno-
mial function that satisfiesboundaryconditionsand
that is parameterizedby the transitiontime τ. In the



following, without lossof generalitywe will assume
y0 � 0, Formally, define

y � t � � c2p � 1t2p � 1 � c2pt2p ��� � � � c1t � c0

Thepolynomialcoefficientscanbeuniquelyfoundby
solving the following linearsystem,in which bound-
ary conditionsat the endpointsof interval �0 � τ � are
imposed: �   !    " y � 0� � 0; y � τ � � y1

y # 1 $ � 0� � 0; y # 1 $ � τ � � 0
...
y # p $ � 0� � 0; y # p $ � τ � � 0

Theresultscanbeexpressedin closed-formasfollows
(t %&�0 � τ � ):

y � t;τ � �
y1
� 2p � 1� !
p!τ2p � 1

p

∑
i ' 0

� ( 1� p ) i

i! � p ( i � ! � 2p ( i � 1 � τit2p ) i � 1 * (5)

The order of the polynomial can be selectedby im-
posing the order of continuity of the commandin-
put thatresultsfrom thedynamicinversionprocedure
(PiazziandVisioli, 2001b). Specifically, if theplantis
modelledasa FOPTDtransferfunction (see(1)), its
relative degree is equal to one. Taking into account
that the relative degreeof the PI controller is zero,
the relative degreeof the overall closed-loopsystem
is one.Thus,a third orderpolynomial(p � 1) suffices
if a continuouscommandinput function is required.
Outsidethe interval �0 � τ � the function y � t;τ � is equal
to 0 for t + 0 andequalto y1 for t , τ.

2.4 Determining the command input via dynamic
inversion

At this point we addressthe problemof finding the
commandsignalr � t;τ � that providesthe desiredout-
put function(5). Theclosed-looptransferfunctionbe
denotedas

T � s � : � C � s � P̃ � s �
1 � C � s � P̃ � s � � b � s �

a � s � * (6)

As T � s � is nonminimumphase,a stabledynamicin-
versionprocedureis necessary, that is a boundedin-
put function hasto be found in order to producethe
desiredoutput.Denotethesetof all cause/effect func-
tion pairs � r � � � � y � � � � associatedto T � s � by - . Now, in
order to performthe stableinversion,we rewrite the
numeratorof thetransferfunction(6) asfollows:

b � s � � b ) � s � b � � s �
whereb ) � s � andb � � s � denotethe polynomialsasso-
ciatedto thezeroswith negative realpartandpositive
real part respectively (no purely imaginaryzerosare
presenthaving chosenaPI controller(see(2) and(3)).

Now, considertheinversesystemof (6) whosetransfer
functioncanbewrittenas:

T � s � ) 1 � γ0
� γ1s � H0 � s �

whereγ0 andγ1 arerealconstantsandH0 � s � , astrictly
properrationalfunction,representsthezerodynamics.
Thiscanbeuniquelydecomposedaccordingto

H0 � s � � H )0 � s � � H �0 � s � � c � s �
b ) � s � � d � s �

b � � s �
wherec � s � andd � s � aresuitablepolynomials.Being.

theLaplacetransformoperator, define:

η )0 � t � : � . ) 1 �H )0 � s � �
η �0 � t � : � . ) 1 �H �0 � s � �
Y � s;τ � : � . � y � t;τ � �

Theunstablereferencefunctionru � t;τ � thatcausesthe
desiredoutput function y � t;τ � can be simply deter-
minedas:

ru � t;τ � � . ) 1 �T � s � ) 1Y � s;τ � �� γ0y � t;τ � � γ1y # 1 $ � t;τ � � t/
0

η )0 � t ( v � y � v;τ � dv� t/
0

η �0 � t ( v � y � v;τ � dv t %0� ( ∞ � � ∞ � * (7)

Thus,we have that � ru � t;τ � � y � t;τ � �1%2- andnotethat
ru � t;τ � � 0 if t %3� ( ∞ � 0� and ru � t;τ � is unbounded
over �0 � � ∞ � dueto theunstablezerodynamics(asso-
ciatedto H �0 � s � ).
Theunstablemodesassociatedwith b � � s � bedenoted
by mi � t � , i � 1 � * * * � w. Then,the following lemmare-
sults:

Lemma 1. There exists real constantski %34 , i �
0 � * * * � w thatdependonpositive timeparameterτ such
that,for t , τ

t/
0

η �0 � t ( v � y � v;τ � dv � k0 � τ � � w

∑
i ' 1

ki � τ � mi � t � *
Proof. Consideringthat t , τ we canrewrite the inte-
gral of theabove Lemmaasfollows:

t/
0

η �0 � t ( v � y � v;τ � dv �
τ/

0

η �0 � t ( v � y � v;τ � dv � t/
τ

η �0 � t ( v � y1dv * (8)

As it is known η �0 � t � , the impulse responseof the
unstablezerodynamicscanbe expressedasa linear
combinationof themodesmi � t � :

η �0 � t � � α1m1 � t � ��� � � � αwmw � t � (9)



whereαi 576 , i 8 1 9 : : : 9 w areappropriatecoefficients.
Taking into accountthe analytic expressionof the
transitionpolynomial y ; t;τ < it then follows that the
integral = τ

0 η >0 ; t ? v < y ; v;τ < dv is a linear combination
of the modesmi ; t < and its coefficients dependon τ.
On the otherhand,examining the integral = t

τ η >0 ; t ?
v < y1dv weanalogouslydeducethatit canbeexpressed
asa linearcombinationof themodesmi ; t < plusacon-
stantaddend.Therefore,by virtueof (8) thestatement
of Lemma1 follows. @
At this point, taking into accountLemma1 we can
definethefollowing function:

rc ; t;τ < : 8A? w

∑
i B 1

ki ; τ < mi ; t < t 5 ; ? ∞ 9 C ∞ < : (10)

Thefollowing lemmaresults:

Lemma 2. Being rc ; t;τ < the functiondefinedin (10),
wehave ; rc ; t;τ < 9 0< 5EDGF τ 5H6 :
Proof. By examination of the differential equation
associatedto the systemdescribedby the transfer
functionG ; s <�8I; b JK; s < b > ; s < < L a ; s < it follows thatthe
pair ; rc ; t;τ < 9 0< satisfiesthisequationover ; ? ∞ 9 C ∞ < .@
Finally, we candefine the following function, which
performtheexactstableinversion:

r ; t;τ <�8 ru ; t;τ < C rc ; t;τ < t 5 ; ? ∞ 9 C ∞ < : (11)

Thefollowing propositioncanthereforebestated.

Proposition 3. Thefunctionfunctionr ; t;τ < definedin
(11) is boundedover ; ? ∞ 9 C ∞ < and ; r ; t;τ < 9 y ; t;τ < < 5D .

Proof. Taking into accountLemma2, it is evidently; r ; t;τ < 9 y ; t;τ < < 50D by virtue of linear superposition.
On theotherhand,r ; t;τ < is, by construction,bounded
becauseof the exact cancellationof all the unstable
modesappearingin ru ; t;τ < (seeLemma1 anddefini-
tion (10)). @
Summarizing,the determinedfunction r ; t;τ < exactly
solves the stableinversion problem for a family of
outputfunctions,which dependon the free transition
time τ. This transitiontime canbearbitrarily selected
by the userdependingon the requiredperformances
andon thesaturationlevel of theactuator.
Actually, from apracticalpointof view, in orderto use
thesynthesizedfunction(11)it isnecessaryto truncate
it, resultingthereforein anapproximategenerationof
thedesiredoutputy ; t;τ < . This canbedonewith arbi-
trarily precisiongivenany coupleof smallparameters
ε0 M 0 andε1 M 0. Indeed,compute

t0 : 8 maxN t O 5P6 : Q r ; t;τ < Q R ε0 F t 5 ; ? ∞ 9 t O S T

anddefine

ts : 8 min N 0 9 t0 T :
Similarly, compute

t f : 8 min N t O 5H6 : Q r ; t;τ U < ? y1 Q R ε1 F t 5&V t O 9 ∞ < T
Hence,theapproximatereferencesignalto beactually
usedis

ra ; t;τ U < : 8XWY Z 0 for t [ ts
r ; t;τ U < for ts R t R t f

y1 for t M t f :
Notethatts dependsonτ andit mightoccurthatts [ 0,
resultingin the so-called“preactioncontrol” (Marro
andPiazzi,1996).

3. ILLUSTRATIVE EXAMPLES

3.1 FOPTD system

As a first example we considera FOPTD system,
namely:

P ; s <�8 1
10s C 1

e
J 5s :

ThePI controllergainshavebeenselectedby applying
the Ziegler-Nichols formulas. It resultsKp 8 2 and
Ti 8 15: 02. Thesystemoutputhasto performa tran-
sition from 0 to y1 8 1. We fixed the transitiontime
τ 8 20.Consequently, thedesiredoutputfunction,ac-
cordingto (5) with p 8 1 is:

y ; t <
8A? 2
203 t3 C 3

202 t2 :
By consideringthePad́e approximation,sothat

P̃ ; s <
8 1
10s C 1

1 ? 2 : 5s C 25L 10s2 ? 125L 120s3

1 C 2 : 5s C 25L 10s2 C 125L 120s3

andby applying the dynamicinversionprocedureto
theresultingclosed-loopsystem(with ε0 8 ε1 8 10J 4)
we obtainedthe input commandfunction shown in
Figure2 in which it is evident theresultingpreaction
time ts 8\? 10s (note that, for convenience,the time
axishasbeenproperlyshiftedin orderto have ts 8 0).
The obtainedsystemoutput is reportedin Figure 3
with thecorrespondingcontrolsignal.
It appearsthattheuseof thedesignedcommandinput
function allows to perform a fast transition with a
verysmallovershoot.Theimprovementachievedwith
respectto the standardtechniquein which a step
setpointsignal is applied to the closed-loopsystem
is evident by evaluating the systemoutput and the
control signal in this case,which are depicted in
Figure3 aswell. It canbeeasilyseenthatthesettling
time,aswell asthecontroleffort, is muchhigherthan
with thedynamicinversionbasedmethodology.
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Fig.2.Theoptimalreferencecommandinput function
for theFOPTDsystem.

3.2 High order system

In order to evaluatethe effectivenessof the new ap-
proachin thepresenceof aroughapproximationof the
systemdynamics,we considerthehigh-orderprocess
(AströmandHägglund,2000a)

P ] s ^
_ 1] s ` 1̂ 8 a
First,wemodelledtheprocesswith aFOPTDtransfer
function,by meansof theareamethod,yieldingK _ 1,
T _ 3 a 03andL _ 4 a 96, i.e.:

P̃ ] s ^�_ 1
3 a 03s ` 1

1 b 2 a 48s ` 2 a 46s2 b 1 a 02s3

1 ` 2 a 48s ` 2 a 46s2 ` 1 a 02s3

Then, we tuned the PI controller by meansof the
Ziegler-Nichols formulas (it results Kp _ 0 a 61 and
Ti _ 14a 90) and we applied the dynamic inversion
basedmethodology. The time to performa transition
from 0 to 1 has beenselectedas the settling time
(at 2%) of the open-loopsystem,which is equal to
14.82s.Thedeterminedcommandinputfunction(with
ε0 _ ε1 _ 10c 3) is shown in Figure4. The preaction
time is ts _db 8 a 9s.The correspondingsystemoutput
andcontrolsignalarereportedin Figure5.
Analogously, wealsoappliedthetuningmethodbased
on the minimization of the ISTE criterion (it results
Kp _ 0 a 76 andTi _ 14a 81). With thesamevalueof τ
asbeforewe determinedthecommandinput function
shown in Figure 6 (the preactiontime is ts b 9s).
Systemoutputandcontrolsignalareplottedin Figure
7. To betterevaluatethe significanceof the results,
in Figure8 it is plotted the systemoutputwith both
thePI tuningmethodswhenastepsignalis appliedto
the setpointat time t _ 0 andto the load at time t _
200s.It appearsthatthenew approachoutperformsthe
classicone,disregardingthe fact thatdifferenttuning
methods(whichproducesverydifferentperformances
in thesetpointfollowing andin theloadrejectiontask)
areadopted.
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Fig.3.Thesystemoutputandthecontrolsignalfor the
FOPTD system(dynamic inversionand classic
approach).
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Fig. 4. The optimal commandinput function for the
highordersystem(Z-N tuning).
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Fig. 5. The systemoutputand the control signal for
thehighordersystem(Z-N tuning).
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Fig. 6. The optimal commandinput function for the
highordersystem(ISTE tuning).
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Fig. 7. The systemoutputand the control signal for
thehighordersystem(ISTE tuning).
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Fig. 8. The systemoutput for the high-ordersystem
(classicapproach).

4. CONCLUSIONS

In this paper we have presenteda new approach,
basedon dynamicinversion,for the improvementof
the setpointfollowing task of a PI controller. It has
beenshown that the control schemesin which the
proposedtechniqueis adoptedoutperformtheclassic
ones,disregardingthetuningmethodemployedto set
thePI parametersandthefact that theprocessis sim-
ply modelledwith a FOPTDtransferfunction.In this
way, boththeloadrejectionandthesetpointfollowing
requirementscanbe satisfied.As the dynamicinver-
sionprocedureis appliedto thestandardclosed-loop,
schemethe know-how in the generaluse of the PI
controlleris fully retainedandthereforetheapproach
appearsto be suitableto be usedin industrial envi-
ronment,wherethe operatorcan set the free design
parameterτ to dealwith actuatorconstraints.
Futurework will be devotedto extendthe technique
to PID controllerandto theadoptionof morecomplex
identificationmethodto improve theperformances.
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