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1. INTRODUCTION

The study of systematic tools for model reduction of
dynamic systems has been an early topic of interest
in the systems and control �elds. Model approxima-
tion based on the Hankel norm and the balancing
method (Moore, 1981) have sho wn to be useful tools
for model reduction for linear systems. Today sin-
gular values-based balancing, LQG balancing and
H1 balancing are important tools for linear model
reduction. Therefore the study of model reduction
for linear systems can be considered a mature topic.

For nonlinear systems, there has been important
progress with the con tinuousnonlinear extensions
of systematic methods of balancing (singular-value-
based, LQG and H1), mainly based on the con-
trollabilit yand observabilit y functions (Sc herpen,
1994), (Scherpen, 1993). Rougly speaking, in such
procedure a Hamilton-Jacobi equation and a Lyapu-
nov-like partial di�erential equation have to be
solved in order to determine the energy functions.
Then a nonlinear transformation transforms the
system in balanced form. The mathematical com-
plexit y in solving such partial di�erental equations
has stimulated the searc h for alternative methods
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to determine the energy functions (Newman et

al., 1998).

In this paper energy functions for stable nonlin-
ear discrete-time systems are discussed with the
purpose of extending the continuous-time theory
discussed in (Sc herpen, 1994), (Scherpen, 1993).
Since the determination of suc h energy functions
are a fundamental condition for nonlinear balancing
and model reduction, the importance of this results
lies on the establishment of �rm steps tow ardsa
methodology suitable for computer implementation
for the reduction of nonlinear discrete-time systems.
Notice that in contrast with (Verriest et. al., 2001),
this approach does not assume an y linearization
procedure at all.

The paper is organized as follows. After �xing the
notation used, the discrete-time energy functions
are presented in Section 2. In Section 3, the ob-
servabilit y function and its properties are then dis-
cussed. In Section 4 the properties of the controlla-
bilit y function and an optimization-based solution
are discussed and commented. Section 5 presents
the balancing method. In Sections 6 and 7, in or-
der to illustrate the previous methods, linear and
nonlinear examples are shown and brie
y discussed.
Finally, some conclusions are presented.
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Notation: The set of nonnegative and nonpositive

integers are denoted as Z+ def
= f0; 1; 2; :::g and

Z
� def

= f0;�1;�2; :::g respectively. Discrete-time
vector variables are denoted for instance as x

k
or

x(k). Where con venient for clarit y of exposition
a function of sev eral variables f(x

k
; u

k
) may be

denoted simply as f
k
in the understanding that the

corresponding state depends on k. Given a function
f
k
its inverse function (map) is denoted asf�1

k

. A
successive application of a step varian t linear map
�
k
for a discrete interval k 2 [m;n], is denoted as

�[m;n]
def
= �

m
�
m+1 � � ��n

. A successive composition

of functions is denoted as, f[m;n]
def
= f

m
Æ f

m+1 Æ

::: Æ f
n
, with f[n;n]

def
= f

n
. An optimal variable

at time k is denoted as v?
k

. The zero observation
space is denoted as O0. Finally, denote by x

k2
=

�(k2; k1; x1; uk) the solution of the system x
k+1 =

f(x
k
; u

k
) with initial condition x(k1) = x1 and

input u
k
2 `2(0;1).

2. ENERGY FUNCTIONS

Consider the following discrete-time nonlinear sys-
tem,

x
k+1 = f(x

k
; u

k
);

y
k
= h(x

k
);

k 2 Z (1)

where u
k
= (u1; :::; up)k 2 R

p , y
k
= (y1; :::; yq)k 2

R
q and x

k
= (x1; :::; xn)k 2 R

n are local coordinates
for a smooth state space manifold M. Moreover f
and h are class C1 in a neighborhood D � R

n

around an equilibrium point in x = 0 suc h that
f(0; 0) = 0 and h(0) = 0. In this work it is assumed
that f(�; u) is a di�eomorphism, (i.e. invertible in
the spirit of (Fliess, 1992)). The following de�nitions
of energy functions are discrete equivalen tsof the
continuous versions presented in (Scherpen, 1993).

De�nition 2.1. The con trollabilit yand observabil-
ity functions of the system (1) are de�ned respec-
tively as,

L
c
(x0) = min

u2`2(�1;0);

x(�1)=0; x(0)=x0

1

2

0X

k=�1

k u
k
k2; (2)

L
o
(x0) =

1

2

1X

k=0

k y
k
k2; x(0) = x0; uk = 0; (3)

8k 2 Z+.
In the following sections further properties of these
functions restricted to system (1) are discussed.

3. OBSERV ABILITY FUNCTION

In this section a recursiv eprocedure to �nd the
observabilit y function is pro vided along withsome
properties. Also a Lyapunov-lik e di�erence equation
analog to that found in (Scherpen, 1994), is pre-
sented.

L emma 3.1. Consider the following recursive equa-
tion

L
o
(x

i+1) = L
o
(x

i
) +

1

2
h

T [f(x
i
; 0)]h[f(x

i
; 0)]; (4)

for i = 0; 1; 2::: and L
o
(x0) = 1

2
h
T (x0)h(x0) as

initial condition. Then L
o
(x0) can be found from

the solution of (4) as follows

L
o
(x0) = lim

i!1
L
o
(x

i
): (5)

Pr oof. By eq. (1) and by de�nition of L
o
in eq. (3),

one obtains

L
o
(x0) =

1

2

1X

i=0

h

T (x
i
)h(x

i
)

=
1

2
h

T (x0)h(x0)

+
1

2

1X

i=0

h

T [f(x
i
; 0)]h[f(x

i
; 0)];

(6)

for i 2 Z+. Noting that

L
o
(x

i+1) = L
o
(x0) +

1

2

1X

i=0

h

T [f(x
i
; 0)]h[f(x

i
; 0)];

the result is obtained. �

Theorem 3.1. Consider the discrete-time nonlinear
system (1). Assume that dim(dO0) = n, then the
system is locally zero-state observable at 0.

Pr oof. Similar to (Scherpen, 1993). �

Theorem 3.2. Assume that (1) with f(�; 0) is asymp-
totically stable on a neighborhood D of x = 0. If the
system is zero-state observable and L

o
exists and is

smooth on M, then L
o
(x0) > 0;8x0 2M;x0 6= 0.

Pr oof. Recall eq. (3), then, if x0 6= 0, zero state
observabilit y implies that for some �K 2 Z+nf0g w e
ha veh(�(�k; 0; x0; 0)) 6= 0 for some 0 � �

k <
�
K.

Therefore if x0 6= 0, L
o
(x0) > 0. �

Pr op osition 3.1.Assume that the observabilit y func-
tion L

o
exists and is positiv e de�nite. Then L

o

as de�ned in eq. (3) is a Ly apunov function for
system (1). F urthermore, if the system is locally
asymptotically stable at x(0) = x0 for u

k
= 0,

then the system is dissipative and L
o
is a storage

function, with supply rate 1
2
h
T (x

k
)h(x

k
).

Pr oof. In order to show that the di�erence L
o
(x

k+1)�
L
o
(x

k
) is negative semi-de�nite (and thus a Ly a-

punov function (LaSalle, 1976)), express L
o
(x

k
) for

an arbitrary state x
k
as,

L
o
(x

k
) =

1

2
h

T (x
k
)h(x

k
)

+
1

2

1X

i=k

h

T [f(x
i
; 0)]h[f(x

i
; 0)];

doing the same for x
k+1, and taking the di�erence

then

L
o
(x

k+1)� L
o
(x

k
) =�

1

2
h

T (x
k
)h(x

k
); (7)



for k 2 Z+, which is negative semide�nite. As can
be seen, the discr ete-time dissipation inequality (see
e.g. (Lin et al., 1996), (Willems, 1972)) is preserved
and then L

o
is a storage function with supply rate

1
2
h
T (x

k
)h(x

k
). �

R emark 3.1.Follo wing the terminology used in
(Sc herpen, 1993), eq.(7) can be called the discrete-
time Lyapunov-lik e equation.

Theorem 3.3. (Existence of L
o
). Let kh(x

i
)k22 �M

i
,

M
i
2 R, such that

P1

i=0Mi
con vergesuniformly

and absolutely. Then L
o
exists as given b y (5) and

is a smooth solution of (4) for all x0 2 D.

Pr oof. By Lemma 3.1, eq. (5) is a solution of (4).
Existence of the limit (5) for all x0 2 D is necessary
and suÆcent for existence of L

o
. Since (Rn ; k �

k2) is a complete normed space, by Weierstrass'
M-Theorem, the series of functions (6) con verges
uniformly and absolutely. �

4. CONTROLLABILITY FUNCTION

Before determining some properties of the controlla-
bilit y function (2) of (1), it is useful to transform the
de�nition of L

c
in to a more adequate representation.

De�nition 4.1. De�ne the follo wing system associ-
ated to system (1) as

w
�+1 = f

�1(w
�
; v

�+1); � 2 Z+
: (8)

Where (8) can be obtained by applying tw o opera-
tions on eq.(1):

Backward-time: Inverting the map in eq.(1) and
ev olving ink 2 Z�.

Flip-time: De�ning w
k

def
= x�k and v

k

def
= u�k for

k 2 Z, and changing the time index as � = �k,
� 2 Z+.

R emark 4.1.Consider the system (8). Then the
de�nition of L

c
from eq. (2), may be expressed as

L
c
(w0) = min

v2`2(0;1);

w(1)=0; w(0)=w0

1

2

1X

�=0

v

T

�
v
�
; (9)

for w and v from (8).

R emark 4.2. v0 does not in
uence the new state in
(8), where it results w1 = f

�1(w0; v1). Therefore
the value of v0 which minimizes (9) is v?0 = 0 and
thus u?0 = 0.

L emma 4.1. Assume the existence of the optimal
sequence v? = fv?

i
ji = 0; 1; :::g suc h that it satis�es

(9) and consider the following recursive equation

L
c
(w

i+1) =Lc(wi
) +

1

2
v

?T

i
v

?

i
; (10)

for i = 0; 1; 2; ::: and initial condition L
c
(w0) = 0.

Then L
c
(w0) can be found from the solution of (10)

as follo ws

L
c
(w0) = lim

i!1

L
c
(w

i
): (11)

Pr oof. Express (9) as,

L
c
(w0) =

1

2
v

?T

0 v

?

0 +

1X

i=0

v

?T

i+1v
?

i+1; (12)

which may be written as a recurrence equation with
the initial condition L

c
(w0) = 1

2
v
?T

0 v
?

0 = 0 as
consequence of Remark 4.2. By solving iterativ ely
(10), L

c
(w0) can be found as i tends to in�nity. �

4.1 Pr operties of L
c

Pr op osition 4.1.Assume that the system (1) is
asymptotically stable on D, that there exist a so-
lution v? to (9) and that the limit (11) exists. Then
L
c
(w0) > 0 for w0 2 D, w0 6= 0, if and only if the

system

w
�+1 = f

�1(w
�
; v

?

�+1); � 2 Z+
; (13)

is asymptotically stable on D.

Pr oof. Assume that there exists w0 2 D, w0 6= 0
suc h that L

c
(w0) = 0. Since in eq. (12) this is

only possible if all v?
i+1 = 0, for i = 0; :::;1, the

system (13) is equivalent to the unforced system
w
�+1 = f

�1(w
�
; 0), for � 2 Z

+, but this system
cannot be stable since this w ould imply that the

ipped system w

�
= f(w

�+1; 0), for � 2 Z
� is

unstable, which contradicts the asymptotic stability
of f . �

Pr op osition 4.2.Assume that the system (13) is
asymptotically stable on D, then the controllability
function L

c
(w0) as de�ned in eq. (9) is a Lyapunov

function for system (8). Furthermore the system (8)
is dissipative and L

c
(w

�
) is also a storage function,

with supply rate 1
2
v
?T

�
v
?

�
.

Pr oof. That L
c
(w

�
) is a Lyapunov function for (8),

can be sho wn noticing its nonnegative de�nitness
from eq. (9). Since by assumption (13) is asymp-
totically stable, by Prop. 4.1 then L

c
(w0) > 0

for w0 2 D. In order to sho w that the di�erence
L
c
(w

�+1) � L
c
(w

�
) is negative semi-de�nite, note

that for an arbitrary state w
�
, from (12), L

c
can be

expressed as

L
c
(w

�
) =

1

2
v

?T

�
v

?

�
+
1

2

1X

i=�

v

?T

i+1v
?

i+1; (14)

doing the same for w
�+1, and taking the di�erence

yields,

L
c
(w

�+1)� L
c
(w

�
) =�

1

2
v

?T

�
v

?

�
; (15)

which is negative semide�nite. Since the discrete-
time dissipation inequality is preserved L

c
(w

�
) is a

storage function with supply rate 1
2
v
?T

�
v
?

�
. Note that

L
c
(w

�
) has a �nite value if v?

�
is bounded and tends

to zero as � ! 1. This is a direct consequence of
the asymptotic stability of eq. (13). �



Proposition 4.3. A necessary existence condition of
L
c
(w

�
) in eq. (10), is that v?

�
is the solution of the

following tw o-point boundary value problem

�
�
= [

@

@w
�

f

�1(w
�
; v

�+1)]
T

�
�+1; (16)

v
�+1 =�[

@

@v
�+1

f

�1(w
�
; v

�+1)]
T

�
�+1; (17)

subject to the boundary conditions w(1) = 0 and
w(0) = w0.

Pr oof. In order to �nd L
c
(w

�
) giv en by eq. (9),

applying standard tools of the discrete optimal con-
trol theory ( see for instance (Lewis et al., 1995),
(Bryson, 1999)) results in the follo wing Hamilto-
nian,

H
�
=

1

2
v

T

�+1v�+1 + �

T

�+1f
�1(w

�
; v

�+1); (18)

resulting in

@H
�

@w
�

= �

T

�+1

@

@w
�

f

�1(w
�
; v

�+1) = �

T

�
;

@H
�

@v
�+1

= v

T

�+1 + �

T

�+1

@

@v
�+1

f

�1(w
�
; v

�+1) = 0;

from which eqs. (16) and (17) follow. �

As can be observed from eq. (17), the input v
�+1

may appear implicitly. Therefore the analytical so-
lution of this problem may be diÆcult to �nd.

Theorem 4.1. (Existence of L
c
). Assume that v? sat-

is�es eq. (9) with L
c
(w0) smooth for all x 2 D

and such that eq. (13) is asymptotically stable. Let
kv?

i
k22 � M

i
, M

i
2 R such that

P1

i=0Mi
con verges

uniformly and absolutely. Then L
c
(w0) exists as

giv enby (11) and is a smooth solution of (10) for
all w0 2 D.

Pr oof. By Remark 4.1 existence of L
c
(x0) is equiva-

lent to existence of L
c
(w0). By Lemma 4.1, eq. (11)

is a solution of (10). L
c
(w0) exists if the series of

functions (11) converges. Since (Rn ; k � k2) is a com-
plete normed space, by Weierstrass' M-Theorem,
the series (11) converges uniformly and absolutely.

�

4.2 A bout the structure of v?
�

In order to study the structure of v?
�

in (16)-
(17), the corresponding boundary value problem is
addressed. De�ne the following functions,

�
�
=

@

@w
�

f

�1(w
�
; v

�+1); (19)

�
�
=�

@

@v
�+1

f

�1(w
�
; v

�+1); (20)

then the solution of (16), given an initial �
N
, with

0 � � � N can be expressed as, �
�
= �T

[�;N�1]�N ,
and in consequence the possibly implicit input v

�+1

can be obtained from the following expression,

v
�+1 = �T

�
�T

[�+1;N�1]�N : (21)

Consider the follo wing composition operations for

the map f[i;N ]
def
= f

i+1 Æ fi+2 Æ ::: Æ fN , and for

the inversemap f

�1
[i;0]

def
= f

�1
i

Æ f�1
i�1 Æ ::: Æ f

�1
0 , as

w ell 2 . Then eq. (8) and the backward-time system
w
�
= f(w

�+1; v�+1), � 2 Z
�
; in terms of equation

(21) can be expressed as,

w
�+1 = f

�1(w
�
;�T

�
�T

[�+1;N�1]�N );

w
�
= f(w

�+1;�
T

�
�T

[�+1;N�1]�N );

A t the boundary for� = 0, w(0) = w0,

w0 = f(w1;�
T

0 �
T

[1;N�1]�N ) = f[0;N ];

and for � = N , w
N
= 0,

0 = f

�1(w
N�1;�

T

N�1�
T

N�1�N ) = f

�1
[N;0]

; (22)

and its inverse map is,

w
N�1 = f(0;�T

N�1�
T

N�1�N ) = f[N;N ]:

In the last equation, w eha vea nonlinear relation
between w

N�1, and �
N
. Notice also that �

N�1 =
�(w

N�1; vN ), with vN inserted possibly in implicit
form. In the linear case this nev er occurs and
thus it is always solv able.In the general case this
problem is diÆcult to solve in closed form. How ev er,
optimization algorithms can be used in order to
solv e it. This is presented in the next subsection.

4.3 Optimization-based search of v?
�

Pr op osition 4.4.Assume that the conditions of
Theorem 4.1 are satis�ed. Let N; � 2 Z

+ be suc h
that kw

N
k � � for � small enough. Assume that N

is kno wn.Then L
c
(w

�
) in eq. (10) can be deter-

mined depending on the solvability of the following
optimization problem

min
fviji=1;:::;Ng

L
c
(w

N+1); (23)

with equality constraints

w
i+1 = f

�1(w
i
; v

i+1); (24)

L
c
(w

i+1) =L
c
(w

i
) +

1

2
v

T

i
v
i
; (25)

w
N+1 = 0; (26)

w(0) =w0; (27)

with (suitable) initial conditions fv0j jj = 0; :::; Ng
and with L

c
(w0) = 0, determining v?

i
.

Pr oof. De�ne the �nite set fv
i
ji = 0; :::; Ng �

fv
i
ji = 0; :::;1g suc h that eq. (9) is satis�ed. Then

by using an optimization approach (Bryson, 1999),
the optimization problem takes the form

min
fviji=1:::Ng

1

2

NX

i=0

v

T

i
v
i
;

with equality constraints (26) and (27). Recasting
this problem into the Mayer form (see e.g.(Bryson,
1999)), yields the presented form. �

2 With a slight abuse of notation, f�1
i

= f�1(xi; vi+1).



The solvabilit y of this nonlinear optimization prob-
lem depends, of course, on the optimization meth-
ods and the closeness of the guess of the initial
conditions used for this purpose. Two dra wbacks
of this approach can be pointed out. Though for
an asymptotically stable system N can be approx-
imated to be �nite, in troducing some error in the
result, the best value of N is unknown prior to the
nonlinear optimization process. Furthermore, since
each iteration implies a repeated composition of the
inverse function in the formf

�1
[N;0]

, this method may

be ineÆcient for a computational implementation.

5. BALANCING

R emark 5.1.Despite the discrete nature of (1), the
energy functions associated to this system, eq (2)
and (3) are continuous functions of the initial state
for x0 = x. As a consequence, Morse's Lemma can
be applied in order to �nd a desired transformation
for a balanced representation, just as in the contin-
uous time (for details see (Scherpen, 1993)).

Theorem 5.1. (Sc herpen, 1993) Consider system (1)
and assume thatthere exists a neigh borhood D of
x = 0 where the system is zero-state observable,
f
k
is asymptotically stable, and L

o
and L

c
exist

and are smooth. Then there exist a coordinate
transformation x = �(�x), �(0) = 0 (inD), suc h that
in the new coordinates �x = �

�1(x) the function
L
c
(x0) is of the form L

c
(�(�x)) = 1

2
�xT �x. Moreover,

in the new coordinates �x = �
�1(x) w ecan write

L
o
(x0) in the form L

o
(�(�x)) = 1

2
�xTH(�x)�x, where

H(0) = @

2
Lo

@x
2 (0) with H(�x) is a n � n symmetric

matrix such that its entries are smooth functions of
�x. Furthermore, assume that the number of distinct
eigen valuesof H(�x) is constant for �x 2 D. Then
on D there exists a coordinate transformation x =
 (z),  (0) = 0, suc h that in the new coordinates

z 2 B

def

=  
�1(D) the function L

c
is of the form

L
c
(z)

def

= L
c
( (z)) = 1

2
z
T

z, and the function L
o
is

of the form

L
o
(z)

def

= L
o
( (z)) =

1

2
z

Tdiag[�1(z) � � � �n(z)]z;

where �1(z) � � � � � �
n
(z) are smooth functions of

z, called the singular value functions of the system.

Pr oof. See (Scherpen, 1993). �

6. LINEAR SYSTEMS

As an example, consider the following linear, stable,
minimal, discrete-time system

x
k+1 = Ax

k
+Bu

k
;

y
k
= Cx

k
;

(28)

where u 2 R
p , y 2 R

q and x 2 R
n . The follo wing

result is known (Pernebo et al., 1982).

Corollary 6.1. Consider the system (28). Then L
c

and L
o
, as de�ned in eq.(2)-(3), are given b y,

L
c
(x0) =

1

2
x

T

0 P
�1
x0; (29)

L
o
(x0) =

1

2
x

T

0Qx0; (30)

with Gramians P =
P1

k=0 A
k

BB
T

A
kT and Q =P

1

k=0A
kT

C
T

CA
k .

A lternative proof. Use recurrent eq. (4) for the
system (28) resulting in the following di�erence
equation

L
o
(x

i+1) = L
o
(x

i
) +

1

2
x

T

i
A

T

C

T

CAx
i
; (31)

with initial condition L
o
(x0) =

1
2
x
T

0 C
T

Cx0. Then
the solution of (31) yields

L
o
(x0) = lim

i!1

L
o
(x

i
) =

1X

k=0

x

T

0 A
kT

C

T

CA

k

x0;

which is eq. (30). In order to �nd L
c
, assume the

existence of A�1 and consider the system from Def.
4.1 associated to eq. (28), given as

w
�+1 =A

�1
w
�
�A

�1
Bv

�+1; (32)

whose general solution can be expressed as

w
�
=A

��
w0 �

��1X

i=0

(A�1)��iBv
i+1: (33)

Using (16) and (17), results in

�
�
=A

�T
�
�+1; (34)

v
�+1 =B

T

A

�T
�
�+1: (35)

Sustitution of (35) in (32) yields,

w
�+1 = A

�1
w
k
�A

�1
BB

T

A

�T
�
�+1: (36)

Solving eq. (34) explicitly in backward time, results
in

�
�
= (A�T )N���

N
: (37)

Then the solution of (36) with input �
�+1 giv en b y

(37) is

w
�
= A

��
w0 �

��1X

i=0

A

i��
BB

T (AT )i�N�
N
: (38)

F or w
N

= 0, eq. (38) implies that, w0 =

P (AT )�N�
N

where P =
P

N�1

i=0 A
i

BB
T (AT )i,

which can be expressed as �
N

= (AT )NP�1
x0,

which in eq.(37) for �
�+1 and this result in eq.(35),

yields v?
�+1 = B

T (AT )�P�1
w0 which after substi-

tution in eq.(10) results in eq.(29). �

7. EXAMPLE OF A NONLINEAR SYSTEM

Consider the following nonlinear system

x1k+1 = �ax1
2
k
+ x2k + u

k
;

x2k+1 = bx1k;

y1k = x1k; y2k = x2k

(39)

in which the state is giv en as x
k
= (x1k; x2k)

T .
This system is locally stable around the origin for
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j � ax10 �
p
a
2
x1

2
0 + bj < 1. T o determineL

c
and

L
o
in this case let us take a = �0:001 and b = �0:9

at the origin.
Observability function: Consider the iterativ e so-
lution of eq.(4), as i ! 1 for eac h initial state
x0 within the desired region to plot. The resulting
observabilit y function is presented in �g. 1.
Controllability function: The backward-time sys-
tem (inverse map) associated to (39), is easily ob-
tained and according to Def. 4.1 the transformed
system is thus

w1�+1 =
1

b

w2�;

w2�+1 = w1� +
a

b
2
w2

2
�
� v

�+1:

By using the optimization approach of Prop. 4.4
and de�ning a �nite set fv

i
ji = 1:::Ng, for N = 20,

the optimization problem stated in eq.(23)-(27) can
be solv ed for eac h w0 within the local stabilit y
region of system (39) and thus the results can
be plotted resulting in �g. 2. The Optimization
Toolbox (Matlab) was used to �nd v?.

8. CONCLUSIONS

In this paper the discrete-time versions of the
controllabilit y and observabilit y energy functions
applied to linear and nonlinear discrete-time sys-
tems has been presented. Instead of looking for

the solution of a Hamilton-Jacobi-Isaacs and a
Ly apunov-lik e partial di�erential equations as in
the continuous-time case, an optimization approach
and an iterative algorithm are proposed to �nd L

c

and L
o
respectively. Moreover since the resulting

energy functions are continuous in its arguments,
sev eral tools originally dev elopedfor balancing of
con tinuous-timesystems are directly applicable to
discrete-time systems. The relev ance of these re-
sults lies on its applicability to model reduction
and system identi�cation for discrete-time nonlinear
systems. Moreover, with the availability of nonlin-
ear discretization algorithms (Monaco et al., 1986),
(Kotta, 1995), the methods presented here may
result in alternative algorithms in comparison with
(Newman et al., 1998) for continuous-time systems.
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