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Abstract: In Adaptive Control Theory there are different procedures to identify a linear 
system. The fundamental problem is that in the real world many systems are nonlinear 
and it is not easy to obtain a mathematical model. In this work, an identification 
procedure for nonlinear systems is presented using the properties of Artificial Neural 
Networks and Genetic Algorithms to optimize the architecture of the network. A new 
technique of Adaptive Control to cancel the nonlinear dynamics of the system is proposed 
to set the poles of the system in a desire position. The behavior of the algorithm for the 
linear and nonlinear case is presented with the analysis of the theory and operational 
importance of these techniques. 
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1 INTRODUCTION 
 

In adaptive control systems is very important to 
find an optimal model to ensure the convergence of 
the algorithms to the optimal controller parameters. In 
many cases these models require some kind of 
previous knowledge of the plant to be identified to 
define the type of model structure that is going to be 
used. This means that it is possible to find many 
different combinations of algorithms or functions, 
which represent the dynamics of the system. In 
nonlinear case such mapping cannot be realized 
exactly and unmodelled dynamics terms obligatory 
exist in any mathematical model description. For the 
adaptive controller, an ANN or Fuzzy Logic system is 
used to learn the behavior of the new dynamic. These 
actions require an adaptive and optimization process 

inside the intelligent mechanism to get the minimal 
estimation error. 
 In this paper we propose a methodology to identify 
Nonlinear Systems using a Polynomial Artificial 
Neural Network (PANN) and Genetic Algorithm. 
With the model and the information of the network an 
Adaptive controller is proposed to cancel the 
undesired dynamics. To describe this problem, the 
following structure is proposed: section 2 describes 
the theory of PANN and some useful definitions, in 
section 3 some concepts of Genetic Algorithm and 
variations of the method used to obtain the optimal 
Architecture of PANN (Gómez et al, 1999) are 
introduced. With this network is possible to identify 
nonlinear systems. Section 4 explains how we can use 
the structure of PANN to design an adaptive controller 
to cancel the nonlinear dynamic of the plant identified 
and a new placing of the transfer function poles is 
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proposed. In next section some simulations results 
conclude this study. 
 
2 POLYNOMIAL ARTIFICIAL NEURAL 

NETWORK  
 

The model of PANN can be described by (Gómez 
et al, 1999): 
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where: kŷ ∈ℜ is the estimated function, φ(x,y)∈ℜ is a 
nonlinear function, xi∈ X are the inputs, for i=1,...,ni; 
and ni is the number of inputs, yk-j∈ Y are the previous 
values of the output, for j=1,..,n2, and n1  is the 
number of delays of the input, n2 is the number of 
delays of the output, X,Y are compact subsets of ℜ. In 
order to simplify the notation let us define: 
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where: nv is the total number of elements in z 
description: 

21 nnnnn iiv ++=     (3) 
 The nonlinear function φ(z)∈Φp belongs to a 
family Φp of polynomials that can be represented as: 
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The subindex p is the maximum power of the 

polynomials expression and ),....,,( 21 vni zzza  are 
homogeneous polynomials of total degree i, for  
i=0,...,p. Every homogeneous polynomial can be 
written as: 
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where wij is the associated weight of the networ. The 
term w0 corresponds to the input bias of the network. 
The homogeneous polynomial a1(z) is equivalent to 
weight the inputs. From a2(z) to ap(z) represent the 
modulation between the inputs and the power of every 
one. 

Here Ni is the number of terms of every 
polynomial 
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The dimension NΦ of each family Φp can be 
computed:     
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The activation function is given by: 
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where φmax and φmin are upper and lower bounds 
respectively. 
 
2.1  Learning of PANN 
 
 To introduce the learning concepts in PANN first 
it is necessary to describe some terms that will be 
used:  
The approximation error of PANN can be defined as: 
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where  yn is the target output, φ(zk)∈Φp  and n is the 
number of points. The optimal error is defined by: 
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where ( ) pz Φ∈*φ  is the optimal estimation of  yn. 
 The PANN  learns uniformly the target output with 
accuracy ε  if: 
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Now the learning problem is how to find a specific φ 
∈ Φp(z)  that fulfilled the previous inequality. Let 
define a vector of components M(z) in the same way 
that in (4): 
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Then the nonlinear function φ∈Φp(z) described in 

(4) can be represented as: 
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are the weights of PANN, Wb  is a boolean vector. 
 The product .* is  defined by: 
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For example, for W and Wb as: 
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Equation (12) means that φ only has specific terms 
of Φp  that can be selected by Wb in such way, that the 
optimal  structure of PANN φ* can be calculated as: 
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Using (9)-(16), the learning problem for this 

specific structure can be formulated to the following 
two steps optimization problem:  
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where ( )( )
bW

n
n zyerr φ,  is the error value given by 

(9) under a fixed value of Wb. The values of the 
parameter W can be obtained using least square 
method: 
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In our case N=NΦ and the searching space has 
dimension 2N.  It is clear, that in many cases the 
searching space can be very big and for many possible 
combinations of φ(z), and only one or one set of this 
group fulfills the equation (17). The next section 
describes how can be obtained the value of the array 

*
bW  using GA. 

 
3 GENETIC ALGORITHM 
 

To find the optimal structure of the network the 
crossover or sexual recombination, the mutation and 
other special process called add parents and add 
Random Father (Gómez, 2002) are used. Next 
Sections describe these processes in detail. 
 
3.1 Crossover 

 
To explain the multipoint crossover for each fixed 

number g=1,..,ng, where ng is the number of total 
generations, let introduce the matrix gF  which is the 
set of parents of a given population. This matrix is 
boolean of dimension bpg xnnF : , where np is the 
number of parents of the population at the generation 
g and nb is the size of every array (chromosomes). Let 

( )tg nFC ,  be the crossover operator which can be 
defined as the combination between the information of 
the parents set considering the number of intervals nt 
of each individual and the number of sons ns such that: 

 tn
ps nn =      (19) 

then ( ) bsbptg nxnnxnnFC →:, . To show how 
the crossover operator can be applied the following 
example is introduced. Let Fg has np=2 and nt=2. This 
means that the array (the information of one father) is 
divided in 3 sections and every section is determined 
with ai and bi respectively for i=1,..,nt. It's important to 
appoint that with this operator the parents Fg of the 
population g are included in the result of the 
crossover: 
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3.2  Mutation 
 

 The mutation operator just changes some bits  that 
were selected in a random way from a fixed 
probability factor Pm; in other words, we just vary the 
components of some genes. This operator is extremely 
important, because assures the maintenance of the 
diversity inside the population, which is basic for the 
evolution (Altenberg, 1995)(Banzhaf et al, 1997). This 
operator bsbs nxnnxnM →:  changes with 
probability Pm a specific population in the following 
way: 
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where r(ω)∈U(0,1) is a random variable with uniform 
distribution  i=1,..,ns; j=1,..,nb  defined on a 
probability space (Ω,ℑ,P), ω ∈ Ω. The mutation 
operator ensures that the probability of finding any 
point in the search space is never zero. If the 
probability is very high the information that every 
generation founds can be lost and the method has the 
same behavior that a traditionally random search. 
 
3.3 Add Parents Mutated 
 
 In this part the parents mutated are added to the 
result of crossover process, then the population Ag at 
the generation g can be obtained like: 
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 Note that Ag has the best individuals of Ag-1  
because the parents, the best individuals of the 
previous generation, are included in this population. 
This step and the previous one ensure that the 
algorithm does not diverge. 
 
3.4 Add Random Parents 
 

To avoid local minima a new scheme is introduced 
and it is called add random parents. If the best 
individual of one generation is the same than the 
previous one, a new random individual is included 
like parent of the next generation. This step increases 
the population because when crossover is applied with 
the new random parent, the number of sons increases 
by the relation (19). This step is tantamount to have a 



 

     

very big mutation probability and to search in new one 
points of the solution space. 

 
3.5 Selection Process 
 
 The Selection Process Sg computes the objective 
function Og that represents the performance condition 
to maximize or minimize and selects the best np 
individuals of Ag as: 

( ) ( )gg
n
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 Then, the parents of the next generation can be 
calculated by: 

 ( )pggg nASF ,1 =+      (23) 
Notice that the following operator can obtain the 

best individual of the generation g: 
 ( )1,gg AS  (24) 

In resume the Genetic Algorithm proposed can be 
describe with the following steps: 
 
1. For the initial condition g=0 select the A0 in 

random way with dimension bs nxnA :0  
2. Compute the objective function and select the 

best individuals for the initial population F1= 
S0(A0,np)  

3. Obtain the new population in the generation g 
with the crossover and mutation process Ag 

4. Calculate the objective function and select the 
best individual of the generation with Sg 

5. Return to step 3 until the maximal number of 
generations is reached or one of the individuals of 
Sg obtains the minimal desire value of Og. 

 
For our case the application to the theory of PANN 

is automatic if we consider like *
bW  the array 

searched. Then the problem of learning can be 
translated obtaining the optimal structure of PANN 
using GA. Notice that the optimal error in generation 
g is obtained by: 
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represents the error between the target yn and the 
estimated by PANN. Then  
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represents the error of the optimal individual in the 
generation g that can be selected by ( )1,gg

g
b ASW =  

due to ( ) ( )gg
n

pgg AOnAS pmin, =  

Remember that the population Ag of generation g 
and the parents Fg+1 can be described by: 
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Notice that the best individuals of the generation g 
are in the next generation due to the crossover 
operator, then: 

( ) ( )

( ) ( ) 




≤








+

+

zMWyerr

zMWyerr

i

W

ni
ni

i

W

ni
ni

g
b

g
b

,,min

,,min

1

'

1

'

'

'

 (26) 

⇒ i
gi

i
gi

OO minmin 1 ≤+    (27) 

with φg ∈Φp can be described like:  

( )Tggg ASzMW 1,*).(,=φ     (28) 

( )( ) ( )( )zyerrzyerr gg φφ ,, 1 ≤+      (29) 
This means that the minimal error in the 

generation g is less or equal than the error of the 
previous generation for the best individual of the 
population. With this part we only prove 
convergence, but not convergence to the optimal 
error value. 

It is possible to show that if mutation Probability 
Pm is strictly more than zero then for any small 
enough ε>0 we can guarantee not only (29), such that:  
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Theorem 1 
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where g
bW is the best individual in the generation g, i. 

e., the optimal structure of PANN at this moment. 
Then the approximation error (9) can be rewritten as: 
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where yn is the target output, φg(z) is the optimal 
representation in the generation g, and: 
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If Mutation Probability Pm>0 then PANN learns 
uniformly the target output, such that: 

( ) ( )( )( ){ } 0,0,,lim >=≥−
∞→

εεφφ zyopterrzyerrP gg
 

(33) 
Proof of Theorem 1:  
  
Let define: 
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Let us define: 0: 1 ≥−=∂ +kk

k errerr    
 (37) 

Notice that to prove theorem it is sufficient to state 
that: 
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where ℑn-1=σ(δ0,δ1,δ2,…δn-1) is the sigma-algebra 
generated in the corresponding process and ω is a 
random event such that: 
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where { }1−≥∂= nnn fPP ε  

Remember that for a random variable r(ω) the 
following conditions is fulfilled: 
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Remark 2 
 
 For practical case theorem 1 can be written using 
definition 1 as: 

 
If Mutation Probability Pm>0 then PANN learns 

uniformly the target output with accuracy ε in a finite 
number of generations ng if: 
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4 ADAPTIVE CONTROL OF NONLINEAR 

SYSTEMS 
 
 The ARMAX model is a very common algorithm to 
identify linear dynamic systems. PANN with the 
parameter p=1 can be related with this representation 
and in similar way NARMAX model for p≥2. One 
advantage of PANN, which was described in the 
previous section, is that we obtain the optimal one and 
it is possible to identify the linear and nonlinear part 
of a nonlinear dynamic system. Using the previous 
theory, in this section a methodology to control 
nonlinear systems using PANN is described. 

First, it is necessary to define a new kind of 
structure. The PANN model (1) can be rewritten as: 
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where φ(x) and φ(y) represent the linear terms of 

φ(z). These terms are covered by the case of  p=1, e.g. 
the case for the polynomials ),...,( 210 vnzzza  and 

),...,( 211 vnzzza and φk(x,y) represents the nonlinear 
relations. Then, if we substitute 
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where q-1 represents the delay operator. Then equation 
(45) can be written as: 
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where the parameters ai and bi are unknown and will 
be obtained using the theory described in the previous 
section. Notice that these parameters are equivalent to 
compute the weights of PANN using (17)-(18). 

Let the following assumptions be fulfilled: 
A.1 n1,n2  are fixed and the delay d are known 
A.2 ( )1−− qBq d  has all the zeros inside the 

unit circle and b0≠0  
Using a similar scheme of an indirect Adaptive 

Controller. Let the Euclidean division (Landau et 
al.,1998) 
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With this polynomial identity we can compute the 
values for  S(q-1) and R(q-1) for a fixed value of C(q-1). 

We calculate ( ) dtyqC +
−1  
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  (52) 
( ) ( ) ( ) ( ) RyxqSxqBqSy ++= −−− ,111* φ  (53) 

If we define the control action as: 21 XXx +=  (54) 
with X1 and X2 such that: 

⇒ ( )yxXqB ,)( 1
1 φ−=−     (55) 

 ⇒ *
2

11 )()( yRXqBqS =+−−   (56) 
 
In (56) the nonlinear part of the system is 

eliminated and controlled like a linear system. 
If the system is minimum phase then 

∞<⇒∞< kk xy . The parameters A(q-1),B(q-1), 

and φk(x,y) can be estimated by PANN using GA and 
after this, the dynamic of the system is adjusted 
placing the poles at the zeros of C(q-1). The next 
example shows the results of the algorithm for the 
nonlinear case. All the programs used in the 
simulations were made in Matlab. 
 
Example: 

The procedure to apply an adaptive controller is 
the following: 

1. Identification of the plant using a random signal 
u(k) with uniform distribution U(-1,1). The 
parameters of PANN used are p=2, n1=n2=2, 
Pm=0.2, np=3,nt=3.  
2. Test the results using another input like r=sin(t). 
3. Separate the linear and nonlinear part of the 
model to obtain A(q-1),B(q-1) and φk(x,y) to cancel 
and adapt the dynamical system. In this particular 
case φk(x,y)=0, this means that there is not a 
nonlinear part and therefore is like a typical 
adaptive control application. Choosing the 
following values for C  

211 9048.09025.11)( −−− +−= zzqC  (57) 
the setting time is ts=1 sec. In this case we are going 
to use a very simple nonlinear discrete model first 
proposed by May in his paper (May, 1976). This 
model can be described by: 

kkk uyry +−= − )1( 2
1      (58) 

With r=1.2 and y0=0.5 we can obtain a chaotic 
dynamics without introducing any input. Separating 
the linear and nonlinear part we can observe in figure 
1 the results of the proposed methodology.  

 

 
Figure 1 Adaptive Control Response 

 
5 CONCLUSION 
 
 A methodology to identify nonlinear dynamics 
using PANN was proposed with the optimal structure 
obtained by GA. The modification to the algorithms of 
GA ensures at least with ε precision the convergence 
of the response. 

The structure can identify linear and nonlinear 
systems choosing the suitable parameters. For the 
linear case p=1 the minimal identification model for 
the plant is obtained. In the case of time series 
prediction the procedure is the same and the results 
corresponds to the optimal delays required to 
minimize the estimation error. For the values of n1 and 
n2 only it is necessary to set the maximal values and 
the algorithm will itself select the optimal 
representation in this range. The Mutation probability 
is recommended to be between 0.10 and 0.15 to 
optimal convergence. 
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