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Abstract. Stability results for analysis of time-varying discrete-time cascaded sys-
tems are presented. Most of these results parallel their continuous-time counter-
parts although there are some important differences in the proof techniques that
are used. More importantly, some fundamental differences between stability proper-
ties of discrete-time and continuous-time cascades are pointed out and illustrated via
examples.
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1. INTRODUCTION

Stability of continuous-time cascaded systems has at-
tracted a lot of attention over the past ten years. Mo-
tivation for this research originated in geometric non-
linear control where it was shown that many systems
can be transformed into a cascade via a local change
of coordinates (see, for example, (Isidori 1995, Lemma
1.6.1)). Further motivation comes from many practi-
cal applications where one can use the cascade struc-
ture to check stability of the closed-loop system and in
certain situations even design a control law with the
aim of achieving a cascade structure that is easier to
analyze. For instance, this approach has been success-
fully used in stabilization of a ship (Loŕıaet al. 2000)
and non-holonomic systems (Panteley et al. 1998).

While continuous-time results are important in their
own right, the prevalence of computer controlled sys-
tems strongly motivates the investigation of stability
properties of discrete-time cascaded systems. Indeed,
results on stability of discrete-time cascaded systems
are needed if the controller design is based on the
discrete-time plant model.

First results on stability of time-invariant discrete-
time cascades that we are aware of were presented
in (Jiang and Wang 2001) where the input-to-state
stability (ISS) property was used to provide suffi-

cient conditions for global asymptotic stability of the
cascade. It turns out, however, that the ISS prop-
erty is often too restrictive and weaker conditions are
needed. A range of such weaker conditions were found
in (Arcak et al. To appear., Panteley and Loŕıa 2001)
for continuous-time cascades.

It is the main purpose of this paper to present results
on stability of time-varying discrete-time cascaded
systems that generalize the time-invariant discrete-
time results in (Jiang and Wang 2001) and parallel
similar continuous-time results in (Arcak et al. To
appear., Panteley and Loŕıa 2001). Our time-varying
results are very important for tracking problems (see
(Panteley and Loŕıa 2001)) which often arise in prac-
tice. We emphasize that our results are not just a sim-
ple translation from continuous-time to discrete-time
and there are notable differences in the proofs. More-
over, there are several aspects in which discrete-time
results are very different from their continuous-time
counterparts. For instance, we show for discrete-time
cascades that if the bottom subsystem is dead-beat
stable and the nominal upper subsystem is uniformly
globally asymptotically stable (UGAS), then the cas-
cade is UGAS irrespective of the growth of the inter-
connection term, which is in clear contrast with the
continuous-time results. More precisely consider the
following examples.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



Example 1. Consider the system:

xk+1 = axk + xpkyk

yk+1 = 0 , (1)

where p ≥ 0 is arbitrary and a ∈ (0, 1). We claim that
the discrete-time system is GAS for any p ≥ 0. We
prove this by constructing a Lyapunov function for
the system. Let ε > 0 be such that a+ ε− 1 < 0 and
define the Lyapunov function

V (x, y) := |ax+ xpy|+ ε |x|+ |y| . (2)

This function is obviously positive definite and radi-
ally unbounded for any value of p ≥ 0. Finally, the
first difference of the Lyapunov function is:

∆V = |a(ax+ xpy)|+ ε |ax+ xpy| − |ax+ xpy|
−ε |x| − |y|

= (a+ ε− 1) |ax+ xpy| − ε |x| − |y| , (3)

which is negative definite for any p ≥ 0 since a+ ε−
1 < 0 and ε > 0. �

Hence, the discrete-time cascade is GAS for any value
of p ≥ 0, as opposed to the continuous-time case
where not even forward completeness can be guar-
anteed.

Example 2. Consider the cascade

ẋ = −x+ x2z (4a)
ż = f(z) (4b)

where z, x ∈ R and where f(·) is locally Lipschitz and
has the property that the system (4b) is GAS. Note
that the nominal system ẋ = −x is GAS. We show
that this cascade is not GAS no mater how we choose
f(·). Indeed, let f be arbitrary but fixed and such
that the system (4b) is GAS and let z(t, z◦) denote a
solution of this system. Let z◦ > 0 be arbitrary. Then,
0 ≤ z(t, z◦) ≤ z◦,∀t ≥ 0. Moreover, the solutions of
the subsystem (4a) can be explicitly written as (see
(Sepulchre et al. 1997, pg. 128)):

x(t, x◦, z◦) =
e−t

1
x◦
−
∫ t

0
e−sz(s, z◦)ds

. (5)

Hence, for each initial condition x◦ that satisfies

x◦ >

(∫ ∞
0

e−sz(s, z◦)ds
)−1

there exists some time te > 0 such that the denom-
inator in (5) becomes zero and hence the solution
x(t, x◦, z◦) escapes to infinity as t→ te. �

The rest of the paper is organized as follows. In Sec-
tion 2 we present preliminary results and definitions
we need in the sequel. Section 3 contains the main re-
sults. Due to space constraints, some proofs are omit-
ted. Conclusions and suggestions for further research
are given in the last section.

2. PRELIMINARIES

Throughout this paper we denote by Z the set of in-
teger numbers and by R the set of reals. |·| stands for
the 1-norm of vectors, i.e. |x| :=

∑
i |xi|. A function

α : R≥0 → R≥0 is said to be of class K (α ∈ K), if
it is continuous, strictly increasing and zero at zero;
α ∈ K∞ if, in addition, it is unbounded. A function
β : R≥0 × R≥0 → R≥0 is of class KL if for all t ≥ 0,
β(·, t) ∈ K, for all s > 0, β(s, ·) is decreasing and
lim
t→∞

β(s, t) = 0.

In this paper we consider systems of the form:

xk+1 = F (k, xk) . (6)

The solution of the system (6) at time k, starting at
initial time k◦ and emanating from the initial con-
dition x◦ = x(k◦), is denoted as x(k, k◦, x◦) or xk if
k◦, x◦ are clear from the context. We will say that the
system (6) is forward complete if all solutions of (6)
exist for all k ≥ k◦ ≥ 0.

We say that the forward complete system (6) is:
(i) uniformly globally asymptotically stable (UGAS),
if there exists a function β ∈ KL and such that

|xk| ≤ β(|x◦| , k − k◦) (7)

for all k ≥ k◦ ≥ 0 and x◦ ∈ Rn.
(ii) uniformly globally dead-beat stable (UGDS), if
there exist π and k∗ ∈ K∞ such that

|xk| ≤ π(|x◦|) ∀ k ∈ [k◦, k◦ + k∗(|x◦|)] (8)

xk ≡ 0 ∀ k ≥ k◦ + k∗(|x◦|) (9)

for all x◦ ∈ Rn and k◦ ≥ 0.
(iii) uniformly globally bounded (UGB), if there exist
κ ∈ K∞ and c > 0 such that

|xk| ≤ κ(|x◦|) + c , (10)

for all k ≥ k◦ ≥ 0 and all x◦ ∈ Rn .

We are interested in studying sufficient conditions
for UGAS of forward complete time-varying discrete-
time systems of the form

xk+1 = F1(k, xk) +G(k, xk, zk) (11a)
zk+1 = F2(k, zk) (11b)

where x ∈ Rnx , z ∈ Rnz . A standing assumption
will be that the subsystem (11b) and the “nominal”
system

xk+1 = F1(k, xk) (12)

are both UGAS.

We also assume that there exist a nondecreasing func-
tion γ1, class K functions γ2 and φi, i = 1, 2 such that
for all k ≥ 0, x ∈ Rnx and z ∈ Rnz we have

|G(k, x, z)| ≤ γ1(|x|)γ2(|z|) (13)

|F1(k, x)| ≤ φ1(|x|) (14)

|F2(k, z)| ≤ φ2(|x|) . (15)



Note that these assumptions guarantee forward com-
pleteness of (11) as opposed to more restrictive as-
sumptions needed in the continuous-time systems con-
text (see e.g. (Sepulchre et al. 1997)). In the sequel,
we will denote the state of (11) by the column vector
ξ := col[x, z] of dimension n := nx + nz.

3. MAIN RESULTS

The first main result (Theorem 3) is essentially the
discrete-time counterpart of (Panteley and Loŕıa 2001,
Lemma 2). This theorem states necessary and suffi-
cient conditions for stability of the system (11). Due
to space reasons we are able to provide only a sketch
of the proof. For clarity of exposition this is done in
the Appendix.

Theorem 3. (UGAS + UGAS + UGB ⇔ UGAS).
The system (11) is UGAS if and only if (11b) and
(12) are UGAS and the solutions of (11) are UGB. �

While this result is fundamental since it states neces-
sary and sufficient conditions for UGAS of (11), these
conditions are often hard to check and in particular
the third (UGB) condition. Therefore, we provide be-
low several sufficient conditions for UGB.

In particular, we investigate how the notion of in-
tegral Input-to-State Stability (iISS) can be used to
state sufficient conditions for stability of (11). We will
present a discrete-time counterpart of continuous-time
results in (Arcak et al. To appear.). We note that
iISS is strictly more general than ISS that was used
in (Jiang and Wang 2001) for investigation of stabil-
ity of discrete-time cascades. iISS of subsystem (11a)
(where z is regarded as an input) allows us to quantify
the convergence rate of the subsystem (11b).

We also discuss the particular case where the subsys-
tem (11b) is assumed to be dead-beat stabile. We will
show that in general, we do not need any restrictions
on the growth of the interconnection term, to con-
clude UGB and consequently (via Theorem 3) UGAS.
Thus, we will make formal the statement illustrated
in Examples 1.

Finally, sufficient conditions for UGB via growth re-
strictions on the interconnection term are presented.
These are similar to the continuous-time results in
(Panteley and Loŕıa 2001).

3.1 Conditions involving integral ISS

We first explore sufficient conditions for UGAS of cas-
cades in terms of the property Integral Input-to-State
Stability (iISS) (see (Sontag 1998)). The iISS frame-
work allows us to study general cascades of the form

xk+1 = f1(k, xk, zk) (16a)
zk+1 = f2(k, zk) . (16b)

For the purposes of this paper we use the following
definitions, which are similar to those given in (Angeli
1999) for autonomous discrete-time systems.

Definition 4. (iISS). The system (16a) is integral In-
put-to-State Stable (iISS) –with gain µ and input zk–
if there exists α, µ ∈ K∞, β ∈ KL such that for all
initial conditions, all inputs zk and all k ≥ k◦ ≥ 0

α(|xk|) ≤ β(|x◦| , k − k◦) +
k−1∑
k=k◦

µ(|zk|) . �

Definition 5. (iISNS). The system (16a) is Integral
Input-to-State Neutrally Stable (iISNS) –with gain
µ and input zk– if there exists α, γ and µ ∈ K∞ such
that for all initial conditions, all inputs zk and all
k ≥ k◦ ≥ 0

α(|xk|) ≤ γ(|x◦|) +
k−1∑
k=k◦

µ(|zk|) . �

Note that iISS implies iISNS with γ(s) := β(s, 0).
Necessary and sufficient condition for iISS and iISNS
of discrete-time time-invariant systems can be found
in (Angeli 1999).

The following Proposition captures a similar result to
that contained in (Arcak et al. To appear., Theorem
1). This result shows that in order to have UGAS of
the system (16), there is a tradeoff between the rate
of convergence of trajectories of the system (16b) and
the magnitude/shape of the iISNS gain of the system
(16a).

Proposition 6. If there exist µ, σ ∈ K∞, κ ∈ K and
λ, c > 0 such that:

(i) the system (16b) satisfies (7) with
β(r, t) = σ(κ(r)e−λt)

(ii) the system xk+1 = f1(k, xk, 0) is UGAS and
(16a) is iISNS with gain µ and input zk such
that ∫ 1

0

µ ◦ σ(s)
s

ds ≤ c <∞ . (17)

Then, the cascade (16) is UGAS. �

We remark that the assumption in item (i) of Propo-
sition 6 is not restrictive since it was shown in (Sontag
1998) that given any β ∈ KL, there exist σ ∈ K∞,
κ ∈ K such that β(r, t) ≤ σ(κ(r)e−t),∀r, t. However,
the second item is restrictive and it shows a tradeoff
between the iISNS gain µ of (16a) and the conver-
gence rate of (16b).

Proof . The proof follows closely that of (Arcak et al.
To appear., Theorem 1). By assumption, there exist



α, γ, µ ∈ K∞, κ ∈ K and λ > 0 such that for all
x◦ ∈ Rnx , z◦ ∈ Rnz and k ≥ k◦ ≥ 0

α(|xk|) ≤ γ(|x◦|) +
∞∑

k=k◦

µ ◦ σ(κ(|z◦|)e−λ(k−k◦)) .

(18)

The sum on the right hand side of the inequality
above satisfies

∞∑
k=k◦

µ ◦ σ(κ(|z◦|)e−λ(k−k◦)) = µ ◦ σ ◦ κ(|z◦|)

+
∞∑

k=k◦+1

µ ◦ σ(κ(|z◦|)e−λ(k−k◦))

and since µ◦σ(κ(|z◦|)e−λ(k−k◦)) is monotonically de-
creasing in k, the last term on the right hand side of
this inequality satisfies

∞∑
k=k◦+1

µ ◦ σ(κ(|z◦|)e−λ(k−k◦))

≤
∫ ∞
t◦:=k◦

µ ◦ σ(κ(|z◦|)e−λ(t−t◦)) dt .

Define as in (Arcak et al. To appear.),
s := κ(|z◦|)e−λ(t−t◦) then∫ ∞

t◦:=k◦

µ ◦ σ(κ(|z◦|)e−λ(t−t◦)) dt

=
∫ κ(|z◦|)

0

µ ◦ σ(s)
λ s

ds .

From item (ii) of the Proposition we have that

κ1(s) :=
1
λ

∫ s

0

µ ◦ σ(t)
t

dt

exists for all s ≥ 0 and it is class K because κ1(0) = 0
and µ◦σ(t)

t > 0 for all t > 0. Putting all these bounds
together and using item (i) of the Proposition we ob-
tain that

α(|xk|) ≤ γ(|x◦|) + [µ ◦ σ ◦ κ(|z◦|) + κ1 ◦ κ(|z◦|)]

for all k ≥ k◦ ≥ 0 and since the system (16b) is
UGAS, the solutions of (16) are UGB. The result fol-
lows invoking Theorem 3.

�

We note that it was proved in (Angeli 1999) for au-
tonomous systems with inputs

xk+1 = f(xk, uk) , (19)

that the system (19) is iISS if and only if the zero
input system xk+1 = f(xk, 0) is GAS. This result
is not true for continuous-time systems. Actually, it
was shown in (Angeli et al. 2000) for continuous-time
systems with inputs

ẋ = f(x, u) , (20)

that if the system ẋ = f(x, 0) is GAS and moreover
(20) is forward complete, this still does not imply

that (20) is iISS. These results and Proposition 6 in-
dicate that one can expect large differences between
continuous-time and discrete-time cascade results. In-
deed, following results of (Angeli 1999) and Proposi-
tion 6 for time-invariant cascades

xk+1 = f1(xk, zk) (21a)
zk+1 = f2(zk) (21b)

we can state the following:

Corollary 7. If xk+1 = f1(xk, 0) is GAS, then there
exists a GAS subsystem (21b) so that the cascade
(21) is GAS. �

Proof . Note that since xk+1 = f1(xk, 0) is GAS, then
results of (Angeli 1999) guarantee that (21a) is iISS
with some gain µ. Then any GAS subsystem (21b)
with β2(r, t) = µ−1(κ(r)e−λt) satisfies all conditions
of Proposition 6 hence the cascade (21) is GAS. �

We will show in the next section that even a stronger
statement is true for discrete-time time-varying cas-
cades if the bottom system is dead-beat stable. How-
ever, statement of Corollary 7 is not true in continuous-
time even for time-invariant systems, as illustrated by
Example 2.

3.2 Dead-beat stability conditions

We show next that if the bottom subsystem is dead-
beat stable, then one can allow for any growth of
G(k, ·, z). Thereby formalizing the observation made
in Example 1.

Proposition 8. If (12) is UGAS and (11b) is UGDS
then the cascade (11) is UGAS. �

Proof . The proof is based on the fact that forward
completeness of (11a) and the inequalities (8), (13),
(14) imply that the solutions of (11a) are uniformly
bounded over any bounded interval. In particular,
there exists a continuous function Φ : R≥0 × R≥0 →
R≥0 that is zero at zero and such that

|xk| ≤ Φ(k − k◦, |ξ◦|) ∀ k ≥ k◦ . (22)

Moreover, we can assume without loss of generality
that Φ(·, ·) is strictly increasing in both arguments.
Let now the dead-beat assumption on (11b) generate
k∗ ∈ K∞ such that (8) and (9) hold. Using all these
facts and (22) we obtain that

|xk| ≤ Φ(k∗(|z◦|), |ξ◦|) ≤ Φ1(|ξ◦|) , (23)

∀ k ∈ [k◦, k◦ + k∗(|z◦|)], where Φ1(s) := Φ(k∗(s), s)
is clearly continuous strictly increasing. Let β1 ∈ KL
come from UGAS of (12). Then we can write that

|xk| ≤ β1(|xk◦+k∗ | , k − k∗ − k◦) ,



for all k ≥ k∗+k◦. Moreover, since for any ξ◦ we have
|xk◦+k∗ | ≤ Φ1(|ξ◦|) and noting that β1(s, 0) ≥ s for
all s ≥ 0 it follows that

|xk| ≤ β1(Φ1(|ξ◦|), 0) ∀k ≥ k◦ . (24)

The result follows combining this bound with (8) and
(9) to conclude that the system (11) is UGB and then
invoking Theorem 3 to conclude UGAS of (11). �

Note that in the proof of Proposition 8 we have ac-
tually shown that the following is true:

Corollary 9. If (11b) is UGDS, then for any system
(11a) such that (12) is UGAS we have that the cas-
cade (11) is UGAS. �

Corollary 9 shows, in particular, that if (11b) is UGDS,
then we can allow arbitrary growth in the intercon-
nection term. Example 2 illustrated that this was not
true for continuous-time systems and illustrates that
arbitrary growth in the interconnection term is indeed
allowed for discrete-time systems for which (11b) is
UGDS.

3.3 Conditions on growth rates

The following corollary is the discrete-time counter-
part of (Panteley and Loŕıa 2001, Theorem 4). It
presents sufficient conditions on the growth of the in-
terconnection term that would guarantee UGB and
hence UGAS of the discrete-time cascade.

Proposition 10. Assume that (11b) and (12) are UGAS,
there exist a positive semidefinite functionW (·), α1, α2

∈ K∞, σ ∈ K, η > 0, λ > 0 and a continuous Lya-
punov function V (·, ·) which satisfies for all k, x

α1(|x|) ≤ V (k, x) ≤ α2(|x|) (25)

V (k + 1, F1)− V (k, x) ≤ −W (x) (26)

and for all z ∈ Rnz and k ≥ 0,

{|x| ≥ η } =⇒ (27)

V (k + 1, F1 +G)− V (k + 1, F1) ≤ λW (x)σ(|z|) .

Then, the cascade (11) is UGAS. �

Proof . Let W , V , σ, λ and η be generated the Propo-
sition. Let β2 ∈ KL come from UGAS of (11b). Let
k∗(·) be a continuous nondecreasing function such
that such that σ(β2(s, k∗(s))) ≤ 1/λ,∀s ≥ 0. Fol-
lowing verbatim the proof of Proposition 8 we obtain
that (23) holds for all k ∈ [k◦, k◦ + k∗(|z◦|)] —we re-
mark that in the derivation of Φ1(·) in the proof of
Proposition 8 we have used (8) but for the purposes
of the present proof one can construct Φ1(·) using
π(s) := β2(s, 0). Consider arbitrary initial state ξ◦ =

(xT◦ z
T
◦ )T and the corresponding trajectory ξk. Then,

it follows from (27) that for all k ≥ k◦ + k∗(|z◦|) and
all xk such that |xk| ≥ η, we have that

vk+1 − vk ≤ −W (xk)(1− λσ(|zk|)) ≤ 0 , (28)

where vk := V (k, xk). The first inequality follows di-
rectly from (27) while the second one follows from the
fact that σ(|zk|) ≤ 1/λ for all k ≥ k◦+k∗(|z◦|). Then,
from (25) we have that

{k ≥ k◦ + k∗(|z◦|), |xk| ≥ η} ⇒ vk+1 ≤ vk
⇒ |xk+1| ≤ α−1

1 ◦ α2(|xk|) . (29)

Notice also that our choice of that k∗ and λ and the
fact that (11b) is UGAS imply that 1 |zk| ≤ σ−1(1/λ)
for all k ≥ k◦+k∗(|z◦|). It follows using (13), (14) and
(15) that,

{k ≥ k◦ + k∗(|z◦|), |xk| ≤ η} ⇒ (30)

|xk+1| ≤ φ1(η) + γ1(η)γ2 ◦ σ−1(1/λ) := c(η, λ) .

Thus, from (23), (29) and (30) and using induction
we obtain that

|xk| ≤ max{ c(η, λ), α−1
1 ◦ α2(|xk◦+k∗ |) } , (31)

for all k ≥ k◦ + k∗(|z◦|).
Since α−1

1 ◦α2(s) ≥ s,∀s ≥ 0 and |xk◦+k∗ | ≤ Φ1(|ξ◦|)
for any ξ◦, we finally obtain that

|xk| ≤ max{ c(η, λ), α−1
1 ◦ α2(Φ1(|ξ◦|)) } ,

for all k ≥ k◦, that is, the cascade is UGB. The result
follows invoking Theorem 3. �

4. CONCLUSION

Conditions for stability of discrete-time time-varying
cascade systems were presented. Necessary and suffi-
cient conditions are in general hard to check and we
presented several sufficient conditions that are easier
to check. Several differences between continuous-time
and discrete-time cascade results were commented on
and illustrated by examples. In particular, it was shown
that the growth of the interconnection term in x is not
so restrictive for stability of discrete-time cascades as
it is for continuous-time cascades.
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Loŕıa, A., T. I. Fossen and E. Panteley (2000). A
separation principle for dynamic positioning of
ships: theoretical and experimental results. IEEE
Trans. Contr. Syst. Technol. 8(2), 332–344.
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Appendix A. SKETCH OF PROOF

OF THEOREM 1

The conditions of the theorem imply the following
statements.

Fact 11. Since (12) and (11b) are UGAS, there exist
two KL functions β1 and β2 such that for all k ≥
k◦ ≥ 0, x◦ ∈ Rnx and z◦ ∈ Rnz

|xk| ≤ β1(|x◦| , k − k◦) (A.1)

|zk| ≤ β2(|z◦| , k − k◦) . (A.2)

Fact 12. There exist α1, α2 ∈ K∞, α3, α4 ∈ K and a
continuous function V : Z≥0 × Rnx → R≥0 such that
for all x ∈ Rnx we have

α1(|x|) ≤ V (k, x) ≤ α2(|x|) (A.3)

V (k + 1, F1(k, x))− V (k, x) ≤ −α3(|x|) (A.4)∣∣∣∣∂V∂x
∣∣∣∣ ≤ α4(|x|) . (A.5)

Lemma 13. If (11b) is UGAS and (11) is UGB then,
there exists β3 ∈ KL such that the same V (k, x) from
Fact 12 satisfies the following inequality along trajec-
tories 2 for all ξ◦ ∈ Rn, k ≥ k◦ ≥ 0

|V (k + 1, F1 +G)− V (k + 1, F1)| ≤ β3(|ξ◦| , k − k◦) .

Let Fact 11 and Fact 12 and the Lemma generate the
functions βi ∈ KL, i = 1, 2, 3 and let Fact 12 generate
the function V (·, ·). Then, defining vk := V (k, xk),
using (A.3), (A.4) and invoking Lemma 13 we obtain
that along trajectories

vk+1 − vk ≤−α3 ◦ α−1
2 (vk) + β3(|ξ◦| , k − k◦)

= −α(vk) + β3(|ξ◦| , k − k◦) (A.6)

for all k ≥ k◦ ≥ 0 and where we defined α := α3 ◦
α−1

2 . Define next ζ(t) := vk + (t− k) (vk+1 − vk) for
all t ∈ [k, k + 1 ), k ≥ k◦ ≥ 0. Notice that since ζ(t)
is a linear interpolation from vk to vk+1, which are
always non-negative, we have that

0 ≤ ζ(t) ≤ max{vk, vk+1} (A.7)

for any t ∈ [k, k + 1 ), k ≥ k◦ ≥ 0. Next it can be
shown that the second inequality in (A.7) and the
condition that { for all t ∈ [k, k + 1 ), k ≥ k◦ ≥ 0

ζ(t) ≥ α−1(2β3(|ξ◦| , k − k◦)) + β3(|ξ◦| , k − k◦) }
(A.8)

imply by virtue of (A.6) that

vk ≥ α−1(2β3(|ξ◦| , k − k◦)) (A.9)

for all t ∈ [k, k + 1 ), k ≥ k◦ ≥ 0 and, using (A.6)
again we obtain that

vk+1 − vk ≤ −
1
2
α(vk) . (A.10)

Consequently, defining the piecewise constant “input”,

u(t) := α−1(2β3(|ξ◦| , k − k◦) + β3(|ξ◦| , k − k◦)) ,
(A.11)

for all t ∈ [k, k + 1 ), k ≥ k◦ ≥ 0, and t◦ := k◦, the
following is true for all t ∈ [t◦, Tmax), 0 ≤ Tmax ≤ ∞{

ζ(t) ≥
∥∥u[t◦,t)

∥∥
∞ =⇒ ζ̇(t) ≤ −1

2
α(ζ(t))

}
(A.12)

for almost all t ∈ [t◦, Tmax). The implication (A.12)
is known (see e.g. (Sontag and Wang 1995)) to imply
the existence of βa ∈ KL such that 3

ζ(t) ≤ βa(ζ(t◦), t− t◦) + max
t◦≤τ≤t

u(τ) ∀ t ≥ t◦ ≥ 0 .

Thus, the proof can be completed following similar
lines to those of the proof of (Khalil 1996, Lemma
5.6). �

2 For notational simplicity we have omitted the arguments of
F1(k, xk) and G(k, xk, zk).
3 Notice that both, ζ(·) and u(·) are always nonnegative and

u(·) is piecewise constant so we write “max” instead of “sup”
and we avoid the use of “|·|” to avoid a cumbersome notation.


