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Abstract: We develop a closed loop subspace identification method based on stochastic
realization theory. Using the preliminary orthogonal decomposition of (Picci and Katayama,
1996b) we show that, under the assumption that the exogenous input is feedback-free and
persistently exciting (PE), the identification of closed loop systems is divided into two
subproblems: the deterministic identification of the plant and controller, and the stochastic
identification of the noise filter. Subspace methods for identifying the deterministic and
stochastic parts are derived by adapting the standard subspace methods to the deterministic
and stochastic components. In both cases, a model reduction procedure should be applied
in order to extract controllable and observable parts from non-minimal realizations. Some
numerical results are included to show the applicability of the present technique.
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1. INTRODUCTION

The identification of stochastic multivariable systems
operating under feedback, without measurable exoge-
nous inputs, has been considered in (Van der Klauw
et al., 1991); in this paper the joint input-output ap-
proach and stochastic realization theory followed by
a balanced model reduction are used for deriving the
state space models of the subsystems in the closed
loop. Also, based on subspace methods, a related
technique of identifying the state-space model of a
plant operating in closed loop with exogenous inputs
has been proposed by (Verhaegen, 1993), reformu-
lating it as an equivalent open loop problem. In the
framework of the indirect approach, the multivariable
closed loop identification problem has been discussed
in (Van den Hof and de Callafon, 1996), together
with its relation to the dual Youla parametrization ap-
proach. Moreover, under the assumption that a finite
number of Markov parameters of the controller are
known, a closed loop subspace identification method

(Van Overschee and Moor, 1997) has been derived
by modifying the N4SID algorithm (Van Overschee
and Moor, 1994). We have also presented a subspace-
based method of identifying the deterministic part of
a plant operating in closed loop based on the orthog-
onal decomposition of the joint input-output process
(Katayamaet al., 2001).

In this paper, we develop a subspace method for iden-
tifying the plant, the controller and the noise filter op-
erating in closed loop, by extending the orthogonal de-
composition based technique (Katayamaet al., 2001).
First we decompose the joint input-output process into
stochastic and deterministic components by means of
the orthogonal decomposition developed in (Picci and
Katayama, 1996b). The basic assumption is that the
exogenous inputs are feedback-free and persistently
exciting (PE). It can be shown that, by the preliminary
orthogonal decomposition, the identification of closed
loop system is divided into two subproblems: the iden-
tification of the deterministic part, or the plant and
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controller, and the identification of the stochastic part,
or the noise filter. Thus the plant and the controller
can be obtained from the realization of deterministic
component of the joint process, and the noise filter can
be retrieved from the realization of stochastic compo-
nent. In each case, a model reduction procedure (Zhou
et al., 1999), applicable to both stable and unstable
systems, should be used for deriving low order mod-
els from higher order models, by canceling poles and
zeros situated very closely.

2. PROBLEM STATEMENT
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Fig. 1. Closed-loop system.

We consider the closed loop system shown in Fig.
1, wherey � �p is the output vector of the plant,
andu � �m is the input vector. An output disturbance
v� �p is described byv�t� � H�z�ξ �t�, whereξ � �p

is a white noise with mean zero and covariance matrix
Λ � 0, andH�z� is a minimum phase, square transfer
matrix. It is also assumed thatH�∞� � Ip, whereIp is
thep� p unit matrix. The signalsr1 ��

m andr2 � �
p

can be exogenous reference signals, or some probing
inputs. We assume that�r1�t�� r2�t�� u�t�� y�t�� t �
0��1� � � �� are jointly stationary second-order proc-
esses with mean zero.

Let the plant be a finite dimensional, linear, time-
invariant (FDLTI) system described by

y�t� � P�z�u�t��H�z�ξ �t� (1)

whereP�z� andH�z� are the transfer matrices of the
plant and the noise filter, respectively. The control
input is generated by

u�t� � r1�t��C�z��r2�t�� y�t�� (2)

whereC�z� denotes the transfer matrix of the FDLTI
controller. We introduce the following assumptions
on the closed loop system and exogenous inputs and
noise.

A1: The closed loop system is well-posed in the sense
that �u� y� are uniquely determined by the states of
the plant, the controller, and by the exogenous inputs
and noise. This generic condition is satisfied ifI p �
P�∞�C�∞� and Im �C�∞�P�∞� are non-singular. For
the sake of simplicity, it is assumed throughout that
the plant is strictly proper, namely,P�∞� � 0.

A2: The controller internally stabilizes the closed
loop system.

A3: The input vectorr �

�
r1

r2

�
� �l �l � m� p� is

PE, andr1 andr2 are mutually uncorrelated. Also,r is
uncorrelated with the white noiseξ .

The objective of this paper is to obtain realizations
of the plant P�z�, the controllerC�z� and of the
noise filter H�z�, based on finite measurement data
�r1�t�� r2�t�� u�t�� y�t�� by using a subspace identifi-
cation method.

It may be observed that the identification of the con-
troller is not needed, since often we know the dy-
namics of the controller. However, if the estimate of
the controller agrees reasonably well with the actual
controller implemented, this will be a confirmation of
the validity of the identification procedure employed.
Therefore, to identify all the components in the closed
loop system is quite interesting from both practical
and theoretical points of view.

The present problem is virtually the same as the one
treated in (Verhaegen, 1993), but the approach is quite
different. For, as shown below, we employ the ap-
proach based on orthogonal decomposition of (Picci
and Katayama, 1996b) in order to decompose the
joint input-output process into the deterministic and
stochastic components; subspace methods are then ap-
plied to each component to get desired state space
models. It may be also noted that further results in
(Chiuso and Picci, 1999; Chiuso and Picci, 2000)
show that in the case where the exogenous input
is colored, the orthogonal decomposition-based sub-
space identification algorithms are more robust than
the N4SID-like algorithms of (Van Overschee and
Moor, 1994; Verhaegen, 1994).

3. THE JOINT INPUT-OUTPUT APPROACH

In order to obtain the state space models of the plant
and controller in closed loop, we use the joint input-
output approach. In this and next sections, we shall be
concerned with the stationary case where infinite data
are available.

Now define the joint input-output vector process as

w :�

�
u
y

�
� �l . From Fig. 1, the closed loop system

is described by

w�t� �

�
Tur1�z� Tur2�z�
Tyr1�z� Tyr2�z�

�
r�t��

�
Tuξ �z�
Tyξ �z�

�
ξ �t�

� Twr�z�r�t��Twξ �z�ξ �t� (3)

whereTab�z� denotes the transfer matrix fromb to a.
It is easy to see that

Twr�z� �

�
Si�z� Si�z�C�z�

P�z�Si�z� P�z�Si�z�C�z�

�
(4a)

Twξ �z� �

�
�C�z�So�z�

So�z�

�
H�z� (4b)



whereSi�z� andSo�z� are the input and output sensi-
tivity matrices defined, respectively, by

Si�z� � �Im�C�z�P�z���1
� So�z� � �Ip�P�z�C�z���1

Since there is no feedback fromw to r, we can em-
ploy the stochastic realization method of (Picci and
Katayama, 1996b) to get a state space model of the
transfer matrixTwr�z� with input r and outputw. Once
the closed loop transfer matrices inTwr�z� are ob-
tained, we can get the transfer matrices of the plant
and the controller, say, fromP�z� � Tyr1�z�T

�1
ur1

�z� and
C�z� � T�1

ur1
�z�Tur2�z�. There are also different combi-

nations of transfer matrices in (4a) which may be used
to recover the plant and the controller. Hence, unlike
the indirect methods, no knowledge of the controller
is employed and no auxiliary signals are generated.

Using the notations of (Picci and Katayama, 1996b),
we shall write� � span�r�t� � t � �� and � �
span�w�t� � t ���. We also define the linear spaces of
second-order random variables spanned by the infinite
past and future of the input and output vectors at the
present timet as��t :� span�r�τ � � τ � t�, ��

t :�
span�w�τ � � τ � t� and ��t :� span�r�τ � � τ 	 t�,
�
�
t :� span�w�τ � � τ 	 t�, respectively. These are

regarded as subspaces of the ambient Hilbert space
� :� �
� containing all the linear functionals of
the process�r� w�.

Absence of feedback fromw to r means that the future
of r is conditionally uncorrelated with the past ofw
given the past ofr itself. Hence we can write the
feedback-free condition as��

t ���t � ��t . It follows
from the definition of conditional orthogonality that
this condition can be rewritten as��

t �� � ��t . Thus
the absence of feedback is equivalent to the causality
of the estimator, i.e.

Ê�w�t� � ��� Ê�w�t� ���t�1�� t ��

It therefore follows that

ws�t� :� w�t�� Ê�w�t� � ��t�1�

� Ê�w�t� � ��� (5)

where�� denotes the orthogonal complement of�
with respect to�. This implies thatws�t� � � for all
t � �, i.e. the causal estimation error is uncorrelated
with the whole history of the exogenous inputr.

The processws defined by (5) is called the stochastic
component ofw. In the same way, the process defined
by the orthogonal projection

wd�t� :� Ê�w�t� ��� (6)

is called the deterministic component, the part ofw
linearly related to the exogenous reference input.

From above, we have the following orthogonal de-
composition of the joint process:

w�t� � wd�t��ws�t� (7)

or equivalently

�
u�t�
y�t�

�
�

�
ud�t�
yd�t�

�
�

�
us�t�
ys�t�

�
(8)

It should be noted that the deterministic and stochas-
tic components are uncorrelated, i.e.,E�ws�t�wd�τ �T�
� 0 for all t� τ �� (Picci and Katayama, 1996b). From
this orthogonal decomposition, the basic relations sat-
isfied by the deterministic and stochastic components
in the closed loop system of Fig. 1, easily follow.

Proposition 1. The deterministic and stochastic com-
ponents respectively satisfy

yd�t� � P�z�ud�t� (9a)

ud�t� � r1�t��C�z��r2�t�� yd�t�� (9b)

and

ys�t� � P�z�us�t��H�z�ξ �t� (10a)

us�t� ��C�z�ys�t� (10b)

Proof: We see from (1), (2) and (8) that

yd�t�� ys�t� � P�z��ud�t��us�t���H�z�ξ �t�

ud�t��us�t� � r1�t��C�z��r2�t�� yd�t�� ys�t��

Taking the orthogonal projections of the above equa-
tions onto the spaces� and��, we have (9) and (10)
immediately. �

Solving (9) yields�
ud�t�
yd�t�

�
�

�
Si�z� Si�z�C�z�

P�z�Si�z� P�z�Si�z�C�z�

��
r1�t�
r2�t�

�

Since the transfer matrices in the right hand side of
the above equation are the same as those in (4a),
they are completely determined by the realization of
deterministic component. Moreover, the noise filter
H�z� is obtained from (10).

4. REALIZATION OF CLOSED LOOP SYSTEM

In this section, we derive the state space representa-
tions for the deterministic and stochastic components
based on the theory of (Picci and Katayama, 1996b),
and then compute the state space models of plant,
controller and noise filter.

4.1 Deterministic Component

Suppose that for eacht the input space� admits the
direct sum decomposition����t ���t , that is,��t �
�
�
t � 0. An analogous condition is that the spectral

density matrix ofr is strictly positive definite on the
unit circle.

Let �̂ be spanned by the deterministic component
wd . Also, let �̂�

t denote the subspace generated by
the futurewd�τ �� τ 	 t. According to Section 4 of



(Picci and Katayama, 1996b), we define the oblique
predictor subspace as

�
���
t :� Ê���t ��̂

�

t ���t � (11)

This is the oblique projection of̂��

t on the past��t
along the future��t , and����t is the state space for
the deterministic componentwd . Clearly, ifr is a white
noise process, (11) reduces to the ordinary orthogonal
projection onto��t .

Let the dimension of the state space����t be n. In
generaln equals the sum of the orders of the plant and
of the controller. Any basis vectorxd�t���

���
t yields

a (joint) state space representation ofwd

xd�t �1� � A1xd�t�� �B11 B12�r�t� (12a)

wd�t� �

�
C11

C21

�
xd�t��

�
D11 D12

0 0

�
r�t� (12b)

whereD21 � 0, D22 � 0 due to the fact that the plant
P�z� is strictly proper. Furthermore we haveD11 � Im

andD12 � Dc.

From (12) we derive state-space models for the plant
and controller. First note that the closed loop transfer
matrices are expressed as

�
Tur1�z� Tur2�z�
Tyr1�z� Tyr2�z�

�
�

�
� A1 B11 B12

C11 D11 D12

C21 0 0

�
�

We see from (4) thatTyr1�z� � P�z�Tur1�z� andTur2�z�
� Tur1�z�C�z�, so that the plant and controller are
computed by

P�z� � Tyr1�z�T
�1

ur1
�z�� C�z� � T�1

ur1
�z�Tur2�z�

The state-space models are described in the following
proposition.

Proposition 2. Suppose that detD11 
� 0. Then (non-
minimal) state space representations of the plant and
the controller are given by

P�z� �

�
A1�B11D�1

11 C11 B11D�1
11

C21 0

�
(13a)

C�z� �

�
A1�B11D�1

11 C11 B12�B11D�1
11 D12

D�1
11 C11 D�1

11 D12

�

(13b)

The models in (13) are not minimal (Verhaegen,
1993). Hence the observable and controllable part of
each non-minimal state space model should be ex-
tracted from (13) to recover the state space models
of the original plant and controller. This is performed
by using a model reduction procedure due to (Zhouet
al., 1999; Varga, 2001).

4.2 Stochastic Component

Let the subspacẽ� be spanned by the stochastic com-
ponentws. Let �̃�

t and�̃�
t denote the linear spaces

generated by the future and past of the stochastic
componentws�t�, respectively. According to Section
3 of (Picci and Katayama, 1996b), the predictor space

�̃
���
t for the stochastic component is defined by

�̃
���
t :� Ê��̃�

t � �̃�
t �

Suppose that dim̃����t � ñ, which is the sum of the
orders1 of us andys. Then a particular realization of

the stochastic system having the predictor space�̃
���
t

as the state space is given by

xs�t �1� � A2xs�t�� �K21 K22�

�
ν1�t�
ν2�t�

�
(14a)

ws�t� �

�
C12

C22

�
xs�t��

�
ν1�t�
ν2�t�

�
(14b)

wherexs�t� is a basis in�̃���t , andν�t� :�

�
ν1�t�
ν2�t�

�

is the one-step prediction error of the stochastic com-

ponentws�t� �

�
us�t�
ys�t�

�
based on the past̃��

t , i.e.

the forward innovation process ofws�t� (Picci and
Katayama, 1996b). It can be shown that the innovation
of ws�t� is the conditional innovation ofw�t� given
observations ofr�τ �� τ � t, namely,ν�t� � w�t��
Ê�w�t� � ��t�1
�

�
t �.

Proposition 3. The realizations ofP�z� andH�z� in
(10a) are given by

P�z� �

�
A2�K21C12 K21

C22 0

�
(15a)

H�z� �

�
A2�K21C12 K22

C22 Ip

�
(15b)

Proof: Substitutingν1�t� of (14b) into (14a) yields

xs�t �1� � �A2�K21C12�xs�t��K21us�t��K22ν2�t�

ys�t� �C22xs�t��ν2�t�

whereν2�t� is a white noise. Thus eliminatingxs,

ys�t� �C22�zI�A2�K21C12�
�1K21us�t�

��Ip �C22�zI�A2�K21C12�
�1K22�ν2�t�

Comparing this with (10a), we get (15a) and (15b).�

It should be noted that we can also include a regulator
noise that acts on the output of the controllerC�z�
in Fig. 1. If so, and if the controller is not strictly
proper, the realization of stochastic component should
be modified accordingly (Anderson and Gevers, 1982;
Van der Klauwet al., 1991).

As in the deterministic case, we also need a model
reduction procedure to get reduced order models from
non-minimal models.

1 Theorder of a process with a rational spectrum is meant to be the
order of a minimal realization.



5. IMPLEMENTATION OF ORTHOGONAL
DECOMPOSITION

Suppose that finite input-output datar1�t�, r2�t�, u�t�,
y�t� for t � 0�1� � � � � N �2k�2 are given withk � 0
and N sufficiently large. As usual, we fix a present
time t � k and define the block Hankel matrixR0�k�1
of dimensionkl�N formed by the exogenous input as

R0�k�1 �

�
����

r�0� r�1� � � � r�N�1�
r�1� r�2� � � � r�N�

...
...

. . .
...

r�k�1� r�k� � � � r�N � k�2�

�
����

and similarly forR0�2k�1, W0�2k�1, Wk�2k�1.

Consider the standard LQ factorization (Verhaegen,
1994; Van Overschee and Moor, 1994; Katayama and
Picci, 1999)�

R0�2k�1
W0�2k�1

�
�

�
L11 0
L21 L22

��
QT

1
QT

2

�

where L11, L22 � �2kl�2kl are the lower triangular
matrices withQT

i Q j � I2klδi j.

Then it can be shown (Picci and Katayama, 1996a)
that the finite-history of deterministic component is
obtained by

Ŵ d
0�2k�1 :� Ê�W0�2k�1 � �0�2k�1�� L21QT

1

so that the stochastic component is given by

Ŵ s
0�2k�1 �W0�2k�1�Ŵd

0�2k�1

Due to space limitation, we skip all the algorithms
needed in subspace identification and subsequent
model reduction; see e.g. (Katayamaet al., 2001).

6. SIMULATION RESULTS

Consider the following model (Codronset al., 2000):

P�z� �
0�1208z�0�1812

z4�1�992z3�2�203z2�1�841z�0�8941

C�z� �
0�5517z4�1�765z3�2�113z2�1�296z�0�4457

z3�z�1�

H�z� �
z4

z4�1�992z3�2�203z2�1�841z�0�8941

From this model, we observe that all the poles of the
plant are located near the unit circle (see Fig. 2), and
a zero is atz � �1�5. ThusP�z� is stable, but non-
minimal phase. The controller has a pole atz � 1, and
has zeros atz� 1�2629�0�2j. ThusC�z� is marginally
stable, and non-minimal phase. The denominator of
noise filter is the same as that of the plant.

We assume that the reference inputsr1, r2 are Gaus-
sian white noises with mean zero and variancesσ 2

r1
�

1, σ2
r2

� 1, and that the noiseξ is a Gaussian white

noise with mean zero and varianceσ 2
ξ . For simulation

studies, we takeN � 3000, andk � 15, and generated
30 data set, where in each case different Gaussian ran-
dom numbers with specific variances are generated.

First we show the identification results of determin-
istic part. The estimated poles ofP�z� by (13a) for
σ2

ξ � �0�3�2 and the corresponding Bode plot are dis-
played in Figs. 2 and 3, respectively. We see that the
identification result is quite good; though not included
if we decrease the noise variance toσ 2

ξ ��0�05�2, then
the better estimates are obtained due to the increase of
the power of deterministic component.

Also, the stochastic part, namely, the noise filterH�z�
is estimated by (15b). Bode plot of the estimates of
noise filter is depicted in Fig. 4, whereσ 2

ξ � �0�3�2.

But if we decrease the variance toσ 2
ξ � �0�05�2, we

see that the performance of the estimates is degraded
as shown in Fig. 5, though that of the deterministic
part improves. This may be inferred from the fact that
the relative power of stochastic component increases
as the varianceσ2

ξ increases.

7. CONCLUSIONS

In this paper, we have developed a subspace method
for identifying the plant, the controller and the noise
filter operating in closed loop, based on stochastic re-
alization with exogenous inputs. In particular, by pre-
liminary orthogonal decomposition, we have shown
that the identification of closed loop system can be
divided into two subproblems: the identification of the
deterministic part and the identification of the stochas-
tic part. The plant and the controller can be obtained
from the realization of deterministic component of the
joint process, and the noise filter can be retrieved from
the realization of stochastic component. In each case,
a model reduction procedure which is applicable to
both stable and unstable systems is used for cancel-
ing poles and zeros situated very closely. Numerical
results show the applicability of the present technique.
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Fig. 2. True��� and estimated��� poles of the plant
P�z� by (13a), whereσ 2
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Fig. 3. Bode plot of the estimated plantP�z� over 30
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Fig. 4. Bode plot of the estimated noise filterH�z� by
(15b), whereσ 2

ξ � �0�3�2.
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Fig. 5. Bode plot of the estimated noise filterH�z� by
(15b), whereσ 2

ξ � �0�05�2.


