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Abstract: We develop a closed loop subspace identification method based on stochastic
realization theory. Using the preliminary orthogonal decomposition of (Picci and Katayama,
1996h) we show that, under the assumption that the exogenous input is feedback-free and
persistently exciting (PE), the identification of closed loop systems is divided into two
subproblems: the deterministic identification of the plant and controller, and the stochastic
identification of the noise filter. Subspace methods for identifying the deterministic and
stochastic parts are derived by adapting the standard subspace methods to the deterministic
and stochastic components. In both cases, a model reduction procedure should be applied
in order to extract controllable and observable parts from non-minimal realizations. Some
numerical results are included to show the applicability of the present technique.

Keywords: Closed loop systems, Subspace methods, Stochastic Realization, LQ
decomposition.

1. INTRODUCTION (Van Overschee and Moor, 1997) has been derived
by modifying the N4SID algorithm (Van Overschee
The identification of stochastic multivariable systems and Moor, 1994). We have also presented a subspace-
operating under feedback, without measurable exoge-based method of identifying the deterministic part of
nous inputs, has been considered in (Van der Klauw a plant operating in closed loop based on the orthog-
et al., 1991); in this paper the joint input-output ap- onal decomposition of the joint input-output process
proach and stochastic realization theory followed by (Katayameet al., 2001).

a balanced model reduction are used for deriving the thi devel b thod for id
state space models of the subsystems in the closed_n IS paper, we develop a subspace method foriden-
tifying the plant, the controller and the noise filter op-

loop. Also, based on subspace methods, a related 7 '~ ™ .
technique of identifying the state-space model of a erating in closed loop, by extending the orthogonal de-

plant operating in closed loop with exogenous inputs composition based technique (Katayaenal., 2001).

has been proposed by (Verhaegen, 1993), reformu_First we Qecompose thg joi_ntinput—output process into
lating it as an equivalent open loop problem. In the stochastic and deterministic components by means of

framework of the indirect approach, the multivariable the orthogonal decomposition developed in (Picci and

closed loop identification problem has been discussedKatayama’ _19%' The basic assumption is tha_t the
in (van den Hof and de Callafon, 1996), together exogenous inputs are feedback-free and persistently

with its relation to the dual Youla parametrization ap- exciting (PE). It can be shown that, by the preliminary

proach. Moreover, under the assumption that a finite orthogonal decomposition, the identification of closed
number of Mark0\’/ parameters of the controller are loop system is divided into two subproblems: the iden-

known, a closed loop subspace identification method tification of the deterministic part, or the plant and



controller, and the identification of the stochastic part,
or the noise filter. Thus the plant and the controller
can be obtained from the realization of deterministic PE, and'; andr, are mutually uncorrelated. Alsojs
component of the joint process, and the noise filter can uncorrelated with the white noise

be retrieved from the realization of stochastic compo-

nent. In each case, a model reduction procedure (Zhou
et al., 1999), applicable to both stable and unstable

systems, should be used for deriving low order mod-

els from higher order models, by canceling poles and

zeros situated very closely.

A3: The input vector = :; eER (I=m+p)is

The objective of this paper is to obtain realizations
of the plantP(z), the controllerC(z) and of the
noise filterH(z), based on finite measurement data
{r1(t), r2(t), u(t), y(t)} by using a subspace identifi-
cation method.

It may be observed that the identification of the con-

troller is not needed, since often we know the dy-

namics of the controller. However, if the estimate of
2. PROBLEM STATEMENT the controller agrees reasonably well with the actual
controller implemented, this will be a confirmation of
the validity of the identification procedure employed.
Therefore, to identify all the components in the closed
loop system is quite interesting from both practical
and theoretical points of view.

The present problem is virtually the same as the one
treated in (Verhaegen, 1993), but the approach is quite
different. For, as shown below, we employ the ap-
proach based on orthogonal decomposition of (Picci

i .. and Katayama, 199) in order to decompose the
We consider the closed loop system shown in Fig. joint input-output process into the deterministic and
1, wherey € RP is the output vector of the plant, gi,chastic components; subspace methods are then ap-

3?&%52;;;:;;3E“t(tv)eftgr'( Q? ((:)ut\?vl:]te?(iasétlgkﬁ;pnce plied to each component to get desired state space
) . ) dby(t) = ! . . models. It may be also noted that further results in
is a white noise with mean zero and covariance matrix (Chiuso and Picci, 1999; Chiuso and Picci, 2000)

A >0, andH(2) is a minimum phase, square transfer

Fig. 1. Closed-loop system.

) ) ) show that in the case where the exogenous input
matrix. It is also assumed thif() = Inﬁ' wherelpis s colored, the orthogonal decomposition-based sub-
thep>x punit matrix. The signals; € R™ andro € R® 5506 jdentification algorithms are more robust than
can be exogenous reference signals, or some probingpa N4SID-like algorithms of (Van Overschee and
inputs. We assume thdtr(t), rao(t), u(t), y(t), t = Moor, 1994; Verhaegen, 1994).

0,+1,---} are jointly stationary second-order proc-

esses with mean zero.

Let the plant be a finite dimensional, linear, time- 3 THE JOINT INPUT-OUTPUT APROACH
invariant (FDLTI) system described by
y(t) = P(2u(t) + H(2)&(t) 1) In order to obtr_:lin the state space models_m_c thg plant
and controller in closed loop, we use the joint input-
whereP(z) andH(z) are the transfer matrices of the output approach. In this and next sections, we shall be
plant and the noise filter, respectively. The control concerned with the stationary case where infinite data
input is generated by are available.

u(t) =rq(t) + C(2)[ra(t) — y(t)] 2 Now define the joint input-output vector process as

u .
whereC(z) denotes the transfer matrix of the FDLTI W := {y] € R'. From Fig. 1, the closed loop system
controller. We introduce the following assumptions g jescribed by
on the closed loop system and exogenous inputs and

i Tury(2) Tur,(Z Tue(Z
noise. wt) = {Tu:lgzg Tu:zgz;] () + {TUEEZH (1)
A1l: The closed loop system is well-posed in the sense e 2 ve
that (u, y) are uniquely determined by the states of = Twr (21 (t) + Tue (€ (1) ®)
the plant, the controller, and by the exogenous inputs whereT,,(z) denotes the transfer matrix fromto a.
and noise. This generic condition is satisfied jf+ Itis easy to see that
P(c0)C(e0) and Iy + C(0)P(e0) are non-singular. For
the sake of simplicity, it is assumed throughout that _| S@ S@C@

Twr (2) (4a)

the plant is strictly proper, namel(c) = 0. P(2S(2) P(2S(2)C(2)

A2: The controller internally stabilizes the closed Tue(2) = {—C(Z)S)(Z)} H(2) (4b)
loop system. S(2)



whereS (z) andS,(z) are the input and output sensi- ut) | [ug(t) us(t) 8
tivity matrices defined, respectively, by yt) | | ya(t) ys(t) ®)

S =(Im+C(2P(2) ™, S(2 = (Ip+P(2)C(2)* It should be noted that the deterministic and stochas-
tic components are uncorrelated, iE{ws(t)wg(1)"}

Since there is no feedback fromto r, we can em-  =0forallt, T € Z (Picci and Katayama, 1985 From

ploy the stochastic realization method of (Picci and this orthogonal decomposition, the basic relations sat-

Katayama, 1999) to get a state space model of the isfied by the deterministic and stochastic components

transfer matrixTyy (2) with inputr and outputv. Once in the closed loop system of Fig. 1, easily follow.

the closed loop transfer matrices Ty (z) are ob-

tained, we can get the transfer matrices of the plant Proposition 1. The deterministic and stochastic com-

and the controller, say, frof(z) = Ty, (2)T; () and  ponents respectively satisfy

C(2) = Ty} (2)Tur,(2). There are also different combi-

nations of transfer matrices in (4a) which may be used Ya(t) = P(9ua(t) (9a)
to recover the plant and the controller. Hence, unlike Ug(t) =ra(t) + C([ra(t) — ya(t)] (9b)
the indirect methods, no knowledge of the controller and
is employed and no auxiliary signals are generated.

ys(t) = P(Qus() +H(@E()  (10a)

Using the notations of (Picci and Katayama, 1896
we shall write R = Spar{r(t) |t € Z} and W = Us(t) = —C(2)ys(t) (10b)
spa{w(t) |t € Z}. We also define the linear spaces of

second-order random variables spanned by the infinite Pro0f: We see from (1), (2) and (8) that

past and future of the input and output vectors at the v (t) 4 yq(t) = P(2)[ug(t) + us(t)] + H(2) & (t)

present time¢ as®R; :=3Spafr(7) | T <t}, Wy =

sparw(t) | T <t} and R := spar{r(1) | T > t}, Ug(t) + us(t) = ra(t) + C(2)[r(t) — ya(t) — ys(t)]

Wi :=spafw(r) | T > t}, respectively. These are Taking the orthogonal projections of the above equa-

regarded as subspaces of the ambient Hilbert spacgjons onto the space® andR-, we have (9) and (10)
H =RV W containing all the linear functionals of jhmediately. 0
the processr, w). _ _

Solving (9) yields
Absence of feedback fromto r means that the future

of r is conditionally uncorrelated with the past wf [Ud(t)} _ [ S@  S(@C( ] {rl(t)]

given the past of itself. Hence we can write the Ya (t) P(2)S(2) P(2S(2)C(2) | | ra(t)
.y —_ + —

;eedbe:}ck—frt?e .c.ond|t|fon as ,L:Rf | ‘rﬁt -t fo:!owsh Since the transfer matrices in the right hand side of

rom the definition of conditional orthogonality that o ahove equation are the same as those in (4),

tEis cg ndition iafn bdebrevlri_tte_n a8 L Rh| R - Thllj_s they are completely determined by the realization of
the absence of feedback is églent to the causality deterministic component. Moreover, the noise filter

of the estimator, i.e. H(z) is obtained from (10).
E{w(t) | R} =E{w(t) | R 1}, t€Z
It therefore follows that
. a — 4. REALIZATION OF CLOSED LOOP SYSTEM
Ws(t) :=w(t) — E{w(t) | R, ;}

_F L

= E{w(t) | %~} (®) In this section, we derive the state space representa-
where R+ denotes the orthogonal complementf tions for the deterministic and stochastic components
with respect tdK. This implies thaws(t) L R for all based on the theory of (Picci and Katayama, 1)96
t € Z, i.e. the causal estimation error is uncorrelated @nd then compute the state space models of plant,
with the whole history of the exogenous input controller and noise filter.

The processvs defined by (5) is called the stochastic
component ofv. In the same way, the process defined
by the orthogonal projection 4.1 Deterministic Component

Wa(t) := B{w(t) | R} (©) Suppose that for eadhthe input spac& admits the
is called the deterministic component, the partwof  direct sum decompositidR = R;" + R, , thatis,R;" N

linearly related to the exogenous reference input. Ri = 0. An analogous condition is that the spectral
From above, we have the following orthogonal de- Sﬁir:i’:'itler:amx ofr is strictly positive definite on the

composition of the joint process: A
_ Let W be spanned by the deterministic component
W(E) = Wa(t) +ws(t) (7) wy. Also, let W™ denote the subspace generated by
or equivalently the futurewy(t), T > t. According to Section 4 of



(Picci and Katayama, 1995 we define the oblique  generated by the future and past of the stochastic
predictor subspace as componentws(t), respectively. According to Section
xﬁ/* - éllfR# {W{r 1R} (11) 3 of (Picci and Katayama, 198§ the predictor space

| %"/~ for the stochastic component is defined by
This is the oblique projection oW;™ on the past;

along the futureR;", andf)CtJ“/f is the state space for
the deterministic componewy. Clearly, ifr is a white

X = EOWE W)

noise process, (11) reduces to the ordinary orthogonalSuppose that dil‘f@f/_ = fi, which is the sum of the
projection ontdR; . orders' of us andys. Then a particular realization of

the stochastic system having the predictor sgate

Let the dimension of the state spa‘ﬁé/_ ben. In as the state space is given by

generah equals the sum of the orders of the plant and

. +/_ .

of t_h.e controller. Any basis vectag (t) e X{' vyields Xs(t + 1) = Aoxs(t) + [Kon Ko3] {w(t)] (14a)
a (joint) state space representatiomaf Va(t)

t+1) = Aixqg(t) + [B11 BroJr(t 12a

Xd(t+1) = Axqg(t) +[B1a Ba2Jr(t) (12a) We(t) = Ci2 Xs(t) + vi(t) (14b)
Cu D11 D12 Czz v2(t)
wa(®)= | ¢ a0+ | B3 52 v 120 ) "
wherexs(t) is a basis in‘xf“/*, andv(t) := { ! }
whereD»1 = 0, D> = 0 due to the fact that the plant va(t)
P(2) is strictly proper. Furthermore we haig; = I, is the one-step prediction error of the stochastic com-
andDj2 = Dc. ponentws(t) = {338] based on the past;, i.e.
S

From (12) we derive state-space models for the planthe forward innovation process ¥s(t) (Picci and
and controller. First note that the closed loop transfer Katayama, 1996). It can be shown that the innovation
matrices are expressed as of ws(t) is the conditional innovation ofv(t) given
observations of (1), T < 't, namely, v(t) = w(t) —
|:Tur1(z) Turz(z)] _ E{w(t) | R, VW 1.
Ty (2 Ty, (2) "

Proposition 3.  The realizations oP(z) andH(z) in
We see from (4) thaly, (2) = P(2)Tur, (2) andTyr,(2) (10a) are given by
= Tur,(2)C(2), so that the plant and controller are

computed by P(2) = {7/'\2 _CK21C12 %} (15a)
_ _ 22
P(2) = Tyry (Z)Turll(z)v C(2) = Turll(Z)Turg (2 Ay — Ko1Cra| Koo
The state-space models are described in the following H(2) = {T?} (15b)
proposition.

Proposition 2. Suppose that d&t;; # 0. Then (non-  Proof: Substitutingv,(t) of (14b) into (14a) yields

minimal) state space representations of the plant andx _
) t+1) = (A2 — K21Ci2)Xs(t) + Kogus(t) + Koova(t
the controller are given by s(t+1) = (A2 — Ka1Cr2)Xs(t) + Kagus(t) + Kaava(t)
ys(t) = C22X3(t) + Vz(t)

A; — By1D7{C11|B11D7}
P(2) = [ Co1 L 0 L (13a) wherevs(t) is a white noise. Thus eliminating,
_ _ -1
Clo) = A1 — B11D71C11|B12— B1iD7{ D12 Ys(t) = Coz(2 — Ao+ KarCro) K21us(tl)
= DyiCu D;iD12 + (Ip+Coo(zd — Ax+ K21C12) T"Koo) v (t)

(13b) Comparing this with (10a), we get (15a) and (158).

It should be noted that we can also include a regulator
noise that acts on the output of the control&(z)

in Fig. 1. If so, and if the controller is not strictly
proper, the realization of stochastic component should
be modified accordingly (Anderson and Gevers, 1982;
Van der Klauwet al., 1991).

The models in (13) are not minimal (Verhaegen,
1993). Hence the observable and controllable part of
each non-minimal state space model should be ex-
tracted from (13) to recover the state space models
of the original plant and controller. This is performed
by using a model reduction procedure due to (Zkbu
al., 1999; Varga, 2001). As in the deterministic case, we also need a model
reduction procedure to get reduced order models from

non-minimal models.
4.2 Sochastic Component

Let the subspac® be spanned by the St(_)ChaStiC COM- 1 Theorder of a process with a rational spectrum is meant to be the
ponentws. Let Wt andW;~ denote the linear spaces order of a minimal realization.



5. IMPLEMENTATION OF ORTHOGONAL noise with mean zero and varianaé. For simulation

DECOMPOSITION studies, we tak&l = 3000, anck = 15, and generated
o 30 data set, where in each case different Gaussian ran-
Suppose that finite input-output datg(t), r2(t), ut),  dom numbers with specific variances are generated.

y(t) fort =0,1,---, N+ 2k — 2 are given withkk > 0 _ _ o _
and N sufficiently large. As usual, we fix a present First we show the identification results of determin-
timet = k and define the block Hankel mati¥gy_1 istic part. The estimated poles 8{(z) by (13a) for

of dimensiorkl x N formed by the exogenous inputas 9% = (0.3) and the corresponding Bode plot are dis-
played in Figs. 2 and 3, respectively. We see that the

r© r(d) .- r(N-1) identification result is quite good; though not included
Roj1 = W r@-- i) if we decrease the noise variancestp= (0.05)2, then
k1 : Co : the better estimates are obtained due to the increase of
r(k—1) r(k) --- r(N+k—2) the power of deterministic component.
and similarly forRgox—1, Woj2k—1, Wkj2k—1- Also, the stochastic part, namely, the noise filide)

is estimated by (15b). Bode plot of the estimates of

Consider the standard LQ factorization (Verhaegen, noise filter is depicted in Fig. 4, Wheneg — (0.3)2

1994; Van Overschee and Moor, 1994; Katayama and

Picci, 1999) But if we decrease the variance mr_f': (0.05)2, we
- see that the performance of the estimates is degraded
[ROZk—l} - ['—ll 0 ] {Q%] as shown in Fig. 5, though that of the deterministic
Woj2k-1 Loi L2z | [Q; part improves. This may be inferred from the fact that

where Ly, Ly € R2M*2 are the lower triangular the I:elatye powzer of stochastic component increases
matrices WithQiTQj =l 3j. as the variance increases.

Then it can be shown (Picci and Katayama, 1896
that the finite-history of deterministic component is

obtained by 7. CONCLUSIONS

Wolak_1 = E{Woa-1 | Roaw-1} = L21Q]
0l2k-1 . | | o ! In this paper, we have developed a subspace method
so that the stochastic component is given by for identifying the plant, the controller and the noise
~ ~ d . H H H -
Wos|2k4 =Woj2k_1 _WO\Zk—l ﬂIFer (.)pera.tlng in closed Ipop, based on stochastic re
alization with exogenous inputs. In particular, by pre-
Due to space limitation, we skip all the algorithms liminary orthogonal decomposition, we have shown

needed in subspace identification and subsequenlthat the identification of closed loop system can be
model reduction; see e.g. (Katayasial., 2001). divided into two subproblems: the identification of the

deterministic part and the identification of the stochas-

tic part. The plant and the controller can be obtained
6. SIMULATION RESULTS fr(_)m the realization of de'terministic compon.ent of the
joint process, and the noise filter can be retrieved from
the realization of stochastic component. In each case,
a model reduction procedure which is applicable to
both stable and unstable systems is used for cancel-

Consider the following model (Codromsal., 2000):

P(2) = 30'120&+20'1812 ing poles and zeros situated very closely. Numerical
7' —1.9922°+2.20%* - 1.841z+0.8941 results show the applicability of the present technique.
() 05517 1.765° + 21122 — 1.2967+ 0.4457
B B(z-1)
H(2) = z
T 719927+ 22032 — 1.841z+0.8941 8. REFERENCES
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Fig. 2. True(+) and estimatedx ) poles of the plant
P(2) by (13a), wheres? = (0.3)%.

10° 10
Frequency [rad/sec]

Fig. 3. Bode plot of the estimated plaRfz) over 30
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Fig. 4. Bode plot of the estimated noise filté(z) by
(15b), wheres? = (0.3)>.
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Fig. 5. Bode plot of the estimated noise filté(z) by
(15b), whereo? = (0.05)2.



