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Abstract: This paper proposes a method to obtain a discrete-time LPV (Linear Parameter Varying) 
controller for a non-linear system represented with the LFT (Linear Fractional Transformation) 
framework. This synthesis can be integrated into a loop-shaping/LPV approach to obtain a discrete 
gain-scheduled control law. A detailed application of this method is here performed with a classical 
example of non-linear missile pitch-axis control. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
For a missile with a high level of maneuverability, 
linear control cannot complete the required 
performances for all flight conditions because of the 
very non-linear behaviour of the system. To compare 
the quality of different non-linear control laws, one 
classical missile pitch-axis model (Reichert, 1992) 
has been extensively studied (Nichols, et al. 1993; 
Biannic and Apkarian, 1999; Devaud, et al. 2001). 
Among the proposed methods, some are based on 
LPV control theory which has focused attention of 
many people in the control community during the past 
decade (Apkarian and Gahinet 1995; Apkarian and 
Adams, 1998), but almost all of these control laws 
have been performed in continuous-time domain.  
 
The objective here is to design a digital controller for 
this missile pitch-axis control example via a discrete 
LPV method that could also be used in a very general 
case. The chosen strategy is based on the quasi-
LPV/LFT continuous-time representation of the plant 

and requires a recent method of discretisation for 
continuous-time LFT models (Imbert, 2001). The 
discrete–time synthesis of the controller is then 
performed with a LPV/LFT loop-shaping method 
similar to the continuous-time case described in 
(Devaud, et al., 1999). 
The paper is organised as follows: the theoretical 
discrete LPV/LFT synthesis used in the loop-shaping 
design is developed in section 2. Section 3 is devoted 
to the control problem description and a discrete-time 
LFT model of the non-linear system is obtained in 
section 4. Section 5 details the chosen loop-shaping 
control strategy and the obtained discrete-time LPV-
controller is finally analysed in time and frequency-
domain in section 6. 
 

2. DISCRETE LPV/LFT CONTROL 
 

The main theoretical point of this paper is detailed in 
this section: for a discrete-time LPV plant with a LFT 
representation, it consists in the synthesis of a 
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discrete-time LPV controller of the same structure 
(fig. 1).  
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Fig. 1: discrete LFT representations of the plant and 

the controller 
 
The LPV/LFT plant is described by:  
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where:  
 

• 
2L

⋅ denotes the 2L -gain of discrete time-

varying systems. 
• Θ  represents the varying parameters block. 
• kz  and kv  are the input and the output of the 

parametric block. 
• ke  and ks  are the disturbance input and the 

output of the plant. 
• ku  and ky  are the control input and the 

measurement of the plant. 
 

All signals can be vector-valued. For the rest of the 
study, without loss of generality it is assumed that: 

033 =D  
 

The design problem considered is the following: 
 

Find a LPV/LFT controller ),( ΘKFl  such that the 
closed-loop system )),(),,(( ΘΘ KFPFF lul  is 
internally stable and has a 2L -gain less than a given 
number γ :  
 

γ<ΘΘ
2

)),(),,((
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where (.)lF  (resp. (.)uF ) denotes the lower (resp. 
upper) Linear Fractional Transformation. 
 
 
Define the system aP  as follows: 
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where )()( kk zsizevsizen ==θ , and consider the 
following sets of scaling: 
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Proposition (Apkarian and Gahinet, 1995): if there 
exists any K  and 2SL ∈  that verify 
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then the closed-loop system satisfies (1). 
 
Let define a state space representation of K : 
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It induces the following state-space representation of 

),( KPF al : 
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Using the discrete real bounded lemma, the following 
statements are then equivalent: 

• There exist a controller K  and a scaling 2SL ∈  
such that )),(),,(( ΘΘ KFPFF lul  is internally 
stable and such that K  and L  verify (2). 

• There exist a controller K , a scaling 2SL ∈  and 
0>X  such that: 
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Furthermore each 0>X  and each 2SL ∈ can be 
parameterised as follows: 
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The proposed approach to solve problem (1) extends 
to LPV/LFT systems the results of H∞ control 
exposed in (Gahinet, 1996) or (Guo, et al., 1999) in 
the stationary case. It can be proved that inequality 
(3) is equivalent to a LMI: 
 
• First step: left and right-multiply inequality (3) 

with ),,,,,( 2112 se n
T

n
TTT ILILXXdiag  and 

),,,,,( 2112 se nn ILILXXdiag  respectively (where 

)( ks ssizen =  and )( ke esizen = ). 

 
• Second step: introduce the following intermediate 

variables: 
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Consequently, (3) is equivalent to: 
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with 
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The minimisation of γ  solution to problem (1) has 
thus been turned into the following problem: 
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where 11KD , F , G , 2F , 2G , H , W , Y , Z , Π , 
Σ , R , S  and γ  are the optimisation variables.  
 
As problem (6) is a minimisation problem under LMI 
constraints (i.e. a convex problem), the convergence 
to the global minimum is guaranteed.  
Once the optimal values of the optimisation variables 
are recollected, the matrices M , N , U  and V  can 
be computed and a state-space representation of the 
LPV/LFT controller is easily obtained by inverting 
equations (4).  
 
Remark: if Π , Σ , R  and S  are full-rank matrices, 
then the controller satisfying (3) is unique, involving 
the inversion of M  and N  (resp. U  and V ). If not, 
a controller of reduced-order (resp. reduced 
parametric dependence) is obtained using the pseudo-
inverses. 
 
 

3. DESCRIPTION OF THE MISSILE PITCH-AXIS 
CONTROL PROBLEM 

 
The control problem discussed in this paper is a 
classical benchmark detailed in (Reichert, 1992): this 
study deals with the control of a missile pitch-axis 
under high variations of the angle of attack, which 
induces a very non-linear behaviour of the plant to 
control. 
 
Consider the following equations of flight dynamics: 
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where:  
 

• α , δ , q , M , z  and η  denotes respectively the 
angle of attack, the pitch fin deflection, the pitch 
rate, the number of Mach, the altitude and the 
normal acceleration. 

• ),,( MCn δα  and ),,( MCm δα  are the normal 
force and moment aerodynamical coefficients 
which have the following expressions: 

 







++−++=

+−++=

δααααδα

δααααδα

mmmmm

nnnnn

dcMbaMC

dcMbaMC

)3/87(),,(

)3/2(),,(
3

3

 
 

A particular flight point will be considered in this 
study: 3=M  and ftz 20000= , which induces the 
following numerical values: 
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Furthermore actuators are modelled with a second-
order low-pass filter (with natural frequency 

1150 −= radsaω  and damping 7.0=ξ ).  
 
The normal acceleration η  is the variable that has to 
track a given reference but both η  and the pitch rate 
q  are available measurements. This missile control 
problem has then the following performance 
requirements: 

• 95% time response: 0.35s. 
• static error less than 1%. 
• overshoot less than 15%. 
• limitation on actuator rate : 25 deg.s-1 for g1  

step. 
• Sufficient stability margins for the equivalent 

open loop of the linearised models for all values 
of the angle of attack: 20ms for delay margin, 8 
dB for gain margin, 40° for phase margin. 

 
 

4. LPV DISCRETE-TIME MODEL OF THE 
MISSILE 

 
The objective of this section is to build a convenient 
LPV/LFT discrete-time model of the missile in which 
the angle of attack α  appears both as a state and as a 
varying parameter. 
 
4.1. LFT continuous-time model 
 
The range of variation for the angle of attack is [-20, 
+20] (in degrees). As the missile is supposed to be 
symmetric, only positive values for α  will be taken 
into account. For this range of variation, )cos(α  can 
also be approximated by 1. With those assumptions, 
the quasi-LPV model can be expressed with a 
continuous-time LFT representation in which the 
parameter block is 2Iα  (for a minimal standard 
representation). 

 
4.2. Discretisation  
 
An approximated discrete-time LFT model with the 
same parametric block as the one of the continuous-
time LFT model is required for the synthesis of the 
discrete LPV/LFT controller. The chosen method to 
discretise the continuous-time LFT model consists in 
two points (Imbert, 2001): 
 

• Add a first-order hold for the outputs of the 
parameter block (that are inputs for the system). 

• Add a zero-order hold for the other inputs of the 
system. 

 
The choice of the sample-time eT  depends on the 
closed-loop performance specifications. As the 
required time-response is 0.35s, a convenient value of 

eT  can be 0.01s. Figure 2 compares non-linear step 
responses of the discretised LFT model and of the 
continuous-time model (with zero-order hold). 
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Figure 2: comparison of LFT models : continuous-

time  (solid) and discretised (dash) 
 
Even if such a comparison is not sufficient to justify 
entirely the quality of the discretisation, it can 
although be considered that the discrete-time model 
reflects quite properly the system to be controlled.  
 
Let now describe the chosen control strategy. 
 
 

5. THE LOOP-SHAPING PROCEDURE 
 

The pertinence of  loop-shaping methods 
(MacFarlane and Glover, 1990) for missile autopilots 
design has already been shown for both linear 
(Friang, et al., 1998; Iglesias and Urban 1999) and 
non-linear (Hiret, et al., 1998) control laws. The main 
principles of this methodology are quickly described 
below: 
 
• The first step is to choose post and pre-

compensators 2W  and 1W  to shape the open loop 
(fig. 3):  
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Fig. 3: Augmented Plant 

 
Generally those compensators are tuned to 
provide, for given values of Θ , low-gain in high 
frequency domain to increase robustness to 
model uncertainties and high-gain in low-
frequency domain for embedded precision (fig. 
4):  
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Fig. 4: Loop-shaping principle 

 



 

 

• The second step consists in the controller 
synthesis: the principle of H∞ robust stabilisation 
problem (one particular H∞ problem) is extended 
to LPV discrete-time context (fig. 5), giving 
directly the following problem: 

Find a stabilising controller ),( ΘKFl  that 
minimise the 2L -norm of the plant between 

),( 21 ee  and ),( 21 ss . 
 

LSP

K  
 2e  

 1e  

 - 

 + 

 + 

 + 

 u  

 y  

Θ  

Θ

 1s  

 2s  

 
           Fig. 5: LPV/LFT robust stabilisation problem 
 

The synthesis method detailed in section 2 is then 
used to find a solution to this problem. 

 
• Finally the implanted controller is the obtained 

LPV controller associated with the post and pre-
compensators (fig. 6): 
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Fig. 6: Implanted controller 

 
The application of this synthesis procedure to obtain a 
non-linear autopilot for the missile control problem is 
detailed in the next section. 
 
 

6. SYNTHESIS AND ANALYSIS OF THE 
LPV/LFT LOOP-SHAPING CONTROLLER 

 
For the synthesis of the missile autopilot, it is 

sufficient to choose linear invariant compensators 2W  
and 1W : the non-linear behaviour will be taken into 
account by the LPV controller. 1W  is a first-order 
low-pass filter and 2W  has the same structure as one 

of the classical autopilot configuration: a static gain 
for each measure is combined with a PI compensator 
on the accelerometric error (fig. 7).  

 

1F

2F

dK

1−z
KT ce

q

η

refη

+ ++

+

-

2W

 
Fig. 7: Structure of the post-compensator W2 

 
Remark: This configuration guarantees the 
cancellation of any static error thanks to the PI 
compensator on the accelerometric channel. 
 
Numerical data: 

1W  cut-off frequency: 58 s-1 
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The resulting implanted LPV controller (with the 
compensators) has a state-space representation of 
order 8 and a parameter block of order 2. The 
obtained performance level γ  is 3.7.  
 
 
6.1. Time-domain analysis 
 
The behaviour of the non-linear closed-loop system is 
observed for a manoeuvre with different step 
responses of the normal acceleration, which induces 
large variations of the angle of attack (fig. 8). 
 
The main result consists in the fact that all time-
domain specifications are completed (Tab. 1): 
 
 

Table 1: Time-domain performances 
 

 Max. 95% time 
response 

Max 
overshoot 

Max normalised  
actuator rate 

LPV/LFT 
Controller 0.343 s 5.9 % 16.1 deg/s 
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Fig. 8: Non-linear simulation 
 



 

 

6.2. Frequency-domain analysis 
 
For 10 values of α  between 0 and +20 degrees, the 
complete non-linear model is linearised and exactly 
discretised with a zero-order hold (sample-time 
0.01s). The non-linear LPV discrete controller is 
frozen for the same values of α , so that the discrete-
time open loop becomes linear invariant. In this 
study, the expression “open-loop” denotes the 
classical equivalent loop for autopilot analysis: the 
closed-loop system is opened at the input of the 
actuator. Stability margins are deduced from the plots 
given in fig. 9. The results are recollected in Tab. 2. 
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Fig. 9: Black diagram of equivalent open-loop 
 
Remark: the worst configuration for stability is 
obtained for 0=α , which is a classical result for 
missile control. Consequently the worst phase and 
gain margins are obtained for this flight. Furthermore 
the bandwidth increases with high angle of attack, so 
that the worst case for delay margin is achieved for 

deg20max == αα .  
 

Table 2: Frequency-domain performances 
 

 Gain margin Phase margin Delay margin 
LPV/LFT 
Controller > 8.5 dB > 44 deg > 21.5 ms 

 
 

Conclusion: The LPV/LFT discrete control law 
designed with the loop-shaping methodology achieves 
all the performance requirements of this missile 
autopilot benchmark: the good continuous-time 
performance of the loop-shaping LFT/LPV 
controllers (Devaud, et al., 1999) is here confirmed  
in discrete-time. Furthermore the stability margins are 
satisfactory and very homogenous for the whole range 
of variation of the angle of attack. 
 
 

7. CONCLUSION 
 

An original method based on H∞ loop-shaping 
principles has been proposed to design quasi-LPV or 
gain-scheduled discrete-time controllers and has been 
successfully tested on a missile control problem. Its 
main advantage consists in the resulting LPV 
controller expressed in discrete-time domain, which 
can simplify its implementation and validation 
process in case of use in real applications. 
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