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Abstract: The identification of nonlinear MIMO systems of the Hammerstein kind is 
discussed in the paper. The procedure is based on the approximation of the linear system 
dynamics by Laguerre filter banks, and on the approximation of the static nonlinearities 
by neural networks. The parameters of the approximating structure are identified from 
input-output noisy data with the modulating functions method. Under some restrictions on 
the MIMO structure of the system the proposed identification procedure is shown to be 
convergent and robust to measurement noise.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Hammerstein systems are models for nonlinear 
systems consisting in the series of a static nonlinear 
element followed by a linear dynamic system. The 
simplicity of the structure, and the ability to account 
for several nonlinear phenomena of scientific and 
engineering interest, has made Hammerstein models 
a powerful and popular tool, together with their 
symmetric counterparts, Wiener models, in which the 
static and dynamic elements are exchanged 
(Balestrino et al. 2001, and references therein, Al-
Duwaish 2000, Sun et al. 1999, Bai 1998, Greblicki 
1996, Boutayeb and Darouach 1994, Zi-Qiang 1994). 
One of the problems often encountered in the study 
of Hammerstein systems is the (parametric or non-
parametric) identification of both the nonlinear and 
linear elements from the measurement of input-
output data. Several approaches have been proposed 
to this aim in the literature (see references above); 
however, most of the work has been focused on the 
identification of SISO Hammerstein systems. The 
case of MIMO has been much less explored, since it 
has been treated only in the MISO case in Boutayeb 
and Darouach (1994), and within a subspace 
approach by Verhaegen and Westwick (1996). In the 
papers (Balestrino et al., 1999, Balestrino and Caiti, 

2000), a specific approximation structure for 
Hammerstein SISO systems has been proposed. In 
particular, the nonlinear static element has been 
approximated by a neural network, and the linear 
dynamics have been approximated by orthogonal 
functions of the Laguerre kind. Note that with this 
approach two different aspects have to be discussed. 
The first is related to the convergence properties of 
the selected approximation scheme, and it requires an 
asymptotic analysis as the number of elementary 
elements in the approximating structure goes to 
infinity. The second deals with the more mundane 
problem of determining the set of parameter values 
that best fit the available data, once a truncated (i.e., 
with a finite number of parameters) approximation 
has been chosen. In the mentioned papers it has been 
shown that the Laguerre/neural structure is 
convergent to the true underlying Hammerstein 
system with assumptions that are milder with respect 
to those requested by several other Authors 
proposing different approximating structure. Specific 
algorithms for parameter identification of the mixed 
Laguerre/neural structure have also been reported, 
still in the SISO case (Balestrino et al., 2001). In this 
work, the extension to the MIMO Hammerstein case 
of the mixed Laguerre/neural structure firstly 
introduced in Balestrino et al. (1999) is proposed. 
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While the convergence of the approximation can be 
demonstrated in the MIMO case just as in the SISO 
case (and hence it will not be discussed in this 
paper), the parameter identification algorithms are 
not so easily extended from SISO to MIMO. In 
particular, an algorithmic procedure based on the 
modulating functions (Preising and Ripping 1993) is 
illustrated in this paper. Modulating functions have 
already been demonstrated successfull in the 
parametric identification of SISO Hammerstein 
systems (Balestrino et al. 2001). The results reported 
here shows that the extension of the procedure to the 
MIMO case leads to a correct identification under 
some restrictive assumptions on the nonlinearity and 
on the coupling structure of the linear dynamic part.  
In particular, it is required that the nonlinearity does 
not present coupling among the input channels (the 
same structure as in Boutayeb and Darouach (1994); 
moreover, it is required that the transfer matrix of the 
linear dynamic element be diagonally dominant at 
the lower frequencies (i.e., at constant stationary 
regime the MIMO system reduces to the parallel of 
several SISO systems). The assumptions on the linear 
structure are more restrictive of those of Verhaegen 
and Westwick (1996); however, with respect to that 
paper, where the nonlinearity is constrained to be or a 
known polynomial, or to have polynomial structure 
with a priori information (as dominantly quadratic), 
the assumptions made in this paper are milder. The 
paper is organized as follows: in the next section, the 
problem is formally stated; in section III, the 
proposed algorithm is described, and conditions for 
its convergence to the �true� parameter values are 
given; simulation results are presented in section IV. 
Finally, discussion and conclusions are given in 
section V. 
 

2. PROBLEM STATEMENT 
 
A general Hammerstein MIMO system is illustrated 
in Fig. 1. 

 
Fig. 1. Structure of a Hammerstein MIMO system. 
 

Let nℜ∈u  be the input vector, mℜ∈x the vector of 
output of the nonlinear vector function f, zℜ∈y the 
vector of system output. The following general 
relations hold: 
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Being Yi, i =1,�,z  the Laplace transform of the i-th 
component of the vector y, Xj, j =1,�,m the Laplace 
transform of the j-th component of the vector x, G(s) 
the transfer matrix from x to y. For such a system, 
the vectors u and y are measurable, while the vector 
x is not accessible.  
The following simplifying assumptions are made: 
 
A1: z ≥ n, i.e., the system has at least as many output 

as input channels; 
A2: the nonlinear vector function f is such that          

m = n and niuff iii ,,1),()( #==u ; 
A3: the transfer functions gij (s), i,j = 1,�,n  have all 

poles with negative real part; 
A4: the functions nkfk ,,1, #=  are all Lipschitz 

continuous over their domain of definition, and 
the trivial case uconstufk ∀=   .)(  is excluded; 

A5: the transfer matrix G is diagonally dominant at 
low frequencies; by this we mean the following: 
a) nigg iiii ,,1,0)0( #=>=     ; 

b) jijgij ≠=→   ,0)(lim 0 ωω  
 

Assumption A1 has been made in Boutayeb and 
Darouach (1994), where the MISO case was treated. 
In this respect, assumptions A1-A5 extend the 
structure of Boutayeb and Darouach (1994) to 
MIMO systems loosely coupled at low frequency. 
From a physical point of view, assumption A5  
requires that all the non-diagonal transfer functions 
in G have a high-pass behaviour. To approximate the 
Hammerstein system described, the following 
structure is proposed (Balestrino and Caiti, 2000):  
 
- the nonlinear functions fk, k = 1,�,n are each 

approximated by a feedforward neural network 
with one hidden layer and sigmoidal activation 
function θ(⋅):  
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- the transfer functions gij(s) are each approximated 

by a series of Laguerre filter with pole -pi: 
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Note that equation (4) implies that, for any given row 
i in the transfer matrix G, each transfer function gij is 
approximated with the same number mi of Laguerre 
filters, all of them with the same pole -pi. Note that 
the coefficients aik are known, being the coefficients 
of the binomial expansion of 1)( ++ im

ips , and that 
the coefficients bijk are a linear combination of the 
Laguerre filter coefficients hijk. The approximation 



 

     

proposed for the linear part (equation (4)) implies 
that the following relation holds: 
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Assuming zero initial conditions, and taking the 
inverse Laplace transform of equation (5), one gets 
the following differential equation for the i-th output 
of the linear system: 
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It is finally assumed, without loss of generality, that 
the transfer functions gii(s) have unitary static gain 
for every i. This is due to the well-known fact that, 
for Hammerstein/Wiener systems, the problem of 
attributing the stationary gain to the nonlinearity or to 
the linear dynamics is undecidable from observation 
of input-output data only. The customary choice is to 
assign a unitary gain to the linear subsystem. In view 
of this choice, also the approximating linear system 
is chosen with unitary gain, imposing bii0 = ai0 for 
every i. Moreover, due to the high pass nature of the 
off-diagonal transfer functions in G (assumption A5), 
the approximating linear system has also to verify the 
relation  bij0 = 0, j = 1,�,n, j ≠  i.  
To summarize, once the number of neural units nk, 
the number of Laguerre filters mi, and the Laguerre 
poles -pi have been a priori fixed, the identification 
problem consists in the determination of the neural 
network weights wij

(k) and of the Laguerre filter 
coefficients hijk  (or equivalently bijk) that best match 
the available input-output data accordingly to some 
merit criterion. 
 

3. THE IDENTIFICATION PROCEDURE 
 
The identification algorithm is performed in three 
main steps. In the first step some values (two are 
sufficient) of the approximating nonlinear functions 

kf� , for nk ,,1#= , are determined, exploiting the 
steady state properties of the system. In the second 
step, these values are used to generate Pseudo 
Random (Binary) Signals to allow identification of 
the coefficients of the approximating transfer 
functions ĝij one at a time, starting from those on the 
diagonal. In the third and final step, a set of input-
output values of the nonlinearity is generated, to 
allow generation of network weights by standard 
learning techniques. In order to identify values of 

kf� , a constant vector ū is input to the system, and 
the output is observed for a sufficient time to allow 
the system to reach steady state (such steady state 
must exist given the assumptions on the linear 
dynamics). Once at steady state, the following set of 
relations must hold: 
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Since in the approximating structure the assumption 
of unitary gain for each ĝii(s) has been made, the 
relation in equation (9) allows to equate the measured 
output steady-state with the value of the nonlinearity 
at the point.  
The same procedure is then repeated with another 
constant input vector u, component-wise different 
from ū; observation of the output at steady-state 
allows to obtain the relation: 
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After this preliminary procedure, for each nonlinear 
function if�  there are available two known values ( ix  
and ix ) in correspondence of the input values ūi  and 

ui (note that, if any of these values should turn out to 
be zero, or if they should turn out to be equal, the 
procedure can be repeated until two values different 
from each other and from zero are determined). Note 
also that the reason why the class of MIMO 
Hammerstein systems has been restricted to those 
having more output channels than input channel is 
due to the fact that the above procedure, in the case n 
> z, will fail to establish values for the functions 

nzkfk ,,1,� #+=  . The identification of the 
coefficients biik of the approximating transfer 
function ĝii can now be pursued. To this aim, let us 
now feed the system as i-th input a Pseudo Random 
Binary Signal (PSRBS) ui(t) that switches between 
the values ūi  and ui at every time interval ∆t with 
probability      q = 0.5; the other system input uj (t), 
j≠ i, are held constant. Due to the high pass nature of 
the coupling of the system, the recorded output at the  
i-th channel will only be affected by the transfer 
function gii(s). Assuming for gii(s) the Laguerre filter 
banks approximation of equation (4), the measured 
output yi(t) is obtained as the output of a SISO 
system described by the following differential 
equation: 
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Consider a known function Φ(t) (�modulating 
function�) defined over the interval [0 T], (with       T 
= h∆T, h integer), and having the following 
properties: 
- Φ(t) is differentiable at least n + 1 times; 
- Φ(t) and all its first n derivatives have zero values 

at both the extremes of the interval [0 T]. 
Multiplying both sides of equation (11) by Φ  and 
integrating by parts on the interval [0 T], one gets: 
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Since the input signal and the Φ(t) (together with all 
its derivatives) are known, and the output signal is 
measurable, equation (10) establishes an algebraic 
relation among the coefficients ai, bi of the system 
described by equation (7). Since xi(t) is a known 
function switching between the values ix  and xi, the 
interval T can be parted in those subintervals in 
which xi(t)  takes value ix , and in those subintervals 
in which xi(t) takes value xi, so that equation (12) can 
be re-written as: 
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where the total sum of the intervals with indexes h  
and h  is equal to T. In equation (13), the left hand 
side is known, and the right hand side contains a 
known term (the one corresponding to the index     l 
= 0, since bii0 = ai0). By defining the vector of 
unknown coefficients 

1i

t

ii iim iib b =  z # , equation 

(13) can be rewritten as dii
t =zc ; by repeating the 

same procedure, generating q different PSRBS ui(t) 
over intervals of length T (while always keeping 
constant the inputs uj, j ≠ i),   q > mi, one finally gets 
the following system of algebraic equations in the 
unknown zii: 
 

dz =iiC  (12) 
                                                                                                          
Equation (15) can then be solved in a least-square 
sense. The procedure described can be applied for 
every ),min(,,1 zni #= , leading to the identification 
of the coefficients of the approximating transfer 
functions ĝii. Some observations are in order to 
guarantee that equation (12) admits indeed solution. 
The matrix C will be of full rank mi if at least mi 
different PSRBS can be generated within the time 
interval T, and if, among the chosen PSRBS, at least 
mi  linearly independent vector of coefficients (see 
equation (12)): 
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can be generated. The first requirement is met if the 
switching interval ∆h satisfies the relation: 
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General conditions for the fulfilment of the second 
requirement are more difficult to establish, 
depending also on the choice of the modulating 
function; however, this is a condition that, for a given 
choice of Φ and for a given sequence of PSRBS, can 
be checked a priori, to establish if the input choice 
allows for the identification of the system 
parameters. If this were not the case, the switching 
interval ∆h (or even the modulating function) can be 
changed in a trial and error fashion until linear 
independence is obtained. Once the coefficients of 
the approximating transfer functions ĝii have been 
determined, the same procedure can be applied to the 
determination of the off-diagonal parameters in Ĝ: 
the system is fed as j-th input a Pseudo Random 
Binary Signal (PSRBS) uj(t) that switches between 
the (known) values ūj  and uj, while the other system 
input uk(t), k ≠ j, are held constant at known values. 
By recording the system outputs ziyi ,,1, #= , the 
coefficients of the approximating transfer functions 
ĝij can be determined with the modulating function 
method; however, in this case care must be taken to 
remove from each measured output yi(t) the constant 
term due to the steady state behaviour of the transfer 
function ĝii with constant input ui; such term is 
known, at this stage of the identification process. 
The final step in the identification procedure is more 
standard. In order to determine the coefficients wij

(k) 
(the synaptic weights in the neural network jargon � 
see equation (4)) of the approximating functions kf� , 
a set of input-output points of the map f is needed 
(the �training set�). The weights can then be 
determined by applying some learning procedure, as 
the backpropagation or one of its many 
modifications. In order to generate the training set, 
several solutions are possible. One is to exploit again 
the steady state properties of the system, feeding 
constant inputs to the system, and measuring the 
steady state output. For the assumptions made on the 
approximating structure, niufy iii ,,1),(� #==  , being 
yi the i-th system steady state output, and ui the 
constant input on the i-th channel. This procedure 
allows also to mitigate the effect of zero-mean 
measurement noise, since it is possible to average the 
recorded output over arbitrary time intervals after 
stea1dy state is reached. A possible alternative is to 
use the approximating transfer matrix Ĝ, which at 
this stage is known, to invert the linear dynamics; 
with this option a much wider training set can be 
collected in a shorter period of time, however this 
option is much more sensitive to measurement noise 
and to mismatch between the true system and the 
approximated one. In our implementation of the 
method, we have used the first approach (averaged 
outputs at steady state) for generation of the training 
set, and the backpropagation with Levenberg-
Marquardt correction as the training algorithm for 
neural approximating structures. The results obtained 
are reported in the next section. 
 



 

     

4. RESULTS 
 

To illustrate the performance of the proposed 
identification procedure, in this section results are 
presented for the identification of a simple 22×  
Hammerstein system. The system nonlinearity is 
given by : 
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defined over the interval [-4 4]. The transfer matrix 
of the linear subsystem is given by: 
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The approximating structure of the linear subsystem 
has been chosen as a Laguerre filter banks with 4 

elements (i.e., mi = 3, i = 1,2), and pole � pi = -1.3. 
The neural networks have been selected with 4 
neurons in the hidden layer.  The algorithm has been 
implemented with the choice of Malentinsky splines 
as modulating functions (Preising and Rippin 93). 
The identification procedure has been applied to the 
case in which the measured output is noise-free, in 
the case in which the measurement is corrupted with 
gaussian white noise with a signal-to-noise ratio 
(SNR) of 40 dB.  
Figures 2-3 show the results of the identification of 
the linear part by comparing the frequency response 
of the true system and of its approximation. The 
identified system nonlinearities are shown in figure 
4. The results shows a gentle degradation of the 
approximation performance as the measurement 
noise increase. Note that the approximation structure 
has not been changed within the reported test; this 
means that better results may be obtained by 
increasing the number of Laguerre filter banks and/or 
the number of neural units. 

  

 
(a) (a) 

 
(b) 

 
(b) 

Fig. 2. Frequency responses. Comparison among 
true (solid line), approximated  without 
noise (dotted line) and approximated with 

            SNR 40 dB (dashed line). (a) g11, (b) g21. 

Fig. 3. Frequency responses. Comparison among 
true (solid line), approximated without 
noise (dotted line) and approximated with 
SNR 40 dB (dashed line). (a) g12, (b) g22. 



 

     

5. CONCLUSIONS 
  
A procedure for the identification of a class of 
Hammerstein MIMO systems has been proposed. 
The procedure relies on the approximation of the 
Hammerstein system with neural networks and 
Laguerre filter banks. The parameters of the 
approximating structure can be identified with the 
method of the modulating function by injecting the 
system with Pseudo Random Binary Signals, if the 
class of Hammerstein MIMO systems is restricted to 
those whose linear dynamics are loosely coupled at 
low frequencies, and that have at least as many 
output channels as input channels. The algorithm has 
an excellent performance in the noise-free case, and 
has a gentle degradation with the addition of noise, 
with results that are still fairly acceptable at 20 dB 
SNR. Variation of the basic algorithm proposed here 
are of course possible, and numerous to mention. 
Among the various possibilities that will be subject 
of further studies, there are the use of generalized 
orthogonal functions as a substitute of the Laguerre 
filter banks, the use of different neural structures (for 
instance, Radial Basis Functions networks). 
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Fig. 3. Nonlinear functions. Comparison 
among true (solid line), approximated 
without noise (star) and approximated 
with SNR 40 dB (circle).  
(a)  f1 = u1
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